
Logical
Characterizations
in Distributed
Computing
Jukka Suomela
Aalto University

Recently in Paris…

I was one of the examiners in Fabian Reiter’s
PhD defense at Paris Diderot

Fabian’s talk started with Fagin’s theorem
and then proceeded to introduce the
“Helsinki–Tampere theorem”
What is this about?

Back to February 2010

I gave a talk in the Finite Model Theory
Seminar on an unusual topic: models of
distributed computing

Led to a collaboration that initiated the
study of distributed graph algorithms from
the perspective of descriptive complexity

Helsinki–Tampere team

Lauri Hella

Matti Järvisalo

Antti Kuusisto
Juhana Laurinharju

Tuomo Lempiäinen

Kerkko Luosto

J.S.
Jonni Virtema

What is
distributed
computing?

Centralized vs. distributed

• Theory of centralized computing:
• “what can be computed efficiently with my laptop?”
• input & output: encoded as a string
• model of computing: Turing machines

• Theory of distributed computing:
• ???

Distributed computing

• Can mean lots of different things
• causes lots of confusion

• I’ll explain two commonly used
interpretations
• these are just “two extremes”
• there is a whole spectrum of variants between them

Big data
perspective
“Too large for
my laptop to solve,
I’ll have to resort to
Amazon cloud”

Network
algorithms
“How to coordinate
data transmissions in
a large network
without centralized
control?”

Big data
perspective

Network
algorithms

Big data
perspective
• Focus:
computation

• Distributed
perspective
helps us

Network
algorithms
• Focus:
communication

• Distributed
perspective
additional
challenge

Big data
perspective
• Fully centralized

control

• Global perspective
• Input & output

in one place

Network
algorithms
• No centralized

control

• Local perspective
• Input & output

distributed

Big data
perspective
• I know everything

about input

• I need to know
everything about
solution

Network
algorithms
• Each node knows its

own part of input
• e.g. local constraints

• Each node needs its
own part of solution
• e.g. when to switch on?

Big data
perspective
• Explicit input

• encoded as a string,
stored on my laptop

• Well-known
network structure
• tightly connected

cluster computer

Network
algorithms
• Implicit input

• input graph =
network structure

• Unknown
network structure
• e.g. entire global

Internet right know

Big data
perspective
Can we divide
problem in small
independent tasks
that can be solved
in parallel?

Network
algorithms
If each node is
only aware of its
local neighborhood,
can we nevertheless
find a globally
consistent solution?

Network
algorithms

LOCAL model

• Initial knowledge:
• local input, number of neighbors

• Communication round:
• sendmessage to each neighbor
• receivemessage from each neighbor
• update state
• possibly: announce local output and stop

LOCAL model

• Each node labeled
with a “unique identifier”
• constant k such that if we

have a graph with n nodes,
unique identifiers are distinct
values from { 1, 2, …, nk }

LOCAL model

Equivalent:
• “running time”
• number of synchronous

communication rounds
• how far do we need to look

in the graph

Fast algorithm ↔ highly “localized” solution

LOCAL model

• The usual computer science perspective:
• what is the worst-case running time?
• asymptotically, as a function of n

• Two-player game:
• player A chooses the algorithm
• player B then chooses the graph, local inputs,

unique identifiers

LOCAL model

• Everything is computable in O(n) rounds!
• assuming a connected graph
• gather everything, solve locally by brute force
• exploits: large messages, unlimited local computation

• Interesting question: what can be done in
o(n) rounds?

LOCAL model: examples

• Example: graph coloring with k colors
• local input: nothing
• local output: what is my own color
• constraint: adjacent nodes have different colors

LOCAL model: examples

• Example: graph coloring with k colors

• Graph family: path with n nodes
• k = 2: Θ(n) rounds
• k = 3: Θ(log* n) rounds
• k = 100: Θ(log* n) rounds

LOCAL model: examples

• Example: graph coloring with k colors

• Graph family: 2D grid with n × n nodes
• k = 2: Θ(n) rounds
• k = 3: Θ(n) rounds
• k = 4: Θ(log* n) rounds
• k = 100: Θ(log* n) rounds

LOCAL model: examples

• Example: weak 2-coloring
• label nodes with {0, 1}
• each node has a neighbor with a different label

• Graph family: regular graphs
• 4-regular graphs: Θ(log* n) rounds
• 5-regular graphs: Θ(1) rounds

LOCAL model

• Why do we keep seeing “Θ(log* n)”?
• All of these are algorithms that exploit

numerical values of unique identifiers
• more precisely, it is Θ(log* s), where s = size of

the identifier space
• we just assumed that s = poly(n)

LOCAL model

• What if we don’t have unique identifiers?

Weak models
of distributed

computing

“Weak models”

• Initial knowledge:
• local input, number of neighbors

• Communication round:
• send message to each neighbor
• receive message from each neighbor
• update state
• possibly: announce local output and stop

All of this
identical to
the LOCAL

model!

“Weak models”

• Key difference: nodes are identical
• no unique identifiers
• “anonymous networks”

“Weak models”

• How to refer to your neighbors?

• Port-numbering model:
• node of degree d can refer to its neighbors with

numbers 1, 2, …, d
• “this is the message that I got from neighbor x”
• “I want to send this message to neighbor x”

“Weak models”

• How to refer to your neighbors?

• Set–broadcast model:
• no way to refer to specific neighbors
• “this is the set of messages that I got from my

neighbors in this round”
• “I want to broadcast this message to all neighbors”

Weak models: computability

• Many problems cannot be solved at all

• Key challenges:
• breaking symmetry
• detecting cycles

Breaking symmetry

• Example: graph coloring

• Input graph:

• Impossible to solve!

Breaking symmetry

• Input graph:

• Proof:
• same state before round t
• same outgoing messages
• same incoming messages
• same state after round t

Detecting cycles

• Not possible to tell the difference between
these graphs

Detecting cycles

• Not possible to tell the difference between
these graphs
• Proof: covering maps

preserve everything

Weak models

• Lots of different models of distributed
computing
• “VV”, “MV”, “SV”, “VB”, “MB”, “SB” …

• Key questions about each model:
• which problems can be solved at all?
• which problems can be solved in constant time?

Logical
characterizations

Weak models & modal logic

• Natural 1:1 correspondence between:
• constant-time distributed algorithms

set–broadcast model
• formulas in basic modal logic

• Both equally expressive: can “solve”
the same set of graph problems

Modal logic & computing

• Textbook approach:
• possible world ≈ possible state of the system
• accessibility relation ≈ state transition

• Our perspective:
• possible world ≈ computer
• accessibility relation ≈ communication link

Modal logic Distributed algorithms

Kripke model K = (W, (R↵)↵2I , ⌧) { input graph G = (V,E)
port numbering p

states W nodes V
relations R↵, ↵ 2 I edges E and port numbering p

valuation ⌧ } node degrees (initial state)
proposition symbols q1, q2, . . .

formula ' algorithm A
formula ' is true in state v algorithm A outputs 1 in node v
modal depth of ' running time of A

Table 3: Correspondence between modal logic and distributed algorithms.

Conversely, for any modal formula ', there is a local algorithm A that can
evaluate the truth of ' in the Kripke model K (G, p).

The general idea of the correspondence between modal logic and distributed
algorithms is described in Table 3. We will assume that A produces a one-bit
output, i.e., Y = {0, 1}; other cases can be handled by defining a separate formula
for each output bit.

We start by defining the Kripke models K (G, p). There are in fact four
di↵erent versions of K (G, p), reflecting the fact that algorithms in the lower
classes do not use all the information encoded in the port numbering. Let
G = (V,E) 2 F(�), and let p be a port numbering of G. The accessibility
relations used in the di↵erent versions of K (G, p) are the following; see Figure 7
for illustrations:

R(i,j) = {(u, v) 2 V ⇥ V : p((v, j)) = (u, i)} for each pair (i, j) 2 [�]⇥ [�].

Given �, these relations together with the vertex set V contain the same infor-
mation as the pair (G, p): graph G and port numbering p can be reconstructed
from the pair �

V, (R(i,j))(i,j)2[�]⇥[�]

�
.

Since algorithms in classes below Vector have access to a restricted part of the
information in p, we need alternative accessibility relations with corresponding
restrictions on their information about p:

R(i,⇤) =
[

j2[�]

R(i,j) for each i 2 [�],

R(⇤,j) =
[

i2[�]

R(i,j) for each j 2 [�],

R(⇤,⇤) =
[

(i,j)2[�]⇥[�]

R(i,j).

Note that R(⇤,⇤) = {(u, v) : {u, v} 2 E} is the edge set E interpreted as a
symmetric relation.

In addition to the accessibility relations, we encode the local information on
the degrees of vertices into a valuation ⌧ : �� ! P(V), where �� = {qi : i 2 [�]}.

17

PODC 2012 (Symposium on Principles of Distributed Computing)

Technology transfer

Using tools
from logic to
prove results
on distributed
computing

e.g. bisimulation

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

MV

SV

VB

MB

SB

=

=

=

≠

≠

≠

(a) (b)

Figure 5: Classes of graph problems. (a) Trivial subset relations between the classes.
(b) The linear order identified in this work.

Remark 2. In each problem class, we consider algorithms in which each node
knows its own degree. While this is natural in all other cases, it may seem odd in
the case of class SB. In principle, we could define yet another class of problems
SBo, defined in terms of degree-oblivious algorithms in Set \ Broadcast, i.e.,
algorithms with a constant initialisation function z0. However, it is easy to
see that SBo is entirely trivial—in essence, one can only solve the problem of
distinguishing non-isolated nodes from isolated nodes—while there are many
non-trivial problems that we can solve in class SB. In particular, it is trivial to
prove that SBo (SB. Hence we will not consider class SBo in this work. However,
class SBo is more interesting if one considers labelled graphs; see Section 3.4.

2 Contributions

This work is a systematic study of the complexity classes VVc, VV, MV, SV, VB,
MB, and SB, as well as their constant-time counterparts. Our main contributions
are two-fold.

First, we present a complete characterisation of the containment relations
between these classes. The definitions of the classes imply the partial order
depicted in Figure 5a. For example, classes VB and SV are seemingly orthogonal,
and it would be natural to assume that neither VB ✓ SV nor SV ✓ VB holds.
However, we show that this is not the case. Unexpectedly, the classes form a
linear order (see Figure 5b):

SB (MB = VB (SV = MV = VV (VVc. (1)

In summary, instead of seven classes that are possibly distinct, we have precisely
four distinct classes. These four distinct classes of problems can be concisely
characterised as follows, from the strongest to the weakest:

(1) consistent port numbering (class VVc),
(2) no incoming port numbers (class SV and equivalent),
(3) no outgoing port numbers (class VB and equivalent),
(4) neither (class SB).

6

What has
happened

since 2010?

Beyond constant time

• Easy: running time ≈ operator depth

• Much more challenging to capture:
non-constant running time

Beyond constant time

• Promising approach: fixed-point logic
• e.g. modal μ-calculus
• Antti Kuusisto (CSL 2013)
• Fabian Reiter (ICALP 2017)

Nondeterminism & alternation

• Stronger models of distributed computing
• cf. nondeterministic & alternating Turing machines
• cf. class NP & polynomial hierarchy

• Logical characterizations:
• “alternating local distributed automata”

≈ monadic second-order logic
• Fabian Reiter (LICS 2015)

Nondeterminism & alternation

• Active research topic: distributed decision
• yes-instance: all nodes say “yes”
• no-instance: at least one node says “no”

• E.g.: O(log n) bits per node per quantifier
• Göös, S. (PODC 2011)
• Feuilloley, Fraigniaud, Hirvonen (ICALP 2016)

What is
happening
right now?

Structural complexity theory

• Centralized computing:
• time hierarchy theorem
• more time → can solve more problems

• Distributed computing:
• gap results
• o(log n) rounds ≈ as good as O(log* n) rounds

Structural complexity theory

• Key idea that has enabled lots of progress:
identify the right family of problems
• do not try to prove something about “all graph

problems”
• focus on “LCL problems” (locally checkable labeling)
• distributed analogue of class NP: solutions are easy

to verify, but may be hard to find

Structural complexity theory

• Lots of progress:
• Brandt et al. (STOC 2016)
• Chang et al. (FOCS 2016)
• Ghaffari & Su (SODA 2017)
• Brandt et al. (PODC 2017)
• Chang & Pettie (FOCS 2017)
• Balliu et al. (STOC 2018) …

Structural complexity theory

• One of the current obstacles: we seem to be
still lacking the right definitions
• example: LCLs work well for graphs of maximum

degree O(1), but how to generalize beyond that?

• Could we try to replace the current
algorithmic or graph-theoretic definitions
with logical characterizations?

Thanks!
Happy Birthday!

