Models of distributed computing:
port numbering and local algorithms

Jukka Suomela

Adaptive Computing Group

Helsinki Institute for Information Technology HIIT
University of Helsinki

FMT seminar, 26 February 2010

Our research focus

» Very restrictive models of distributed computing
e Local algorithms (constant-time distributed algorithms)
e Algorithms in anonymous networks

e Deterministic algorithms

e Graph problems
e Vertex covers, dominating sets, ...
e Linear programs in graphs

o Approximability

Outline of today’s talk

 Models of computation
e Local algorithms

e Port-numbering model

e Observations and results
« What is known about these models?
e Case study: vertex cover problem
e Connections to other models of computation

« Constant-depth bounded-fan-in circuits, NC°

Part |: Models of computation

e Distributed algorithms in general

e Two very limited special cases:

e Local algorithms

e Port-numbering model

Distributed algorithms

« Communication graph G

G « Node = computer

e €.g., Turing machine,
finite state machine

e Edge = communication
link

e computers can
exchange messages

Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a correct
output in any graph G

Distributed algorithms

e Usually, computational

G problems are related to
the structure of the

communication graph G

« Example: find a maximal
independent set for G

e The same graph is both
the input and the system
that tries to solve the
problem...

Synchronous distributed algorithms

1. Each node reads its
@ own local input

@ @ e Depends on the problem,
for example:

e node identifier

e node weight

e weights of
incident edges

e May be empty

Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds

Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q 0 communication rounds
until all nodes

0 have announced
their local outputs

e Solution of the problem

10

Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q ” communication rounds
until all nodes
a have announced
A their local outputs
I

Example: Find a maximal independent set /

kLocal output of a node v indicates whether v e [,

11

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

12

Synchronous distributed algorithms

« Communication round:

each node
\N 1.sends a message
«— to each neighbour
—

(message propagation...)

\

13

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

14

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3. updates its own state

15

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3. updates its own state

4. possibly stops and
announces its output

16

Synchronous distributed algorithms

« Communication rounds
are repeated until all

@ nodes have stopped and
announced their outputs
Q ” e Running time =
a number of rounds

e Worst-case analysis

17

Synchronous distributed algorithms

o If the nodes have unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

e Algorithm: each node

1. gathers full information about G
(including all local inputs)

2.solves the graph problem by brute force

3. chooses its local output accordingly

18

Synchronous distributed algorithms

e If the nodes have unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

e Natural research problems:
 What can be solved in o(diam(G)) rounds?
e Focus: local algorithms
 What if we do not have unique identifiers?

e Focus: port-numbering model

19

Model 1:
Local algorithms

o An extreme version of sublinear-time algorithms:
running time independent of the number of nodes

e Examples:
e running time 100 rounds in any graph

e running time f(A) in graphs with maximum degree < A

e Our focus: deterministic local algorithms

20

Deterministic local algorithms

e Running time is T <=
output is a function of input within distance T

T

2: “Local neighbourhood”

21

Deterministic local algorithms

 Scalability:
e Can be used in infinitely large (but locally finite) graphs
» Fault tolerance:

e Output can be re-computed repeatedly

o Efficient self-stabilising algorithm,
recovers from any initial configuration,
can be used in dynamic graphs

e Very limited model: what can be computed?

22

Model 2:
Port-numbering model

e No unique identifiers

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary

e Focus: deterministic
algorithms

23

Deterministic algorithms
in the port-numbering model

e Graph + port numbering
1 1 may be symmetric

e Nodes indistinguishable

e |dentical inputs,
1 deterministic
computation,
identical outputs

e Very limited model:
Z what can be computed?

24

Local algorithms
and the port-numbering model

e Very limited models of distributed computing
e Local algorithms: constant time

e Port-numbering model: anonymous nodes

e Seemingly unrelated
« Why did | choose to introduce both?

« What can be said about these models?

e Certainly plenty of negative results,
but do we have anything positive?

25

Part Il: Observations and results

e Similarities between local algorithms
and the port-numbering model

o Case study: vertex cover problem
« Joint work with Matti Astrand

o Examples of other positive results

26

Local algorithms
and the port-numbering model

e Orthogonal models

e All 4 combinations are reasonable

e All 4 combinations are distinct

e Simple (contrived) examples...

Any running time

Local algorithms

Port numbering

Unique IDs

27

Local algorithms
and the port-numbering model

e All 4 combinations are distinct

e Trivial problems can be solved in any model

Any running time
Local algorithms Constant function

Port numbering Unique IDs

28

Local algorithms
and the port-numbering model

e All 4 combinations are distinct
 |[dentifying all triangles (3-cycles):

e Local information is sufficient,
out unique IDs are needed to distinguish
between a cycle and a long path

Any running time

Local algorithms Constant function Find triangles

Port numbering Unique IDs

29

Local algorithms
and the port-numbering model

e All 4 combinations are distinct

e 2-colouring edges of paths:

e Port numbering is sufficient, but
the worst-case running time is
necessarily 6(diam(G))

Any running time

Local algorithms

Path colouring

Constant function

O—O—CO——0
OO0
O—(O—(O0—CO—CO—0

Find triangles

Port numbering

Unique IDs

30

Local algorithms
and the port-numbering model

e All 4 combinations are distinct

e Spanning tree construction:

e Non-local problem

e Unique IDs needed to detect cycles

Any running time

Path colouring

Spanning trees

Local algorithms

Constant function

Find triangles

Port numbering

Unique IDs

31

Local algorithms
and the port-numbering model

e All 4 combinations are distinct

« However, there are surprising similarities between
local algorithms and the port-numbering model

e Not fully understood yet!

Any running time

Local algorithms

Port numbering Unique IDs

32

Local algorithms
and the port-numbering model

e There are problems where both models
seem to be equally strong

e Best algorithm in port-numbering model is local

e Best local algorithm uses the port-numbering model

Any running time

Local algorithms

Port numbering Unique IDs

33

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

e Find a minimum-size subset C of nodes
that “covers” all edges: each edge
incident to at least one node in C

e Classical NP-hard optimisation problem

Any running time

Local algorithms

Port numbering Unique IDs

34

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

« Best possible approximation ratio?
e Focus on bounded-degree graphs Q%—@

Any running time

Local algorithms

Port numbering Unique IDs

35

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

e Trivial lower bound
e Cycles, optimum n/2

e Solution with < n nodes requires symmetry-breaking

Any running time

Local algorithms

Port numbering Unique IDs

36

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

e Non-trivial lower bound
e Cycles
e Czygrinow et al. 2008, Lenzen & Wattenhofer 2008

Any running time

Local algorithms

Port numbering Unique IDs

37

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

e Matching positive result

e Bounded-degree graphs

e One algorithm for both models

Any running time

Local algorithms

Port numbering Unique IDs

38

Local algorithms
and the port-numbering model

 Example: minimum vertex cover

e Best possible approximation ratios
in bounded-degree graphs

Any running time

Local algorithms

Port numbering Unique IDs

39

Local algorithms
and the port-numbering model

e Naturally, we can study running time with
a finer granularity than O(1) vs. arbitrary...

« However, anything larger-than-constant
seems to lead to a very different model

Any running time

Local algorithms

Port numbering Unique IDs

40

Local algorithms
and the port-numbering model

o Slightly non-constant running time together with
unique IDs already makes a huge difference

O(n)
Oflog n) Iterated logarithm h
O(log* n) = inverse of tetration
(power tower)

o

Port numbering Unique IDs

41

Local algorithms
and the port-numbering model

o Slightly non-constant running time together with
unique IDs already makes a huge difference

O(n) Deterministic symmetry w
O(log n) breaking in cycil[es
O(log* n)

j

{ Negative ule—Vish kin 1986
result Linial 1992

Port numbering Unique IDs

42

Local algorithms
and the port-numbering model

e E.8., vertex cover in cycles becomes
easier to approximate

Port numbering Unique IDs

43

Local algorithms
and the port-numbering model

e E.8., vertex cover in cycles becomes much
easier to approximate

Port numbering Unique IDs

44

Local algorithms
and the port-numbering model

e Hence the focus: strictly constant time
and/or anonymous nodes

Port numbering Unique IDs

45

Case study:
2-approximation of vertex cover

e Lower bound result (for cycles):

e There is no local algorithm with
approximation factor 2 - e forany € > 0

e I’ll sketch Czygrinow et al.’s (2008) proof,
which is a nice application of Ramsey’s theorem

e Fast local algorithm (for bounded-degree graphs):
e 2-approximation in O(A) time in unweighted graphs

e Uses LP duality; finds a maximal dual solution using
a combination of greedy increments and graph colouring

46

Lower-bound result
for vertex cover approximation

« Numbered directed n-cycle:
e directed n-cycle, each node has outdegree = indegree = 1

e node identifiers are a permutation of {1, 2, ..., n}

47

Lower-bound result
for vertex cover approximation

e Fix any € > 0 and a deterministic local algorithm A

e Assumption: A finds a feasible vertex cover
(at least in any numbered directed cycle)

« Theorem: For a sufficiently large n there is
a humbered directed n-cycle C in which
A outputs a vertex cover with > (1 - €)n nodes

e Corollary: Approximation ratio of A is
at least 2 - 2¢

48

Lower-bound result
for vertex cover approximation

e Let T be the running time of A, let k = 2T + 1

e The output of a node is a function f’ of
a sequence of k integers (unique IDs)

T=2, k=5 [outpu=r11,9,527) |

--»@a@a@a@aéa@a@ .

[output = (3, 11, 9, 5, 2))

49

Lower-bound result
for vertex cover approximation

e Lets focus on increasing sequences of IDs

e Then the output of a node is a function f of
a set of k integers

k=5: " output - 16, 7, 11, 13, 21) |

[output = f({3, 6, 7, 11, 13}))

50

Lower-bound result
for vertex cover approximation

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

k=5: " output - 16, 7, 11, 13, 21) |

--»@a@a@v@a@a@ .

[output = f({3, 6, 7, 11, 13}))

51

Lower-bound result
for vertex cover approximation

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

e Fix a large m (depends on k and ¢€)

« Ramsey: If n is sufficiently large,
we can find an m-subset A c {1, 2, ..., n}

s.t. all k-subset X ¢ A have the same colour

52

Lower-bound result
for vertex cover approximation

e That is, if the ID space is sufficiently large...

D)W E)()D)(8)(2)09
WICIODOIOINIOIDID
RDIIDIDIDIDIIDIDIE)

Lower-bound result
for vertex cover approximation

e That is, if the ID space is sufficiently large,

we can find a monochromatic subset of m IDs...

f{2, 3,6, 7,11}) = f{2, 3,6, 7, 13}) =
f{2, 3, 6,7, 21}) = f{2, 3, 6, 11, 13}) =
... =f({6,7, 11, 13, 21})

01 1: 1001 < 17 100D
1O IOIDIOIVIOIDID
21 IIDIDIDIDIDIDIDIE)

54

Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

f({z) 3) 6) 7; 11}) =
f({3) 6) 7; 11, 13}) = eee

Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

... and it must be 1

Lower-bound result
for vertex cover approximation

e Hence there is an n-cycle with a chain of
m - 2T nodes that output 1

/\ /\
[output 1) [output 0 or 1)

58

Lower-bound result
for vertex cover approximation

e Hence there is an n-cycle with a chain of
m - 2T nodes that output 1

 We can choose as large m as we want

e Good, more “black” nodes that output 1

« However, n increases rapidly if we increase m

e Bad, more “grey” nodes that might output O

e Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly

59

Lower-bound result
for vertex cover approximation

 Huge ID space...

D)W E)(©)D)(8)(2)09
WICIOOOIOIIOIDID
DINDIDIDIDIIDIDIED)
31)(32)(33)(34) (32) (30) (37) (38) (39) (40)
(41) (42) (43) (44) (42) (49) (47) (48) (49) (50)
(51)(52) (53)(54) (55) (50) (57) (58) (59) (60)

Lower-bound result
for vertex cover approximation

e Find a monochromatic subset of size m...

DOWB)(O)(®)()0Y
WIOIOIO] - IOIW ' IOID)
DIIDIDIDIDL>7 IDIDIE)
DI :: IO
QIOID] ++ L= IDIDIOIODIE)
5152 53549 (55) (50) 57) 58) 59 (60

Lower-bound result
for vertex cover approximation

e Delete these IDs...

ORS00
W@ i
DIIDIDIDIDRNDIDIED)
DI ENSIEIDIDIDDID
DIOIO R OIDIOIDIED
(51)(52) (53)(54) (55) (50) (57) (58) (59) (60)

Lower-bound result
for vertex cover approximation

o Still sufficiently many IDs to apply Ramsey...

ORRO] - IOI0WIOIOKD
W @ @
2@y (@G
]2 BENEDIEIEDIDIEN > I
WR® QWQWE
5152 5354 (55) (50) 57) 58) 59 (60

Lower-bound result
for vertex cover approximation

e Repeat...

OEROBNOIOIDIOOD
W o 9
W@ @@y @Y
3 (93C9CDE @)
QDI BROIE)
(51)(52) (53)(54) (55) (50) (57) (58) (59) (60)

Lower-bound result
for vertex cover approximation

» Repeat until stuck

O & ®©OOE@W
W @
@@ @B @@
3 QO @
Q@ O »®®
E)EE)QEEHEN @ (960

Lower-bound result
for vertex cover approximation

e Several monochromatic subsets + some leftovers

02 16/ « IOIOIIO] > 1O
W)@ O® 19
QIEN: IDIDID] 27 EDIDIE)
S s2 153 JEDL 35 L3¢ IIED] 5 1)
QL2 JD 44145 L+« L7 Loz JOILD
)66 @ EEHEN @ (5960

Lower-bound result
for vertex cover approximation

1T 1 1 T 1 1

2 215218 227 233 244 245 2 4 217 223 232 2 39 246

©@ . - .
@ Large enough n: Large enough m: 35
at most €n/2 nodes at most en/2 nodes

@ <K in the grey area B near the boundaries 36

Ge
D) 1) C) e

67

Lower-bound result
for vertex cover approximation

e Thus A outputs a vertex cover with > (1 - €)n nodes

18 227 2 33 23 232 2 39

68

Lower-bound result
for vertex cover approximation

e Thus A outputs a vertex cover with > (1 - €)n nodes

e In the proof,

e Using an up
proof would

n is huge — and this is necessary

per bound on Ramsey numbers, the same
give a negative result for T = o(log* n)

. With T = O(

0g* n), we could do better!

« We have seen that (2 - €)-approximation
is not possible in time independent of n

 Now let’s see how to find a 2-approximation

69

Local 2-approximation algorithm
for vertex cover

e Convenient to study a more general problem:
minimum-weight vertex cover

e Minimum-cardinality vertex cover: all weights = 1

1 5

Notation:
w(v) = weight of v 6 3

70

Local 2-approximation algorithm
for vertex cover: background

e Edge packing: weight y(e) > 0 for each edge e

e Packing constraint: for each node v,
the total weight of edges incident to v is at most w(v)

71

Local 2-approximation algorithm
for vertex cover: background

e Edge packing: weight y(e) > 0 for each edge e

e Packing constraint: for each node v,
the total weight of edges incident to v is at most w(v)

72

Local 2-approximation algorithm
for vertex cover: background

 In linear programming, these are dual problems:

e Minimum-weight
(fractional) vertex cover

e maximum-weight 1 5
edge packing

73

Local 2-approximation algorithm
for vertex cover: background

e Saturated node v: the total weight on edges
incident to v is equal to w(v)

74

Local 2-approximation algorithm
for vertex cover: background

e Saturated edge e:
at least one endpoint of e is saturated
— edge weight y(e) can’t be increased

~

75

Local 2-approximation algorithm
for vertex cover: background

« Maximal edge packing: all edges saturated
<= hone of the edge weights y(e) can be increased
— saturated nodes form a vertex cover

76

Local 2-approximation algorithm
for vertex cover: background

e Minimum-weight vertex cover C* difficult to find:
e Centralised setting: NP-hard

o Distributed setting: integer problem,
symmetry-breaking issues

 Maximal edge packing v easy to find:
e Centralised setting: trivial greedy algorithm

e Distributed setting: linear problem,
no symmetry-breaking issues (?)

77

Local 2-approximation algorithm
for vertex cover: background

e Minimum-weight vertex cover C* difficult to find
 Maximal edge packing vy easy to find?

e Saturated nodes C(y) in y: 2-approximation of C*
« W(C(y)) = 2w(C7)
e Notation: w((C) = total weight of the nodes v € C

e Proof: LP-duality, relaxed complementary slackness

78

Local 2-approximation algorithm
for vertex cover: background

 Minimum-weight vertex cover C* difficult to find
 Maximal edge packing vy easy to find?

e Saturated nodes C(y) in y: 2-approximation of C*
« W(C(y)) = 2w(C7)

o Constant 2: C(y) covers edges at most twice,
C* at least once

e Immediate generalisation to hypergraphs

w(C(y) = > yl] = > wyle)lenCly)l <2) yle)lenC*| =2 ylv] < 2w(C)
eck eck veC*

veC(y)

79

Local 2-approximation algorithm
for vertex cover

e Finding a maximal edge packing?

e Basic idea from Khuller et al. (1994) and
Papadimitriou and Yannakakis (1993)

80

Local 2-approximation algorithm
for vertex cover: basic idea

e v[v] = total weight of edges incident to node v
e Residual capacity of node v: r(v) = w(v) - y[V]

e Saturated node: 1 1
r(v) =0

81

Local 2-approximation algorithm
for vertex cover: basic idea

Start with a trivial
edge packing y(e) = 0

82

Local 2-approximation algorithm
for vertex cover: basic idea

Each node v offers
r(v)/deg(v) units to
each incident edge

83

Local 2-approximation algorithm
for vertex cover: basic idea

Each edge accepts

the smallest of the ' 5/2
2 offers it received , g

Q\ 3/12 (A 3/2

1. 2 32 312

6
6
9 9 6 6
9@—3/2%3/2%3—3/2—@
Increase y(e)

9
) 3/2 3/2 3/2
by this amount
y o Xy

e Safe, can’t violate 6
packing constraints 2 3

84

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals...

0 2
1 5
O\ 1/2 = 3/2

1 g 3/2 3/2

15/2@—3/2%3/2%3—3/2—@
9

3/2 3/2 3/2

of hof

6 3
9/2 0

85

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated

nodes and edges... :
s 3/2/O
15/2@—3/2—/d
> 3n
of O
6

86

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 1/6 O
1/2
Offers... 15/2 9 3/2
15/2@—3/2—/d
> 3n
of O
6
9/2

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 176 O
1/2
Offers... 15/2 9 3/3
/
Increase 15%@_5 3 7@
: 5/3
weights...
of O
6
9/2

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated

nodes and edges, 1%/3
repeat... @ O 5
Offers... g 5/3
Increase 22/30_5/;/3_/0/
weights...

X . of O
Update residuals... 6

89

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,

repeat... @
Offers...

Increase 22/30
weights...

Update residuals 6

and graph, etc. 13/3

920

10/3

Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple
deterministic
distributed 10/3

algorithm @ ®

We are making

some progress 22/30Q Q
towards finding ~ ?

a maximal edge ® O
packing — but... 6

13/3

91

Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple 1 2 4 8 16 32 64 128
deterministic 1 2 4 8 16 32 64 128"
distributea 1 1 2 4 8 16 32 64
algorithm 1 1 2 4 8 16 32 64
' O 0 1 2 4 8 16 32
We are making A ST
Some progress 1 1 27 4 8 16
towargls finding 0 0 1 2 2 3
a maximal edge 1 1 2 4
packing — but 1 1 2 4

this is too slow! 0O 0 1 2

92

Local 2-approximation algorithm
for vertex cover

e Offer is a local minimum: 40\ /03
« Node will be saturated 2*2
e And all edges incident to it))
will be saturated as well 50/ \UZ
’ -

Residual capacity

was 8, will be 0
N Y,

93

Local 2-approximation algorithm
for vertex cover

o Offer is a local minimum: 4 3

« Node will be saturated

o Otherwise there is a neighbour
with a different offer: 5 2

e Interpret the offer
sequences as colours

e Nodes u and v have
different colours:
fu, v} is multicoloured

94

Local 2-approximation algorithm
for vertex cover

e Progress guaranteed: 4

« On each iteration, for each node,
at least one incident edge becomes
saturated or multicoloured

e Such edges are be discarded;
maximum degree A decreases
by at least one

e Hence in A rounds all edges
are saturated or multicoloured

95

Local 2-approximation algorithm
for vertex cover

e In A rounds all edges are
saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?

96

Local 2-approximation algorithm
for vertex cover

e In A rounds all edges are
saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?

e Let’s focus on unsaturated
nodes and edges

97

Local 2-approximation algorithm
for vertex cover: multicoloured edges

e Colours are sequences of
A rational humbers

e Assume that node weights
are integers 1, 2, ..., W

e Then colours are rationals
of the form g/ (A!)? with

qgetl, 2, ..., Wj

((2,2/3,116,1/12) [
A
((2,2/3,1/6,1/24))

98

Local 2-approximation algorithm
for vertex cover: multicoloured edges

e Colours are sequences of
A rational humbers

e Assume that node weights
are integers 1, 2, ..., W

e Then colours are rationals
of the form g/ (A!)? with

gei{l,2,.... W
o k= (W(A!)2)? possible -
colours, replace with w
integers 1, 2, ..., k (2789)

929

Local 2-approximation algorithm
for vertex cover: multicoloured edges

 We have a proper k-colouring
of the unsaturated subgraph

e Orient from lower to higher
colour (acyclic directed graph)

| 2789 |

100

Local 2-approximation algorithm
for vertex cover: multicoloured edges

 We have a proper k-colouring
of the unsaturated subgraph

(2
e Orient from lower to higher O C
colour (acyclic directed graph) s %
o Partition in A forests ~
L . O Q‘/‘
e Each node assigns its outgoing ®

edges to different forests @
O—>C

101

Local 2-approximation algorithm
for vertex cover: multicoloured edges

e For each forest in parallel...

(378 P00

102

Local 2-approximation algorithm
for vertex cover: multicoloured edges

e For each forest in parallel:

e Use Cole-Vishkin (1986) style
colour reduction algorithm
e Given a k-colouring,
finds a 3-colouring
in time O(log* k
(log® k) o
« Bit manipulation trick:

each step replaces -(X
a k-colouring with 3 @
an O(log k)-colouring , C_/\U

103

Local 2-approximation algorithm
for vertex cover: multicoloured edges

e For each forest and each

colour j =1, 2, 3 in sequence: q

O—@—)<0O

e Node-disjoint stars, -

O
easy to saturate in parallel ® ‘\‘O/. O
o Q

e In O(A) rounds we have
saturated all edges e—C

e Saturate all outgoing edges
of colour-j nodes

104

Local 2-approximation algorithm
for vertex cover: summary

e Total running time:

o All edges are saturated or

multicoloured: O(4)
e Multicoloured forests
are 3-coloured: O(log* k) O

Q
» 3-coloured forests 3 (78] 400
are saturated: O(4) 2

e O(A + log* k) = O(A + log* W)

e k is huge, but log* grows slowly

105

Local 2-approximation algorithm
for vertex cover: summary

 Maximal edge packing and
2-approximation of vertex cover
in time O(A + log® W)

e W = maximum node weight
 Unweighted graphs: O :ig

running time simply O(4), 3 q

O—@—<0

independent of n >0
p ® .\%f@

o Can be implemented in O g0

the port-numbering model

106

Other examples of positive results

e Local algorithms for dominating sets:
only trivial (A + 1)-approximation
possible in general graphs

« However, there is an approximation

scheme for fractional dominating sets
(Kuhn et al. 2006)

« And constant-factor approximation algorithms
for dominating sets in planar graphs
(Czygrinow et al. 2008, Lenzen et al. 2008)

107

Other examples of positive results

 Edge dominating sets in
the port-numbering model

e Best possible approximation ratios:

Graph family Approximation ratio
d-regular | d=1,3, ... 4-6/(d+1)
graphs d=2,4, ... 4-2/d
graphs with | 4=3,5, ... 4-2/(A-1)
degree<A | A=2 4 ... 4-2/A

108

Other examples of positive results

 Edge dominating sets in

the port-numbering model C local
o l th !
Best possible approximation ratios: _agonthms:
\/
Graph family Approximation ratio | Time
d-regular d=1, 3, ... 4-6/(d+1) O(d?)
graphs d=2,4, ... 4-2/d 0(1)
graphs W]th A= 3, 5, 506 4 - 2/(A - 1) O(AZ)
degree<A | A=2 4, ... 4-2/A 0(A?)

109

Other examples of positive results

e Matchings in 2-coloured graphs, max degree < A
e Time Q(n):

e maximum matching

e stable matching
e Time f(4, €):

e (1 + g)-approximation of maximum matching

e “almost stable” matching
(fraction € of unstable edges)

110

Other examples of positive results

e Matchings in 2-coloured graphs, max degree < A

 Time Q(n), even with unique IDs:
e maximum matching

« stable matching
e« Time f(4, €), in port-numbering model:
e (1 + g)-approximation of maximum matching

e “almost stable” matching
(fraction € of unstable edges)

111

Part Ill: Other models of computation

e Can we relate local algorithms to
traditional complexity classes such as NC°?

112

Distributed algorithms vs.
traditional computational complexity

e Traditional view:

e Problem instance
AB|C/B|B|BJA|... encoded as a string

e Distributed algorithms:

e Problem instance =
structure of the system

(graph)

113

Distributed algorithms vs.
traditional computational complexity

e Traditional view:

e Problem instance

AIB/[C/B/B/BA|... encoded as a string
e Can be interpreted
G as a path graph
with local inputs
A B CB B B A e Everything is a graph

e Let’s study a simple

model of computation...

114

Distributed algorithms vs.
traditional computational complexity

e Distributed algorithms on path graphs

e Constant-size local input

e Hence no unique IDs

(Local inputs)

\VJ
A B C B B B A B C B B A C B A
O~ OO0~ O~~~ OO0~ OO0 - -
o 001011 0O0O01T 01 0 1

[LocAal outputs)

115

Distributed algorithms vs.
traditional computational complexity

e Deterministic local algorithms on path graphs

e Constant-size local input

C B B B A

(here T = 2)

116

Distributed algorithms vs.
traditional computational complexity

e Deterministic local algorithms on path graphs

e Constant-size local input

A B C B B B A B B B A C B A
OOO\Q}‘I/O O—OOO0O0
bounded- depth
l bounded fan-in

Boolean c1rcu1t

?

117

Distributed algorithms vs.
traditional computational complexity

e Deterministic local algorithms on path graphs

e Constant-size local input

NI NI

C1=0C

118

NSNS

C1=0C

l l

Ridiculously restrictive model —

let’s consider two different extensions...

119

NI NI

C1=0C

I l

Non-local connections, different circuits: NC°

PN

C1 = C2 CZ

] !

120

QOC&E%OOKE[%O

!

General graphs:

!

O

OOQ}?\?f?OO

!

local algorithms

Kf'\c? P00
|

Distributed algorithms vs.
traditional computational complexity

6 O\Q\CT/% O\Q\Tf/o @

C1=0C C
} }
QO
@
OO O C}W- @) o6
Cﬁa /QC1 z C2 C2 %%ié %i?;} O
l l C2
}
e NCO e Deterministic local

algorithms, port numbering

122

Distributed algorithms vs.
traditional computational complexity

(c NN)

Ci=C
l l
O
@)
e T W - -0
Cﬁ /OC1 % C2 %%ﬁé KC&?»Q O
} l Cl
o« NCO NC', NC, RNC, ... o Deterministic local

e Traditional computational algorithms, port numbering

complexity e Distributed algorithms

123

Conclusions

e Local algorithms & port-numbering model

e Non-trivial problems can be solved in very
simple models of distributed computing

e Tight, unconditional lower bounds can be proven

e Research directions

e Better understand the similarities between
the two models?

e Traditional computational complexity studies strings
(= path graphs), consider more general graphs?

124

