
Models of distributed computing:
port numbering and local algorithms

Jukka Suomela
Adaptive Computing Group
Helsinki Institute for Information Technology HIIT
University of Helsinki

FMT seminar, 26 February 2010

?

Our research focus

• Very restrictive models of distributed computing
• Local algorithms (constant-time distributed algorithms)

• Algorithms in anonymous networks

• Deterministic algorithms

• Graph problems
• Vertex covers, dominating sets, ...

• Linear programs in graphs

• Approximability

2

Outline of today’s talk

• Models of computation
• Local algorithms

• Port-numbering model

• Observations and results
• What is known about these models?

• Case study: vertex cover problem

• Connections to other models of computation

• Constant-depth bounded-fan-in circuits, NC0

3

Part I: Models of computation

• Distributed algorithms in general

• Two very limited special cases:
• Local algorithms

• Port-numbering model

4

Distributed algorithms

5

• Communication graph G

• Node = computer
• e.g., Turing machine,

finite state machine

• Edge = communication
link

• computers can
exchange messages

G

Distributed algorithms

6

• All nodes are identical,
run the same algorithm

• We can choose
the algorithm

• An adversary chooses
the structure of G

• Our algorithm must
produce a correct
output in any graph G

G

Distributed algorithms

7

• Usually, computational
problems are related to
the structure of the
communication graph G

• Example: find a maximal
independent set for G

• The same graph is both
the input and the system
that tries to solve the
problem...

G

Synchronous distributed algorithms

8

1. Each node reads its
own local input
• Depends on the problem,

for example:

• node identifier

• node weight

• weights of
incident edges

• May be empty

4

3 1

2

Synchronous distributed algorithms

9

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
...

Synchronous distributed algorithms

10

0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

• Solution of the problem

Synchronous distributed algorithms

11

0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

Example: Find a maximal independent set I

Local output of a node v indicates whether v ∈ I

Synchronous distributed algorithms

12

• Communication round:
each node

1.sends a message
to each neighbour

Synchronous distributed algorithms

13

• Communication round:
each node

1.sends a message
to each neighbour

(message propagation...)

Synchronous distributed algorithms

14

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

Synchronous distributed algorithms

15

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state

Synchronous distributed algorithms

16

0

1

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state

4.possibly stops and
announces its output

Synchronous distributed algorithms

17

0

0

1

1

• Communication rounds
are repeated until all
nodes have stopped and
announced their outputs

• Running time =
number of rounds

• Worst-case analysis

Synchronous distributed algorithms

• If the nodes have unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

• Algorithm: each node
1.gathers full information about G

(including all local inputs)

2.solves the graph problem by brute force

3.chooses its local output accordingly

18

Synchronous distributed algorithms

• If the nodes have unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

• Natural research problems:
• What can be solved in o(diam(G)) rounds?

• Focus: local algorithms

• What if we do not have unique identifiers?

• Focus: port-numbering model

19

Model 1:
Local algorithms

• An extreme version of sublinear-time algorithms:
running time independent of the number of nodes

• Examples:
• running time 100 rounds in any graph

• running time f(Δ) in graphs with maximum degree ≤ Δ

• Our focus: deterministic local algorithms

20

Deterministic local algorithms

• Running time is T ⇐⇒
output is a function of input within distance T

21

?

“Local neighbourhood”T = 2:

Deterministic local algorithms

• Scalability:
• Can be used in infinitely large (but locally finite) graphs

• Fault tolerance:
• Output can be re-computed repeatedly

• Efficient self-stabilising algorithm,
recovers from any initial configuration,
can be used in dynamic graphs

• Very limited model: what can be computed?

22

Model 2:
Port-numbering model

23

• No unique identifiers

• A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

• Port-numbering chosen
by adversary

• Focus: deterministic
algorithms

1

1

1

12

22

3

1

1

2

22

31

1

Deterministic algorithms
in the port-numbering model

24

• Graph + port numbering
may be symmetric

• Nodes indistinguishable
• Identical inputs,

deterministic
computation,
identical outputs

• Very limited model:
what can be computed?

11

1

2

22

11

Local algorithms
and the port-numbering model

• Very limited models of distributed computing
• Local algorithms: constant time

• Port-numbering model: anonymous nodes

• Seemingly unrelated
• Why did I choose to introduce both?

• What can be said about these models?
• Certainly plenty of negative results,

but do we have anything positive?

25

Part II: Observations and results

• Similarities between local algorithms
and the port-numbering model

• Case study: vertex cover problem
• Joint work with Matti Åstrand

• Examples of other positive results

26

Local algorithms
and the port-numbering model

27

Any running time

Local algorithms

Port numbering Unique IDs

• Orthogonal models

• All 4 combinations are reasonable

• All 4 combinations are distinct
• Simple (contrived) examples...

Local algorithms
and the port-numbering model

28

Any running time

Local algorithms Constant function

Port numbering Unique IDs

• All 4 combinations are distinct

• Trivial problems can be solved in any model

Local algorithms
and the port-numbering model

29

Any running time

Local algorithms Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• Identifying all triangles (3-cycles):
• Local information is sufficient,

but unique IDs are needed to distinguish
between a cycle and a long path

Local algorithms
and the port-numbering model

30

Any running time

Local algorithms

Path colouring

Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• 2-colouring edges of paths:
• Port numbering is sufficient, but

the worst-case running time is
necessarily θ(diam(G))

Local algorithms
and the port-numbering model

31

Any running time

Local algorithms

Path colouring Spanning trees

Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• Spanning tree construction:
• Non-local problem

• Unique IDs needed to detect cycles

Local algorithms
and the port-numbering model

32

Any running time

Local algorithms

Port numbering Unique IDs

• All 4 combinations are distinct

• However, there are surprising similarities between
local algorithms and the port-numbering model

• Not fully understood yet!

Local algorithms
and the port-numbering model

33

Any running time

Local algorithms

Port numbering Unique IDs

• There are problems where both models
seem to be equally strong

• Best algorithm in port-numbering model is local

• Best local algorithm uses the port-numbering model

Local algorithms
and the port-numbering model

34

Any running time

Local algorithms

Port numbering Unique IDs

• Example: minimum vertex cover
• Find a minimum-size subset C of nodes

that “covers” all edges: each edge
incident to at least one node in C

• Classical NP-hard optimisation problem

Local algorithms
and the port-numbering model

35

Any running time

Local algorithms

Port numbering Unique IDs

• Example: minimum vertex cover

• Best possible approximation ratio?
• Focus on bounded-degree graphs

Local algorithms
and the port-numbering model

36

Any running time

Local algorithms

≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Trivial lower bound
• Cycles, optimum n/2

• Solution with < n nodes requires symmetry-breaking

Local algorithms
and the port-numbering model

37

Any running time

Local algorithms

≥ 2

≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Non-trivial lower bound
• Cycles

• Czygrinow et al. 2008, Lenzen & Wattenhofer 2008

Local algorithms
and the port-numbering model

38

Any running time

Local algorithms

≥ 2

≤ 2 ≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Matching positive result
• Bounded-degree graphs

• One algorithm for both models

Local algorithms
and the port-numbering model

39

Any running time

Local algorithms

2 1

2 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Best possible approximation ratios
in bounded-degree graphs

Local algorithms
and the port-numbering model

40

Any running time

Local algorithms

Port numbering Unique IDs

• Naturally, we can study running time with
a finer granularity than O(1) vs. arbitrary...

• However, anything larger-than-constant
seems to lead to a very different model

Local algorithms
and the port-numbering model

41

O(n)

O(log n)

O(log* n)

O(1)

Port numbering Unique IDs

• Slightly non-constant running time together with
unique IDs already makes a huge difference

Iterated logarithm
≈ inverse of tetration

(power tower)

Local algorithms
and the port-numbering model

42

O(n)

O(log n)

O(log* n)

O(1)

Cole–Vishkin 1986

Linial 1992

Port numbering Unique IDs

• Slightly non-constant running time together with
unique IDs already makes a huge difference

Deterministic symmetry
breaking in cycles

Negative
result

Local algorithms
and the port-numbering model

43

O(n)

O(log n)

O(log* n)

O(1)

2

2

2 ≤ 4/3

2 2

Port numbering Unique IDs

• E.g., vertex cover in cycles becomes
easier to approximate

Greedy

Local algorithms
and the port-numbering model

44

O(n)

O(log n)

O(log* n)

O(1)

2

2

2 ≤ 1 + ε

2 2

Port numbering Unique IDs

• E.g., vertex cover in cycles becomes much
easier to approximate

Clustering

Local algorithms
and the port-numbering model

45

O(n)

O(log n)

O(log* n)

O(1)

Port numbering Unique IDs

• Hence the focus: strictly constant time
and/or anonymous nodes

Case study:
2-approximation of vertex cover

46

• Lower bound result (for cycles):
• There is no local algorithm with

approximation factor 2 − ε for any ε > 0

• I’ll sketch Czygrinow et al.’s (2008) proof,
which is a nice application of Ramsey’s theorem

• Fast local algorithm (for bounded-degree graphs):
• 2-approximation in O(∆) time in unweighted graphs

• Uses LP duality; finds a maximal dual solution using
a combination of greedy increments and graph colouring

Lower-bound result
for vertex cover approximation

• Numbered directed n-cycle:
• directed n-cycle, each node has outdegree = indegree = 1

• node identifiers are a permutation of {1, 2, ..., n}

47

1 4

3 5

6 2

4 5

2 6

1 3

Lower-bound result
for vertex cover approximation

• Fix any ε > 0 and a deterministic local algorithm A
• Assumption: A finds a feasible vertex cover

(at least in any numbered directed cycle)

• Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs a vertex cover with ≥ (1 − ε)n nodes

• Corollary: Approximation ratio of A is
at least 2 − 2ε

48

Lower-bound result
for vertex cover approximation

• Let T be the running time of A, let k = 2T + 1

• The output of a node is a function f’ of
a sequence of k integers (unique IDs)

49

11 93 56 72

T = 2, k = 5:

output = f’(3, 11, 9, 5, 2)

output = f’(11, 9, 5, 2, 7)

Lower-bound result
for vertex cover approximation

• Lets focus on increasing sequences of IDs

• Then the output of a node is a function f of
a set of k integers

50

6 73 112 2113

k = 5:

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})

Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

51

6 73 112 2113

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})k = 5:

Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

• Fix a large m (depends on k and ε)

• Ramsey: If n is sufficiently large,
we can find an m-subset A ⊂ {1, 2, ..., n}
s.t. all k-subset X ⊂ A have the same colour

52

Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large...

53

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large,
we can find a monochromatic subset of m IDs...

54

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

f({2, 3, 6, 7, 11}) = f({2, 3, 6, 7, 13}) =
f({2, 3, 6, 7, 21}) = f({2, 3, 6, 11, 13}) =
... = f({6, 7, 11, 13, 21})

Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

55

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

56

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

f({2, 3, 6, 7, 11}) =
f({3, 6, 7, 11, 13}) = ...

Same output

Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

57

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

Same output
... and it must be 1

Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1

58

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

output 1 output 0 or 1

Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1

• We can choose as large m as we want
• Good, more “black” nodes that output 1

• However, n increases rapidly if we increase m
• Bad, more “grey” nodes that might output 0

• Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly

59

Lower-bound result
for vertex cover approximation

• Huge ID space...

60

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Lower-bound result
for vertex cover approximation

• Find a monochromatic subset of size m...

61

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Lower-bound result
for vertex cover approximation

• Delete these IDs...

62

31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30

Lower-bound result
for vertex cover approximation

• Still sufficiently many IDs to apply Ramsey...

63

31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30

Lower-bound result
for vertex cover approximation

• Repeat...

64

31 34 35 36 37 38 40

41 42 43 47 49 50

51 52 53 54 55 56 57 58 59 60

1 3 5 6 7 8 9 10

11 12 13 14 16 19 20

21 22 24 25 26 28 29 30

Lower-bound result
for vertex cover approximation

• Repeat until stuck

65

31 34 35 36 37 38 40

41 42 43 47 49 50

51 52 53 54 55 56 57 58 59 60

1 3 5 6 7 8 9 10

11 12 13 14 16 19 20

21 22 24 25 26 28 29 30

Lower-bound result
for vertex cover approximation

• Several monochromatic subsets + some leftovers

66

31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30

33

44 45

2

15 18

27

Lower-bound result
for vertex cover approximation

67

32

35

36

39

42

46

47

48

50515253 5455

56

57

58

59

60

13

4

5

9

17 2333 44 452 15 18 27

1 1 1 1 1 1

Large enough m:
at most εn/2 nodes
near the boundaries

Large enough n:
at most εn/2 nodes

in the grey area 1

1

1

Lower-bound result
for vertex cover approximation

68

32

35

36

39

42

46

47

48

50515253 5455

56

57

58

59

60

13

4

5

9

17 2333 44 452 15 18 27

• Thus A outputs a vertex cover with ≥ (1 − ε)n nodes

Lower-bound result
for vertex cover approximation

69

• Thus A outputs a vertex cover with ≥ (1 − ε)n nodes

• In the proof, n is huge — and this is necessary
• Using an upper bound on Ramsey numbers, the same

proof would give a negative result for T = o(log* n)

• With T = Θ(log* n), we could do better!

• We have seen that (2 − ε)-approximation
is not possible in time independent of n

• Now let’s see how to find a 2-approximation

Local 2-approximation algorithm
for vertex cover

• Convenient to study a more general problem:
minimum-weight vertex cover

• Minimum-cardinality vertex cover: all weights = 1

70

Notation:
w(v) = weight of v

51

3

9 6 6
9

6

Local 2-approximation algorithm
for vertex cover: background

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)

71

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Local 2-approximation algorithm
for vertex cover: background

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)

72

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

3 + 0 + 4 + 0 + 0 + 2 ≤ 9

Local 2-approximation algorithm
for vertex cover: background

• In linear programming, these are dual problems:
• minimum-weight

(fractional) vertex cover

• maximum-weight
edge packing

73

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Local 2-approximation algorithm
for vertex cover: background

• Saturated node v: the total weight on edges
incident to v is equal to w(v)

74

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Local 2-approximation algorithm
for vertex cover: background

• Saturated edge e:
at least one endpoint of e is saturated
⇐⇒ edge weight y(e) can’t be increased

75

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

2 + ε would violate
a packing constraint

Local 2-approximation algorithm
for vertex cover: background

• Maximal edge packing: all edges saturated
⇐⇒ none of the edge weights y(e) can be increased
⇐⇒ saturated nodes form a vertex cover

76

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find:
• Centralised setting: NP-hard

• Distributed setting: integer problem,
symmetry-breaking issues

• Maximal edge packing y easy to find:
• Centralised setting: trivial greedy algorithm

• Distributed setting: linear problem,
no symmetry-breaking issues (?)

77

Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Notation: w(C) = total weight of the nodes v ∈ C

• Proof: LP-duality, relaxed complementary slackness

78

Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Constant 2: C(y) covers edges at most twice,
C* at least once

• Immediate generalisation to hypergraphs

79

1 Introduction

In this work, we present deterministic distributed approximation algorithms for two classical prob-
lems: minimum-weight vertex cover and minimum-weight set cover.

1.1 Maximal edge packings and vertex covers

Let G = (V,E) be a simple, undirected, node-weighted graph; each node v ∈ V is associated with
a positive weight wv. A set C ⊆ V is a vertex cover if each edge has at least one endpoint in C,
and it is a minimum-weight vertex cover if it also minimises its total weight w(C) =

�
v∈C wv.

While vertex cover is a classical NP-hard optimisation problem, there is a simple technique
for obtaining efficient approximation algorithms: find a maximal edge packing (a maximal dual
solution) and output all saturated nodes. For a nonnegative function y : E → [0,+∞), let us define
the shorthand notation

y[v] =
�

e∈E: v∈e

y(e)

for each v ∈ V . We say that y is an edge packing if y[v] ≤ wv for all v ∈ V . A node v ∈ V is
saturated in the edge packing y if y[v] = wv. An edge e = {u, v} ∈ E is saturated if u or v or
both are saturated, i.e., y(e) cannot be increased without violating the constraint y[u] ≤ wu or
y[v] ≤ wv. An edge packing y is maximal if all edges are saturated.

Let C(y) be the set of nodes saturated in y. The classical result by Bar-Yehuda and Even [6]
shows that if y is a maximal edge packing then C(y) is a 2-approximation of a minimum-weight
vertex cover; for the sake of completeness, we give a short proof here. First, observe that C(y) is
a vertex cover by definition: if an edge is not covered by C(y), then y is not maximal. To show
the approximation ratio, let C∗ be a minimum-weight vertex cover. As C(y) contains at most two
endpoints of each edge and C∗ contains at least one endpoint of each edge, we have

w(C(y)) =
�

v∈C(y)

y[v] =
�

e∈E

y(e) |e ∩ C(y)| ≤ 2
�

e∈E

y(e) |e ∩ C∗
| = 2

�

v∈C∗

y[v] ≤ 2w(C∗).

In a centralised setting, a maximal edge packing y is easy to find: for each e ∈ E, in an
arbitrary order, increase the value y(e) until one of the endpoints of e becomes saturated. In this
work, we give an efficient distributed algorithm that finds a maximal edge packing, and hence also
a 2-approximation of a minimum-weight vertex cover.

1.2 Maximal fractional packings and set covers

To deal with the set cover problem in a distributed setting, it is convenient to restate the problem
by using a bipartite graph H = (S ∪ U, A). Each node s ∈ S represents a subset, each node u ∈ U
represents an element of the universe, and an edge {s, u} ∈ A denotes that the element u ∈ U is a
member of the subset s ∈ S. Each subset node s ∈ S is associated with a positive weight ws. A
collection C ⊆ S is a set cover if each element u ∈ U has at least one neighbour in C, and it is a
minimum-weight set cover if it also minimises its total weight w(C) =

�
s∈C ws.

Let y : U → [0,+∞) be a nonnegative function. Define the shorthand notation

y[s] =
�

u∈N(s)

y(u)

for each s ∈ S; here N(s) ⊆ U is the set of elements adjacent to the subset node s. We say that
y is a fractional packing if y[s] ≤ ws for all subset nodes s ∈ S. A subset node s ∈ S is saturated

1

Local 2-approximation algorithm
for vertex cover

• Finding a maximal edge packing?
• Basic idea from Khuller et al. (1994) and

Papadimitriou and Yannakakis (1993)

80

51

3

9 6 6
9

6

?

?

? ?

? ?

??
?

Local 2-approximation algorithm
for vertex cover: basic idea

• y[v] = total weight of edges incident to node v

• Residual capacity of node v: r(v) = w(v) − y[v]

• Saturated node:
r(v) = 0

81

51

3

9 6 6

9

6

0

2

3 0

0 0

04
6

1

6

4 3

0 0

1

0

w(v):
r(v):

Local 2-approximation algorithm
for vertex cover: basic idea

Start with a trivial
edge packing y(e) = 0

82

51

3

9 6 6

6

0

0

0 0

0 0

00
0

1

6 3

6 6

5

9

9
9

w(v):
r(v):

Local 2-approximation algorithm
for vertex cover: basic idea

Each node v offers
r(v)/deg(v) units to
each incident edge

83

51

3

9 6 6

6

0

0

0 0

0 0

00
0

1

6 3

6 6

5

9

9
9

w(v):
r(v):

9offer:

1 5/2

3/2 6

3/2

3/2

6

Local 2-approximation algorithm
for vertex cover: basic idea

Each edge accepts
the smallest of the
2 offers it received

Increase y(e)
by this amount

• Safe, can’t violate
packing constraints

84

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

1

6 3

6 6

5

9

9
9
9

1 5/2

3/2 6

3/2

3/2

6

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals...

85

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges...

86

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

87

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2
15/2

2

1/6

9/2

–

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

88

51

3

9 6 6

6

1

5/3

5/3 3/2

3/2 3/2

3/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2
15/2

2

1/6

9/2

–

5/3

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals...

89

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals
and graph, etc.

90

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple
deterministic
distributed
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but...

91

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple
deterministic
distributed
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but
this is too slow!

92

1 2 4 8 16 32 64 128

1 2 4 8 16 32 64 128
1 1 2 4 8 16 32 64

1 1 2 4 8 16 32 64

0 0 1 2 4 8 16 32
1 1 2 4 8 16

1 1 2 4 8 16

0 0 1 2 4 8
1 1 2 4

1 1 2 4

0 0 1 2

Local 2-approximation algorithm
for vertex cover

93

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• And all edges incident to it
will be saturated as well

2

2 2

2

Residual capacity
was 8, will be 0

Local 2-approximation algorithm
for vertex cover

94

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• Otherwise there is a neighbour
with a different offer:

• Interpret the offer
sequences as colours

• Nodes u and v have
different colours:
{u, v} is multicoloured

1 2

2

2

2

Local 2-approximation algorithm
for vertex cover

95

4 3

2

2

5

• Progress guaranteed:
• On each iteration, for each node,

at least one incident edge becomes
saturated or multicoloured

• Such edges are be discarded;
maximum degree ∆ decreases
by at least one

• Hence in ∆ rounds all edges
are saturated or multicoloured

1 2

2

2

2

Local 2-approximation algorithm
for vertex cover

96

• In ∆ rounds all edges are
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

Local 2-approximation algorithm
for vertex cover

97

• In ∆ rounds all edges are
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

• Let’s focus on unsaturated
nodes and edges

Local 2-approximation algorithm
for vertex cover: multicoloured edges

98

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)

Local 2-approximation algorithm
for vertex cover: multicoloured edges

99

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

• k = (W(∆!)∆)∆ possible
colours, replace with
integers 1, 2, ..., k 2789

1378

Local 2-approximation algorithm
for vertex cover: multicoloured edges

100

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher
colour (acyclic directed graph)

2789

1378

Local 2-approximation algorithm
for vertex cover: multicoloured edges

101

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher
colour (acyclic directed graph)

• Partition in ∆ forests
• Each node assigns its outgoing

edges to different forests

2789

1378

Local 2-approximation algorithm
for vertex cover: multicoloured edges

102

• For each forest in parallel...

2789

1378

Local 2-approximation algorithm
for vertex cover: multicoloured edges

103

• For each forest in parallel:
• Use Cole–Vishkin (1986) style

colour reduction algorithm

• Given a k-colouring,
finds a 3-colouring
in time O(log* k)

• Bit manipulation trick:
each step replaces
a k-colouring with
an O(log k)-colouring

2789

13783

2

Local 2-approximation algorithm
for vertex cover: multicoloured edges

104

• For each forest and each
colour j = 1, 2, 3 in sequence:

• Saturate all outgoing edges
of colour-j nodes

• Node-disjoint stars,
easy to saturate in parallel

• In O(∆) rounds we have
saturated all edges

Local 2-approximation algorithm
for vertex cover: summary

105

• Total running time:
• All edges are saturated or

multicoloured: O(∆)

• Multicoloured forests
are 3-coloured: O(log* k)

• 3-coloured forests
are saturated: O(∆)

• O(∆ + log* k) = O(∆ + log* W)
• k is huge, but log* grows slowly

2789

13783

2

Local 2-approximation algorithm
for vertex cover: summary

106

• Maximal edge packing and
2-approximation of vertex cover
in time O(∆ + log* W)

• W = maximum node weight

• Unweighted graphs:
running time simply O(∆),
independent of n

• Can be implemented in
the port-numbering model

2789

13783

2

Other examples of positive results

• Local algorithms for dominating sets:
only trivial (∆ + 1)-approximation
possible in general graphs

• However, there is an approximation
scheme for fractional dominating sets
(Kuhn et al. 2006)

• And constant-factor approximation algorithms
for dominating sets in planar graphs
(Czygrinow et al. 2008, Lenzen et al. 2008)

107

Other examples of positive results

108

• Edge dominating sets in
the port-numbering model

• Best possible approximation ratios:

Graph familyGraph family Approximation ratio

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1)

4 − 2/d

4 − 2/(Δ − 1)

4 − 2/Δ

Other examples of positive results

109

• Edge dominating sets in
the port-numbering model

• Best possible approximation ratios:

Graph familyGraph family Approximation ratio Time

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1) O(d2)

4 − 2/d O(1)

4 − 2/(Δ − 1) O(Δ2)

4 − 2/Δ O(Δ2)

Local
algorithms!

Other examples of positive results

110

• Matchings in 2-coloured graphs, max degree ≤ ∆

• Time Ω(n):
• maximum matching

• stable matching

• Time f(Δ, ε):
• (1 + ε)-approximation of maximum matching

• “almost stable” matching
(fraction ε of unstable edges)

Other examples of positive results

111

• Matchings in 2-coloured graphs, max degree ≤ ∆

• Time Ω(n), even with unique IDs:
• maximum matching

• stable matching

• Time f(Δ, ε), in port-numbering model:
• (1 + ε)-approximation of maximum matching

• “almost stable” matching
(fraction ε of unstable edges)

Part III: Other models of computation

• Can we relate local algorithms to
traditional complexity classes such as NC0 ?

112

Distributed algorithms vs.
traditional computational complexity

• Traditional view:
• Problem instance

encoded as a string

• Distributed algorithms:
• Problem instance =

structure of the system
(graph)

113

A B C B B B A ...

A B C B B B A

Distributed algorithms vs.
traditional computational complexity

• Traditional view:
• Problem instance

encoded as a string

• Can be interpreted
as a path graph
with local inputs

• Everything is a graph

• Let’s study a simple
model of computation...

114

A B C B B B A ...

A B C B B B A B C B B A C B A

0 0 0 1 0 1 1 0 0 0 1 0 1 0 1

Distributed algorithms vs.
traditional computational complexity

115

• Distributed algorithms on path graphs

• Constant-size local input
• Hence no unique IDs

Local inputs

Local outputs

A B C B B B A B C B B A C B A

0 0 0 1 ? 1 1 0 0 0 1 0 1 0 1

Distributed algorithms vs.
traditional computational complexity

116

• Deterministic local algorithms on path graphs

• Constant-size local input

(here T = 2)

?

A B C B B B A B C B B A C B A

Distributed algorithms vs.
traditional computational complexity

117

• Deterministic local algorithms on path graphs

• Constant-size local input

bounded-depth,
bounded fan-in
Boolean circuit

? ?

Distributed algorithms vs.
traditional computational complexity

118

• Deterministic local algorithms on path graphs

• Constant-size local input

C1 C2C1 = C2

119

C1 C2C1 = C2

Ridiculously restrictive model —
let’s consider two different extensions...

120

C1 C2C1 = C2

C1 C2C1 ≠ C2

Non-local connections, different circuits: NC0

121

C1 C2

General graphs:

C1

C2

local algorithms

Distributed algorithms vs.
traditional computational complexity

122

• NC0

C1 C2C1 ! C2

C1 C2C1 = C2

C1

C2

• Deterministic local
algorithms, port numbering

Distributed algorithms vs.
traditional computational complexity

123

• NC0, NC1, NC, RNC, ...

• Traditional computational
complexity

C1 C2C1 ! C2

C1 C2C1 = C2

C1

C2

• Deterministic local
algorithms, port numbering

• Distributed algorithms

Conclusions

• Local algorithms & port-numbering model
• Non-trivial problems can be solved in very

simple models of distributed computing

• Tight, unconditional lower bounds can be proven

• Research directions
• Better understand the similarities between

the two models?

• Traditional computational complexity studies strings
(= path graphs), consider more general graphs?

124

