New Lower Bounds
for Distributed
Graph Algorithms

Jukka Suomela
Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki

Estonian CS Theory Days
Saka manor, 27 October 2013



Distributed
Graph Algorithm

- mapping from
local neighbourhoods
to local outputs



Distributed
Graph Algorithm

e Input: simple undirected graph G

» nodes labelled with unique
O(log n)-bit identifiers
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Distributed
Graph Algorithm

 Input: simple undirected graph G

e Output: A(G, v) =local output of nodev

 graph colouring: A(G, v) = colour of node v

 vertex cover: A(G,v)=1ifvisin the cover



Distributed
Graph Algorithm

 Input: simple undirected graph G
e Output: A(G, v) = local output of node v

« Running time is t: local output A(G, v) only
depends on radius-t neighbourhood of v

» shortest-path distance at most t



Distributed et
Graph Algorithm




Distributed
Graph Algorithm

« Mapping from local neighbourhoods
to local outputs

« each node acts based on
its radius-t neighbourhood

» local outputs must form
a globally consistent solution



Distributed
Graph Algorithm

o If Gis a computer network:

« time = number of communication rounds

e in t communication steps all nodes can
learn everything up to distance t

o Fast distributed algorithm =
few communication rounds



Distributed
Graph Algorithm

o Everything trivial in time diam(G)

 all nodes see whole G,
can compute any function of G

e What can be solved much faster?



Our Focus:
Local Algorithms

» Distributed graph algorithms
with running time 0(1)

 extreme limits of distributed algorithms

o ideal algorithms for large-scale networks
o fast and fault-tolerant

Do these even exist?



Our Focus:
Local Algorithms

» Distributed graph algorithms
with running time O(1)
 We focus on bounded-degree graphs:

» n nodes, maximum degree A =0(1)
 running time t = f(A), independently of n



Our Focus:
Local Algorithms

e Surprise: many graph problems can be
approximated with local algorithms

e 2-approximation of minimum vertex cover
« many linear programming relaxations
» many problems on bipartite graphs...

 Today’s main topic: lower bounds



Lower Bounds

- what cannot
be solved locally?



What Cannot Be
Solved Locally?

» Negative results, even if A = 2:

» graph colouring
« maximal matching
« maximal independent set ...

o Key issue: symmetry breaking



What Cannot Be
Solved Locally?

Example: graph colouring (G =long path)




What Cannot Be

Solved Locally?

Identical local neighbourhoods

O U/ L / L / / / / U/ J U/
Different outputs N4
O—O0—@ 00— 0@ 00— COCO—=8@—=0




What Cannot Be
Solved Locally?

Identical local neighbourhoods — really?
31 17 2 5 18 76 51 11 26 13

------- O—O0—"C0C0—"TC0O0—""C0—"F0—"0—"0—"0O——0




What Cannot Be
Solved Locally?

o Could we somehow use node identifiers
to find a graph colouring?

 No — would require time Q(log* n)

 proof: apply Ramsey’s theorem...



Node Identifiers
Do Not Help

e G =path:
« local output = f(sequence of k identifiers)
« k=2t+1

<€ t > <« t >
31 17/22 5 18 76 51| 11 26 13
------- O—O—0O0—0—0—0—0—0—0O0—0O

G J




Node Identifiers

Do Not Help

o G = path, identifiers in increasing order:

o local output = f(set of k identifiers)

e k=2t+1
5 12 (17 23 40 42 55 58 76 93
O—O—0O0—0—0—0O0—0O0——0—0O0—0O

N\

J




Node Identifiers
Do Not Help

e Universe U = set of all possible identifiers

e Colour of k-subset X = {x1, X2, ..., Xk} of U:
output of algorithm A in this neighbourhood

? ?7 | X1 < X2< X3< X4<Xg5 | ? ? ?
------- O—O—F—C0C0—C0—0—C0O0——O0O——0——C0O——0




Node Identifiers
Do Not Help

« Ramsey: there is a monochromatic
subset Z={zy, 25, ..., zm} of universe U

o all k-subsets of Z have the same colour

7 0?2 (21 | 2o | Z3 Zs Zs )| Ze | Z7
------- O—O0+0—0-—0—"0—"0-00

.




Node Identifiers
Do Not Help

 We can construct a path s.t. many
adjacent nodes have same local outputs

» graph colouring, maximal independent set
maximal matching: not possible

?7 21 Zo Z3 Z4 2Zs Zs 77
------- O—XO—ANO—C0O0——0——0——0—CO0—(0O0——0

)



Node Identifiers
Do Not Help

e Without unique identifiers:
lower bounds often easy to prove

e With unique identifiers:
lower bounds much more difficult

« Ramsey-like arguments nontrivial for A > 2



Node Identifiers
Do Not Help

 New general result (Goos et al., 2012):

» node identifiers do not help with
any local approximation algorithm

o Assumption: “simple” graph problems

» vertex cover, edge cover, dominating set,
matching, independent set, ...



Everything Known?

 Tight upper and lower bounds:

» vertex covers & edge covers

« dominating sets & edge dominating sets
 independent sets & matchings
 packing & covering LPs

e max-min & min-max LPs ...



Everything Known?

e Well understood:

« what can we do in time that only
depends on A?

e Not so well understood:

o precisely how does t depend on A?
« example: what canwe dointimet=0(A)?



Time vs.
Maximum Degree

- running example:
vertex covers and
matching



Example:
Vertex Cover

Subset C of nodes that
“covers” all edges

each edge has at least
one endpointin C




Example:
Vertex Cover

e 2-approximation of minimum vertex cover
with centralised algorithms:

» find any maximal matching M
» output all endpoints of all edgesin M

» Not possible with local algorithms

» cannot find a maximal matching



Example:
Vertex Cover

« Maximal matching:

 requires symmetry breaking

« Maximal fractional matching:

» NO need to break symmetry
o still helps with vertex cover approximations!



Matching

« Edges labelled with integers {0, 1}
 Sum of incident edges at most 1

« Maximal matching:
cannot increase the value of any label



Fractional
Matching

o Edges labelled with real numbers [0, 1]
 Sum of incident edges at most 1

« Maximal fractional matching:
cannot increase the value of any label



Fractional
Matching

o Saturated node:

» sum of incident edges=1

e 2-approximation of minimum vertex cover:

» find any maximal fractional matching
» take all saturated nodes



Fractional
Matching

« Maximal fractional matching in time O(A)
(Astrand & S., 2010)

» does not require symmetry breaking
. d-regular graph: label all edges with 1/d

» Nontrivial part: graphs that are not regular...



Fractional
Matching

« Maximal fractional matching in time O(A)

o 2-approximation of minimum
vertex cover in time O(A)

e Can we do it faster?



Maximal
Fractional Matching

— new lower bouna



Maximal
Fractional Matching

« Cannot be solved in time o(A)
(Goos et al., 2013)

« Key ingredient of the proof:
analyse many different models of
distributed computing



1D:
Unique Identifiers

Nodes have unique identifiers,
output may depend on them

I 23




Ol:
Order Invariant

Output does not change if we change
identifiers but keep their relative order

I 23




PO:
Ports & Orientation

No identifiers

Node v labels
incident edges
with 1, ..., deg(v)

Edges oriented




EC:
Edge Colouring

No identifiers
No orientations

Edges coloured 1
with O(A) colours
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Oversimplified
Proof Overview

« EC modelis very limited
» maximal fractional matching requires
(Q(A) time in EC
o Simulation argument: EC> PO ->0Il->ID

» maximal fractional matching requires
()(A) time also in PO, Ol, and ID



Bipartite Vertex Cover

- Konig’'s theorem
IS not local



Konig Duality

» Bipartite graphs
e C* = minimum vertex cover
e M* = maximum matching

« Konig: |C*| = |M*|



Distributed
Approximation

Finding (1+&)-approximation
for constant € > 0, constant A
Matching Vertex Cover
Integral ? ?

Fractional ? ?



Distributed oo
Approximation

Finding (1+&)-approximation
for constant € > 0, constant A
Matching Vertex Cover
Integral ? ?

Fractional O(1) O(1)



Distributed ™5
Approximation

Finding (1+&)-approximation
for constant € > 0, constant A
Matching Vertex Cover
Integral O(1) ?
Fractional O(1) O(1)



Distributed
Approximation

Finding (1+&)-approximation
for constant € > 0, constant A
Matching Vertex Cover
Integral O(1) ?
Fractional O(1) O(1)



Distributed o
Approximation

Finding (1+&)-approximation
for constant € > 0, constant A
Matching Vertex Cover
Integral O(1) Q(log n)
Fractional O(1) O(1)



Bipartite Vertex Cover

e No o(log n)-time distributed
algorithm for 1.01-approximation
of minimum vertex cover

» even if we study bipartite graphs
of maximum degree 3

 key ingredient: expander graphs



Bipartite
Vertex Cover

« Assume we are given an algorithm A

« See what it does in a regular bipartite graph G

» algorithm picks all orange or all blue nodes
» W.l.0.g., assume that it picks all orange nodes



Bipartite
Vertex Cover

« Assume we are given an algorithm A

« See what it does in a regular bipartite graph G

» algorithm picks all orange nodes

« Add some gadgets to construct graph G’

o algorithm must pick all blue nodes



Bipartite

Vertex Cover

o Construct a sequence of graphs Gy, Gi, ... G

o Start with the regular graph Go=G

» algorithm picks all orange nodes in Gy

 Add gadgets one by one so that G, =G’

o algorithm must pick all blue nodes in G,



Bipartite

Vertex Cover

o Construct a sequence of graphs Gy, Gi, ... G

» algorithm picks all orange nodes in Gy
o algorithm must pick all blue nodes in G,

 only small change from G;to G;+1
if algorithm runs in time o(log n)

 for some G, we have half orange + half blue



Bipartite Vertex Cover

« For some G algorithm outputs
half orange + half blue

» Gxlis an expander

. large orange-blue boundary

» many edges redundantly covered
e POOr approximation ratio



Toolbox for
Lower Bound Proofs

e Highly symmetric graphs:
local neighbourhoods “look identical”

« Ramsey-like arguments:
unique identifiers do not help, either

 Expanders:
cannot “hide boundaries”



Toolbox for
Lower Bound Proofs

e Highly symmetric graphs:
local neighbourhoods “look identical”

« Ramsey-like arguments:
unique identifiers do not help, either

 Expanders:

cannot “hide boundaries” Thanks.’



