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Distributed 
Graph Algorithm

– mapping from 
local neighbourhoods 
to local outputs



Distributed 
Graph Algorithm
• Input: simple undirected graph G 

• nodes labelled with unique 
O(log n)-bit identifiers
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Distributed 
Graph Algorithm
• Input: simple undirected graph G 

• Output: A(G, v) = local output of node v 

• graph colouring:  A(G, v) = colour of node v 

• vertex cover:  A(G, v) = 1 if v is in the cover



Distributed 
Graph Algorithm
• Input: simple undirected graph G 

• Output: A(G, v) = local output of node v 

• Running time is t: local output A(G, v) only 
depends on radius-t neighbourhood of v 

• shortest-path distance at most t



Distributed 
Graph Algorithm

time t = 2



Distributed 
Graph Algorithm
• Mapping from local neighbourhoods 

to local outputs 
• each node acts based on 

its radius-t neighbourhood 
• local outputs must form 

a globally consistent solution



Distributed 
Graph Algorithm
• If G is a computer network: 

• time = number of communication rounds 
• in t communication steps all nodes can 

learn everything up to distance t 

• Fast distributed algorithm = 
few communication rounds



Distributed 
Graph Algorithm
• Everything trivial in time diam(G) 

• all nodes see whole G, 
can compute any function of G 

• What can be solved much faster?



Our Focus: 
Local Algorithms
• Distributed graph algorithms 

with running time O(1) 
• extreme limits of distributed algorithms 
• ideal algorithms for large-scale networks 
• fast and fault-tolerant 

• Do these even exist?



Our Focus: 
Local Algorithms
• Distributed graph algorithms 

with running time O(1) 

• We focus on bounded-degree graphs: 
• n nodes, maximum degree Δ = O(1) 
• running time t = f(Δ), independently of n



Our Focus: 
Local Algorithms
• Surprise: many graph problems can be 

approximated with local algorithms 
• 2-approximation of minimum vertex cover 
• many linear programming relaxations 
• many problems on bipartite graphs … 

• Today’s main topic: lower bounds



Lower Bounds

– what cannot 
be solved locally?



What Cannot Be 
Solved Locally?
• Negative results, even if Δ = 2: 

• graph colouring 
• maximal matching 
• maximal independent set … 

• Key issue: symmetry breaking



Example: graph colouring  (G = long path)

What Cannot Be 
Solved Locally?



Identical local neighbourhoods 
 
 
 
Different outputs

What Cannot Be 
Solved Locally?



Identical local neighbourhoods — really? 

What Cannot Be 
Solved Locally?

31 17 22 5 18 76 51 11 26 13



• Could we somehow use node identifiers  
to find a graph colouring? 

• No — would require time Ω(log* n) 
• proof: apply Ramsey’s theorem… 

What Cannot Be 
Solved Locally?



• G = path: 
• local output = f (sequence of k identifiers) 
• k = 2t + 1

Node Identifiers 
Do Not Help

31 17 22 5 18 76 51 11 26 13

t t



• G = path, identifiers in increasing order: 
• local output = f (set of k identifiers) 
• k = 2t + 1

Node Identifiers 
Do Not Help

5 12 17 23 40 42 55 58 76 93



• Universe U = set of all possible identifiers 

• Colour of k-subset X = {x1, x2, …, xk} of U: 
output of algorithm A in this neighbourhood

Node Identifiers 
Do Not Help

? ? x1 x2 x3 x4 x5 ? ? ?< < < <



Node Identifiers 
Do Not Help
• Ramsey: there is a monochromatic 

subset Z = {z1, z2, …, zm} of universe U 

• all k-subsets of Z have the same colour

? ? z1 z2 z3 z4 z5 ?z6 z7



• We can construct a path s.t. many  
adjacent nodes have same local outputs 

• graph colouring, maximal independent set,  
maximal matching: not possible

Node Identifiers 
Do Not Help

? ? z1 z2 z3 z4 z5 ?z6 z7



• Without unique identifiers: 
lower bounds often easy to prove 

• With unique identifiers:  
lower bounds much more difficult 

• Ramsey-like arguments nontrivial for Δ > 2

Node Identifiers 
Do Not Help



• New general result (Göös et al., 2012): 
• node identifiers do not help with 

any local approximation algorithm 

• Assumption: “simple” graph problems 
• vertex cover, edge cover, dominating set, 

matching, independent set, …

Node Identifiers 
Do Not Help



• Tight upper and lower bounds: 
• vertex covers & edge covers 
• dominating sets & edge dominating sets 
• independent sets & matchings 
• packing & covering LPs 
• max-min & min-max LPs …

Everything Known?



• Well understood: 
• what can we do in time that only 

depends on Δ? 

• Not so well understood: 
• precisely how does t depend on Δ? 
• example: what can we do in time t = o(Δ)?

Everything Known?



Time vs. 
Maximum Degree

– running example: 
vertex covers and 
matching



Example: 
Vertex Cover
Subset C of nodes that 
“covers” all edges 

each edge has at least 
one endpoint in C



• 2-approximation of minimum vertex cover  
with centralised algorithms: 

• find any maximal matching M 
• output all endpoints of all edges in M 

• Not possible with local algorithms 
• cannot find a maximal matching

Example: 
Vertex Cover



• Maximal matching: 
• requires symmetry breaking 

• Maximal fractional matching: 
• no need to break symmetry 
• still helps with vertex cover approximations!

Example: 
Vertex Cover



• Edges labelled with integers {0, 1} 

• Sum of incident edges at most 1 

• Maximal matching: 
cannot increase the value of any label

Matching 10

0 0



• Edges labelled with real numbers [0, 1] 

• Sum of incident edges at most 1 

• Maximal fractional matching: 
cannot increase the value of any label

Fractional 
Matching 0.40.6

0.3
0.3



• Saturated node: 
• sum of incident edges = 1 

• 2-approximation of minimum vertex cover: 
• find any maximal fractional matching 
• take all saturated nodes

Fractional 
Matching 0.40.6

0.3
0.3



• Maximal fractional matching in time O(Δ) 
(Åstrand & S., 2010) 

• does not require symmetry breaking 
• d-regular graph: label all edges with 1/d 

• Nontrivial part: graphs that are not regular…

Fractional 
Matching 0.40.6

0.3
0.3



• Maximal fractional matching in time O(Δ) 
• 2-approximation of minimum 

vertex cover in time O(Δ) 

• Can we do it faster?

Fractional 
Matching 0.40.6

0.3
0.3



Maximal 
Fractional Matching

– new lower bound



• Cannot be solved in time o(Δ) 
(Göös et al., 2013) 

• Key ingredient of the proof: 
analyse many different models of  
distributed computing

Maximal 
Fractional Matching



ID: 
Unique Identifiers
Nodes have unique identifiers, 
output may depend on them
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OI: 
Order Invariant
Output does not change if we change  
identifiers but keep their relative order

2

9

7
4 3

54

23
12

=



PO: 
Ports & Orientation
No identifiers 

Node v labels 
incident edges 
with 1, …, deg(v) 

Edges oriented
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EC: 
Edge Colouring
No identifiers 

No orientations 

Edges coloured 
with O(Δ) colours

2

1 1
3



2
1

1
2 1

3 2 1

2

1 1
3a b

c

d
a < b < c < d

3 12
23

54 ID PO

OI EC



Oversimplified 
Proof Overview
• EC model is very limited 

• maximal fractional matching requires  
Ω(Δ) time in EC 

• Simulation argument: EC → PO → OI → ID 
• maximal fractional matching requires  
Ω(Δ) time also in PO, OI, and ID



Bipartite Vertex Cover

– König’s theorem 
is not local



König Duality
• Bipartite graphs 

• C* = minimum vertex cover 

• M* = maximum matching 

• König: |C*| = |M*|



Distributed 
Approximation
Finding (1+ε)-approximation 
for constant ε > 0, constant Δ

Matching Vertex Cover

Integral ? ?

Fractional ? ?



Distributed 
Approximation
Finding (1+ε)-approximation 
for constant ε > 0, constant Δ

Matching Vertex Cover

Integral ? ?

Fractional O(1) O(1)

Kuhn et al. 
(2004)



Distributed 
Approximation
Finding (1+ε)-approximation 
for constant ε > 0, constant Δ

Matching Vertex Cover

Integral O(1) ?

Fractional O(1) O(1)

Åstrand et al. 
(2010)



Distributed 
Approximation
Finding (1+ε)-approximation 
for constant ε > 0, constant Δ

Matching Vertex Cover

Integral O(1) ?

Fractional O(1) O(1)



Distributed 
Approximation
Finding (1+ε)-approximation 
for constant ε > 0, constant Δ

Matching Vertex Cover

Integral O(1) Ω(log n)

Fractional O(1) O(1)

Göös & S. 
(2012)



Bipartite Vertex Cover
• No o(log n)-time distributed 

algorithm for 1.01-approximation  
of minimum vertex cover 

• even if we study bipartite graphs 
of maximum degree 3 

• key ingredient: expander graphs



Bipartite 
Vertex Cover
• Assume we are given an algorithm A 

• See what it does in a regular bipartite graph G 
• algorithm picks all orange or all blue nodes 
• w.l.o.g., assume that it picks all orange nodes



Bipartite 
Vertex Cover
• Assume we are given an algorithm A 

• See what it does in a regular bipartite graph G 
• algorithm picks all orange nodes 

• Add some gadgets to construct graph G’ 
• algorithm must pick all blue nodes



Bipartite 
Vertex Cover
• Construct a sequence of graphs G0, G1, … Gn 

• Start with the regular graph G0 = G 
• algorithm picks all orange nodes in G0 

• Add gadgets one by one so that Gn = G’ 
• algorithm must pick all blue nodes in Gn



Bipartite 
Vertex Cover
• Construct a sequence of graphs G0, G1, … Gn 

• algorithm picks all orange nodes in G0 
• algorithm must pick all blue nodes in Gn 
• only small change from Gi to Gi + 1 

if algorithm runs in time o(log n) 
• for some Gk we have half orange + half blue



Bipartite Vertex Cover
• For some Gk algorithm outputs 

half orange + half blue 
• Gk is an expander 
• large orange–blue boundary 
• many edges redundantly covered 
• poor approximation ratio



Toolbox for 
Lower Bound Proofs
• Highly symmetric graphs: 

local neighbourhoods “look identical” 

• Ramsey-like arguments: 
unique identifiers do not help, either 

• Expanders: 
cannot “hide boundaries”



Toolbox for 
Lower Bound Proofs
• Highly symmetric graphs: 

local neighbourhoods “look identical” 

• Ramsey-like arguments: 
unique identifiers do not help, either 

• Expanders: 
cannot “hide boundaries” Thanks!


