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Distributed scheduling

• Centralized scheduling:
• input: encoded as a string
• model of computing: RAM model, Turing machines
• solution: encoded as a string

• Distributed scheduling:
• can mean two different things!



Big data
perspective
“Too large for
my laptop to solve,
I’ll have to resort to
Amazon cloud”

Network 
algorithms
“How to schedule 
radio transmissions
in a large network 
without centralized 
control?”



Big data
perspective

Network 
algorithms



Big data
perspective
• Focus:
computation

• Distributed
perspective
helps us

Network 
algorithms
• Focus:
communication

• Distributed
perspective
additional
challenge



Big data
perspective
• Fully centralized

control

• Global perspective

• Input & output
in one place

Network 
algorithms
• No centralized

control

• Local perspective

• Input & output
distributed



Big data
perspective
• I know everything

about input

• I need to know 
everything about
solution

Network 
algorithms
• Each node knows its 

own part of input
• e.g. local constraints

• Each node needs its 
own part of solution
• e.g. when to switch on?



Big data
perspective
• Explicit input

• encoded as a string,
stored on my laptop

• Well-known
network structure
• tightly connected

cluster computer

Network 
algorithms
• Implicit input

• input graph =
network structure

• Unknown
network structure
• e.g. entire global 

Internet right know



Big data
perspective
Can we divide
problem in small 
independent tasks
that can be solved
in parallel?

Network 
algorithms
If each node is
only aware of its
local neighborhood,
can we nevertheless 
find a globally 
consistent solution?



Big data
perspective
• Closely related

to parallel
algorithms
• independent

subtasks that
can be solved
in parallel

Network 
algorithms
• Somewhat related

to sublinear-time 
algorithms and 
property testing
• making decisions 

without seeing 
everything



Big data
perspective
• Computationally

intensive problems

• Finding optimal
solutions

Network 
algorithms
• Computationally 

easy problems

• Finding good
solutions



Big data
perspective
• Models of

computing:
• MapReduce
• bulk synchronous

parallel (BSP)

Network 
algorithms
• Models of

computing:
• LOCAL
• CONGEST



Big data
perspective

Network 
algorithms



Big data
perspective

Network 
algorithms



LOCAL model

• Initial knowledge:
• local input, number of neighbors

• Communication round:
• send message to each neighbor
• receive message from each neighbor
• update state
• possibly: announce local output and stop



LOCAL model

Equivalent:
• “running time”
• number of synchronous

communication rounds
• how far do we need to look

in the graph

Fast algorithm ↔ highly “localized” solution



Scheduling &
network algorithms
What are relevant and interesting scheduling 
problems to study here?

1. What kind of scheduling is needed in 
networks?

2. What kind of scheduling problems
can be solved (efficiently) in networks?



Scheduling &
network algorithms
Not necessarily intersection:

1. We can ask what if we could solve this
• e.g. what is the power of scheduling oracles

2. We can explore limits of solvability, 
without specific applications in mind

• cf. “canonical hard problems” in centralized setting



Scheduling &
network algorithms
• Interesting scheduling problems are

usually graph problems
• nodes need to take actions, and scheduling 

constraints can be represented as (labelled) edges

• Prime example: (fractional) graph coloring



Fractional graph coloring

• Constraint graph H
• edge {u, v} = nodes u and v cannot be active 

simultaneously

• Each node has 1 unit of work to do
• can be generalized to weighted graphs

• Schedule activities, minimize makespan



Fractional graph coloring

• Constraint graph H
• edge {u, v} = nodes u and v cannot be active 

simultaneously

• Set of active nodes = independent set
• global view: list of independent sets + time spans
• local view: each node knows its own schedule



[Fractional] graph coloring

• Fractional graph coloring:
1 unit of work can be divided arbitrarily
• i.e. with preemption

• Graph coloring: atomic jobs
• i.e. without preemption
• w.l.o.g. jobs may start at times 0, 1, … only
• “color” of a node = time slot



[Fractional] graph coloring

• Fractional graph coloring:
• “external” applications: e.g. scheduling

radio transmissions in a non-interfering manner

• Graph coloring:
• “internal” applications: coordinating activities

of nodes in a distributed algorithm
• e.g.: constructing a maximal independent set



Graph coloring &
network algorithms
• Constraint graph H:

• edge {u, v}: nodes u and v interfere with each other

• Network graph G:
• edge {u, v}: nodes u and v can talk to each other

• Interesting case: H = G



Graph coloring &
network algorithms
• Constraint graph H = network graph G

• typical: conflict → nodes close to each other
• worst case: conflict ↔ nodes close to each other
• often not literally true if G = physical network
• but we can interpret H as a virtual network, and 

efficiently simulate any communication in H by 
message-passing in G (with constant overhead)



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• you are a node in the middle of a long cycle
• you can talk to your neighbors
• eventually you need to announce

“I am now done, I pick color x and stop”
• how many (parallel) rounds of communication

are needed?



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Simple randomized algorithm



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Simple randomized algorithm:
• everybody picks a random color from {1, 2, 3}
• check with your neighbors, stop if good for you
• O(log n) rounds until everybody stops w.h.p.



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Simple randomized algorithm: O(log n)

• No deterministic algorithm: why?



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Simple randomized algorithm: O(log n)

• No deterministic algorithm:
everyone has the same initial state
→ everyone sends the same messages
→ everyone receives the same messages
→ everyone has the same new state



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Simple randomized algorithm: O(log n)

• No deterministic algorithm — unless some 
symmetry-breaking information is provided

• Standard assumption: unique identifiers



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• Assume each node has a unique identifier
from {1, 2, …, poly(n)}
• e.g. IP address, MAC address, …
• we will assume a worst-case assignment
• note: random identifiers are unique w.h.p.



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• We have now a color reduction problem:
• input: coloring with poly(n) colors (unique IDs)
• output: coloring with 3 colors



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• We have now a color reduction problem:
• input: coloring with k colors
• output: coloring with c colors



Graph coloring &
network algorithms
• Toy example: G = cycle, 3 colors

• We can iterate color reduction steps:
• 1 round: 10100 colors → 12 colors
• 1 round: 12 colors → 4 colors
• 1 round: 4 colors → 3 colors

• Approx. ½ log* k rounds: k → 3 colors



Graph coloring &
network algorithms
• G = cycle, 3 colors

• distributed complexity Θ(log* n) rounds
• upper bound: Cole & Vishkin (1986)
• lower bound: Linial (1992)

• G = cycle, 2 colors
• even if we promise that the cycle is even,

we will need Θ(n) rounds



Graph coloring &
network algorithms
• Graph coloring in cycles:

• 2 colors: Θ(n) rounds
• 3 colors: Θ(log* n) rounds
• 4 colors: Θ(log* n) rounds …

• Fractional graph coloring in cycles:
• 3+ε time units: O(1) rounds   [not practical]



Graph coloring &
network algorithms
• Graph coloring in 2D grids:

• 3 colors: Θ(n) rounds
• 4 colors: Θ(log* n) rounds   [surprise!]
• 5 colors: Θ(log* n) rounds …

• Fractional graph coloring in 2D grids:
• 5+ε time units: O(1) rounds   [not practical]



Graph coloring &
network algorithms
• Graph coloring, max degree ≤ Δ:

• Δ colors: polylog(n) rounds   [assuming Δ ≥ 3]
• Δ+1 colors: Θ(log* n) rounds   [assuming Δ = O(1)]

• Fractional graph coloring:
• Δ+1+ε time units: O(1) rounds   [not practical]



Examples
of scheduling

problems



Scheduling &
network algorithms
• Graph coloring

• non-preemptive scheduling
• vertex coloring with Δ+1 colors, Δ colors
• edge coloring with 2Δ− 1 colors, (1 + ε)Δ colors
• coloring trees with 3 colors
• “defective” and “weak” colorings
• large cuts …



Scheduling &
network algorithms
• Graph coloring

• note that we do not try to find e.g. optimal colorings
• we are usually happy with a suboptimal coloring 

that can be found quickly
• typically coloring is used as a subroutine
• overall running time =

f (time to find coloring, number of colors)



Scheduling &
network algorithms
• Graph coloring

• Fractional coloring
• preemptive scheduling
• finding a schedule of length Δ+1+ε



Scheduling &
network algorithms
• Graph coloring

• Fractional coloring

• List coloring
• scheduling with node-specific time constraints
• coloring with lists of length Δ+1



Scheduling &
network algorithms
• [Fractional] domatic partition

• schedule = list of dominating sets + time spans
• nodes can also “cover” their neighbors
• each node has to be “covered” all the time
• each node can be active for only 1 time unit in total
• e.g. battery-powered sensors



Scheduling &
network algorithms
• [Fractional] domatic partition

• schedule = list of dominating sets + time spans
• minimum degree: δ
• optimal schedule length ≤ δ + 1

• can find solutions of length δ + 1
O(log δ + 1)



Scheduling &
network algorithms
• Reconfiguration problems

• input: “configurations” A and B
• output: schedule for “smoothly” switching from A

to B without interfering with the network operation
• example: recoloring problems



Recoloring problems

• Input: k-colorings A and B

• Output: schedule that tells how to turn 
coloring A into coloring B
• at each time step, only non-adjacent nodes can 

change their colors
• each intermediate step has to be a k-coloring



Recoloring problems

• Input: k-colorings A and B

• Output: schedule that tells how to turn 
coloring A into coloring B

• Typically hard, global problems
• relax the constraints slightly…



Recoloring problems

• Input: k-colorings A and B

• Output: schedule that tells how to turn 
coloring A into coloring B
• at each time step, only non-adjacent nodes can 

change their colors
• c extra colors
• each intermediate step has to be a (k+c)-coloring



Recoloring problems

• Input: k-colorings A and B

• Output: schedule that tells how to turn 
coloring A into coloring B with c extra colors

• How fast can we do it (number of rounds)?

• What is the length of the schedule?



Recoloring problems: trees
Input
colors

Extra
colors

Schedule
length

Time
(rounds)

2 0 —
2 1 O(1) Θ(n)
3 0 Θ(n) Θ(n)
3 1 O(1) O(log n)
3 2 O(1) 0
4 0 Θ(log n) Θ(log n)



Examples of
some recent work



Introducing a little bit
of heavy machinery…
Two stories of how to find the same result, 
without resorting to actual thinking

Some basic definitions needed first



LCL problems

• Assumption throughout this part:
• bounded-degree graphs (Δ = O(1))

• LCL = locally checkable labeling:
• O(1) input labels, O(1) output labels
• feasibility checkable locally: solution is globally good 

if it looks good in all O(1)-radius neighborhoods
• Naor & Stockmeyer (1995)



LCL problems

• Examples of LCL problems:
• graph coloring with 5 colors
• recoloring in at most 100 steps

• These are not LCL problems:
• optimal graph coloring
• fractional graph coloring
• recoloring in general



LCL problems

• Examples of LCL problems:
• graph coloring with 5 colors
• recoloring in at most 100 steps

• These are not LCL problems:
• optimal graph coloring: how to verify locally?
• fractional graph coloring: unbounded output size
• recoloring in general: unbounded output size



LCL problems

• Rich theory of LCL problems,
lots of recent progress

• Let’s see how it helps with the following 
problem: 4-coloring 2D grids
• clearly an LCL problem
• highly nontrivial problem — try to design

an efficient algorithm in the LOCAL model!





Approach 1: gap theorems

• Theorem: In 2D grids, time complexity of 
any LCL problem is O(1), Θ(log* n), or Θ(n)

(Brandt et al. 2017)



Approach 1: gap theorems

• Theorem: In 2D grids, time complexity of 
any LCL problem is O(1), Θ(log* n), or Θ(n)

• Theorem: In bounded-degree graphs,
Δ-coloring is possible in polylog(n) time

(Panconesi & Srinivasan 1995)



Approach 1: gap theorems

• Theorem: In 2D grids, time complexity of 
any LCL problem is O(1), Θ(log* n), or Θ(n)

• Theorem: In bounded-degree graphs,
Δ-coloring is possible in polylog(n) time

• Corollary: 4-coloring in 2D grids is 
possible in O(log* n) time



Approach 2: using computers

• In 2D grids, any LCL problem that can be 
solved in Θ(log* n) time can also be solved 
with a normalized two-part algorithm:
1. symmetry-breaking part: always the same
2. problem-specific part: finite

• We can use computers to find
the problem-specific part!





Recap

• Network algorithms
• LOCAL model

• Key questions about
scheduling problems:
• is this problem solvable locally?
• given a solution, can you verify it locally?
• is it an LCL problem?



Big data
perspective

Network 
algorithms



Big data
perspective

Network 
algorithms
• LOCAL

• unlimited bandwidth
• unlimited local 

computation
• only distance matters



Big data
perspective

Network 
algorithms
• CONGEST

• just like LOCAL,
but with limited 
bandwidth



Big data
perspective
• BSP

• p computers
• each holds 1/p of input,

needs 1/p of output
• computers can directly

talk to each other
• limited bandwidth

Network 
algorithms
• CONGEST

• just like LOCAL,
but with limited 
bandwidth



Big data
perspective
• BSP

• no need for concept
of “network”, everyone 
can talk to everyone

• no need to have
graph problems

• any input encoded
as a string is fine

Network 
algorithms
• CONGEST

• inherently related
to networks

• inherently related
to graph problems

• network structure = 
input graph



Big data
perspective
• BSP

Network 
algorithms
• CONGEST

What if we studied 
network algorithms 

on complete
graphs?



Big data
perspective
• BSP

• Congested clique
• a special case of BSP:
n processors,
n log n bandwidth

• but we don’t care about 
local computation

Network 
algorithms
• CONGEST

• Congested clique
• a special case of 

CONGEST:
network = n-clique

• input graph is some 
subgraph of the clique



Scheduling &
congested clique
• Lots of work related to graph problems

• connectivity, shortest paths, subgraph detection …

• But what is known about scheduling and 
resource allocation?
• many efficient algorithms need to split “work” 

between “workers” in a nontrivial manner
• is this something we could formalize & study?



Summary

• If someone is studying “distributed 
computing”, ask what they mean by it…

• “Big data algorithms” and “network 
algorithms” very different concepts
• focus on computation vs. communication
• some bridging models exist, though
• scheduling relevant in all of these models


