Locality and distributed scheduling

Jukka Suomela Aalto University, Finland

Distributed scheduling

- Centralized scheduling:
 - input: encoded as a string
 - model of computing: RAM model, Turing machines
 - solution: encoded as a string
- **Distributed** scheduling:
 - can mean two different things!

"*Too large* for my laptop to solve, I'll have to resort to Amazon cloud"

Network algorithms

"How to schedule radio transmissions in a large network *without centralized control*?"

- Focus:
 computation
- Distributed perspective helps us

- Focus:
 communication
- Distributed perspective additional challenge

- Fully centralized control
- Global perspective
- Input & output in one place

- No centralized control
- Local perspective
- Input & output distributed

 I know everything about input

I need to know
 everything about solution

- Each node knows its own part of input
 - e.g. local constraints
- Each node needs its own part of solution
 - e.g. when to switch on?

- Explicit input
 - encoded as a string, stored on my laptop
- Well-known network structure
 - tightly connected cluster computer

- Implicit input
 - input graph = network structure
- Unknown network structure
 - e.g. entire global Internet right know

Can we divide problem in small independent tasks that can be solved in parallel?

Network algorithms

If each node is only aware of its **local neighborhood**, can we nevertheless find a **globally consistent solution**?

- Closely related to *parallel algorithms*
 - independent subtasks that can be solved in parallel

- Somewhat related to *sublinear-time algorithms* and property testing
 - making decisions without seeing everything

- Computationally intensive problems
- Finding optimal solutions

- Computationally easy problems
- Finding **good** solutions

- Models of computing:
 - MapReduce
 - bulk synchronous parallel (BSP)

- Models of computing:
 - LOCAL
 - CONGEST

LOCAL model

- Initial knowledge:
 - local input, number of neighbors
- Communication round:
 - send message to each neighbor
 - receive message from each neighbor
 - update state
 - possibly: announce local output and stop

LOCAL model

- Equivalent:
 - "running time"
 - number of synchronous
 communication rounds
 - how far do we need to look in the graph

Fast algorithm ↔ highly "localized" solution

Scheduling & network algorithms

What are relevant and interesting scheduling problems to study here?

- 1. What kind of scheduling *is needed* in networks?
- 2. What kind of scheduling problems can be solved (efficiently) in networks?

Scheduling & network algorithms

Not necessarily intersection:

- 1. We can ask *what if* we could solve this
 - e.g. what is the power of scheduling oracles
- 2. We can *explore limits* of solvability, without specific applications in mind
 - cf. "canonical hard problems" in centralized setting

Scheduling & network algorithms

- Interesting scheduling problems are usually graph problems
 - nodes need to take actions, and scheduling constraints can be represented as (labelled) edges
- Prime example: (fractional) graph coloring

Fractional graph coloring

- Constraint graph H
 - edge {u, v} = nodes u and v cannot be active simultaneously
- Each node has 1 unit of work to do
 - can be generalized to weighted graphs
- Schedule activities, minimize makespan

Fractional graph coloring

- Constraint graph H
 - edge {u, v} = nodes u and v cannot be active simultaneously
- Set of active nodes = independent set
 - **global view:** list of independent sets + time spans
 - *local view:* each node knows its own schedule

[Fractional] graph coloring

- Fractional graph coloring:
 1 unit of work can be divided arbitrarily
 - i.e. with preemption
- Graph coloring: atomic jobs
 - i.e. without preemption
 - w.l.o.g. jobs may start at times 0, 1, ... only
 - "color" of a node = time slot

[Fractional] graph coloring

- Fractional graph coloring:
 - *"external" applications*: e.g. scheduling radio transmissions in a non-interfering manner
- Graph coloring:
 - *"internal" applications*: coordinating activities of nodes in a distributed algorithm
 - e.g.: constructing a maximal independent set

- Constraint graph H:
 - edge {*u*, *v*}: nodes *u* and *v* interfere with each other
- Network graph G:
 - edge {u, v}: nodes u and v can talk to each other
- Interesting case: *H* = *G*

- Constraint graph *H* = network graph *G*
 - typical: conflict \rightarrow nodes close to each other
 - worst case: conflict \leftrightarrow nodes close to each other
 - often not literally true if *G* = physical network
 - but we can interpret *H* as a virtual network, and efficiently simulate any communication in *H* by message-passing in *G* (with constant overhead)

- Toy example: **G** = cycle, 3 colors
 - you are a node in the middle of a long cycle
 - you can talk to your neighbors
 - eventually you need to announce
 "I am now done, I pick color x and stop"
 - how many (parallel) rounds of communication are needed?

- Toy example: **G** = cycle, 3 colors
- Simple randomized algorithm

- Toy example: **G** = cycle, 3 colors
- Simple randomized algorithm:
 - everybody picks a random color from {1, 2, 3}
 - check with your neighbors, stop if good for you
 - O(log *n*) rounds until everybody stops w.h.p.

- Toy example: **G** = cycle, 3 colors
- Simple randomized algorithm: O(log n)
- No deterministic algorithm: why?

- Toy example: **G** = cycle, 3 colors
- Simple randomized algorithm: O(log n)
- No deterministic algorithm:

everyone has the same initial state

- \rightarrow everyone sends the same messages
- \rightarrow everyone receives the same messages
- \rightarrow everyone has the same new state

- Toy example: **G** = cycle, 3 colors
- Simple randomized algorithm: O(log n)
- No deterministic algorithm unless some symmetry-breaking information is provided
- Standard assumption: unique identifiers

- Toy example: **G** = cycle, 3 colors
- Assume each node has a unique identifier from {1, 2, ..., poly(n)}
 - e.g. IP address, MAC address, ...
 - we will assume a **worst-case assignment**
 - note: random identifiers are unique w.h.p.

- Toy example: **G** = cycle, 3 colors
- We have now a color reduction problem:
 - input: coloring with poly(n) colors (unique IDs)
 - output: coloring with 3 colors

- Toy example: **G** = cycle, 3 colors
- We have now a color reduction problem:
 - input: coloring with *k* colors
 - output: coloring with c colors

- Toy example: **G** = cycle, 3 colors
- We can iterate color reduction steps:
 - 1 round: 10^{100} colors $\rightarrow 12$ colors
 - 1 round: 12 colors \rightarrow 4 colors
 - 1 round: 4 colors \rightarrow 3 colors
- Approx. $\frac{1}{2} \log^* k$ rounds: $k \rightarrow 3$ colors

- G = cycle, 3 colors
 - distributed complexity O(log* n) rounds
 - upper bound: Cole & Vishkin (1986)
 - lower bound: Linial (1992)
- G = cycle, 2 colors
 - even if we promise that the cycle is even, we will need ⊖(n) rounds
Graph coloring & network algorithms

- Graph coloring in cycles:
 - 2 colors: O(n) rounds
 - 3 colors: O(log* n) rounds
 - 4 colors: **O**(log* *n*) rounds ...
- Fractional graph coloring in cycles:
 - **3+ε** time units: **O(1)** rounds [not practical]

Graph coloring & network algorithms

- Graph coloring in 2D grids:
 - 3 colors: O(n) rounds
 - 4 colors: Θ(log* n) rounds [surprise!]
 - 5 colors: **O**(log* *n*) rounds ...
- Fractional graph coloring in 2D grids:
 - **5+ε** time units: **O(1)** rounds [not practical]

Graph coloring & network algorithms

- Graph coloring, max degree ≤ Δ:
 - \triangle colors: polylog(*n*) rounds [assuming $\Delta \ge 3$]
 - Δ +1 colors: $\Theta(\log^* n)$ rounds [assuming $\Delta = O(1)$]
- Fractional graph coloring:
 - Δ +1+ ϵ time units: O(1) rounds [not practical]

Examples of scheduling problems

- Graph coloring
 - non-preemptive scheduling
 - vertex coloring with $\Delta + 1$ colors, Δ colors
 - edge coloring with $2\Delta 1$ colors, $(1 + \epsilon)\Delta$ colors
 - coloring trees with 3 colors
 - "defective" and "weak" colorings
 - large cuts ...

- Graph coloring
 - note that we do not try to find e.g. optimal colorings
 - we are usually happy with a suboptimal coloring that can be found quickly
 - typically coloring is used as a subroutine
 - overall running time =
 f(time to find coloring, number of colors)

- Graph coloring
- Fractional coloring
 - preemptive scheduling
 - finding a schedule of length $\Delta + 1 + \epsilon$

- Graph coloring
- Fractional coloring
- List coloring
 - scheduling with node-specific time constraints
 - coloring with lists of length Δ +1

- [Fractional] domatic partition
 - schedule = list of **dominating sets** + time spans
 - nodes can also "cover" their neighbors
 - each node has to be "covered" all the time
 - each node can be active for only 1 time unit in total
 - e.g. battery-powered sensors

- [Fractional] domatic partition
 - schedule = list of dominating sets + time spans
 - minimum degree: δ
 - optimal schedule length $\leq \delta + 1$
 - can find solutions of length $\frac{\delta + 1}{O(\log \delta + 1)}$

- Reconfiguration problems
 - **input:** "configurations" *A* and *B*
 - **output:** schedule for "smoothly" switching from *A* to *B* without interfering with the network operation
 - example: recoloring problems

- Input: k-colorings A and B
- **Output:** schedule that tells how to turn coloring *A* into coloring *B*
 - at each time step, only non-adjacent nodes can change their colors
 - each intermediate step has to be a k-coloring

- Input: k-colorings A and B
- Output: schedule that tells how to turn coloring A into coloring B
- Typically hard, global problems
 - relax the constraints slightly...

- Input: k-colorings A and B
- **Output:** schedule that tells how to turn coloring *A* into coloring *B*
 - at each time step, only non-adjacent nodes can change their colors
 - c extra colors
 - each intermediate step has to be a (k+c)-coloring

- Input: k-colorings A and B
- **Output:** schedule that tells how to turn coloring *A* into coloring *B* with *c* extra colors
- How *fast* can we do it (number of rounds)?
- What is the *length of the schedule*?

Recoloring problems: trees

Input colors	Extra colors	Schedule length	Time (rounds)
2	0		
2	1	O(1)	Θ(<i>n</i>)
3	0	Θ(<i>n</i>)	Θ(<i>n</i>)
3	1	<i>O</i> (1)	O(log <i>n</i>)
3	2	<i>O</i> (1)	0
4	0	Θ(log <i>n</i>)	Θ(log <i>n</i>)

Examples of some recent work

Introducing a little bit of heavy machinery...

Two stories of how to find the same result, without resorting to actual thinking

Some basic definitions needed first

- Assumption throughout this part:
 - bounded-degree graphs ($\Delta = O(1)$)
- LCL = locally checkable labeling:
 - O(1) input labels, O(1) output labels
 - feasibility checkable locally: solution is globally good if it looks good in all O(1)-radius neighborhoods
 - Naor & Stockmeyer (1995)

- Examples of *LCL problems*:
 - graph coloring with 5 colors
 - recoloring in at most 100 steps
- These are *not* LCL problems:
 - optimal graph coloring
 - fractional graph coloring
 - recoloring in general

- Examples of *LCL problems*:
 - graph coloring with 5 colors
 - recoloring in at most 100 steps
- These are *not* LCL problems:
 - optimal graph coloring: how to verify locally?
 - fractional graph coloring: unbounded output size
 - recoloring in general: unbounded output size

- Rich theory of LCL problems, lots of recent progress
- Let's see how it helps with the following problem: 4-coloring 2D grids
 - clearly an LCL problem
 - highly nontrivial problem try to design an efficient algorithm in the LOCAL model!

-

Approach 1: gap theorems

 Theorem: In 2D grids, time complexity of any LCL problem is O(1), Θ(log* n), or Θ(n)

Approach 1: gap theorems

- Theorem: In 2D grids, time complexity of any LCL problem is O(1), Θ(log* n), or Θ(n)
- Theorem: In bounded-degree graphs,
 Δ-coloring is possible in polylog(n) time

(Panconesi & Srinivasan 1995)

Approach 1: gap theorems

- Theorem: In 2D grids, time complexity of any LCL problem is O(1), Θ(log* n), or Θ(n)
- Theorem: In bounded-degree graphs,
 Δ-coloring is possible in polylog(n) time
- Corollary: 4-coloring in 2D grids is possible in O(log* n) time

Approach 2: using computers

- In 2D grids, any LCL problem that can be solved in Θ(log* n) time can also be solved with a *normalized two-part algorithm*:
 - 1. symmetry-breaking part: always the same
 - 2. problem-specific part: finite
- We can *use computers* to find the problem-specific part!

-

Recap

- Network algorithms
 - LOCAL model
- Key questions about scheduling problems:
 - is this problem solvable locally?
 - given a solution, can you verify it locally?
 - is it an LCL problem?

Network algorithms

Network algorithms

• LOCAL

- unlimited bandwidth
- unlimited local computation
- only distance matters

Network algorithms

• CONGEST

 just like LOCAL, but with limited bandwidth

• BSP

- *p* computers
- each holds 1/p of input, needs 1/p of output
- computers can directly talk to each other
- limited bandwidth

Network algorithms

• CONGEST

 just like LOCAL, but with limited bandwidth

• BSP

- no need for concept of "network", everyone can talk to everyone
- no need to have graph problems
- any input encoded as a string is fine

Network algorithms

• CONGEST

- inherently related to networks
- inherently related to graph problems
- network structure = input graph

Network algorithms

• BSP

• CONGEST

- BSP
- Congested clique
 - a special case of BSP:
 n processors,
 n log n bandwidth
 - but we don't care about local computation

Network algorithms

- CONGEST
- Congested clique
 - a special case of CONGEST: network = *n*-clique
 - input graph is some subgraph of the clique
Scheduling & congested clique

- Lots of work related to graph problems
 - connectivity, shortest paths, subgraph detection ...
- But what is known about scheduling and resource allocation?
 - many efficient algorithms need to split "work" between "workers" in a nontrivial manner
 - is this something we could formalize & study?

Summary

- If someone is studying "*distributed computing*", ask what they mean by it…
- "Big data algorithms" and "network algorithms" very different concepts
 - focus on computation vs. communication
 - some bridging models exist, though
 - scheduling relevant in all of these models