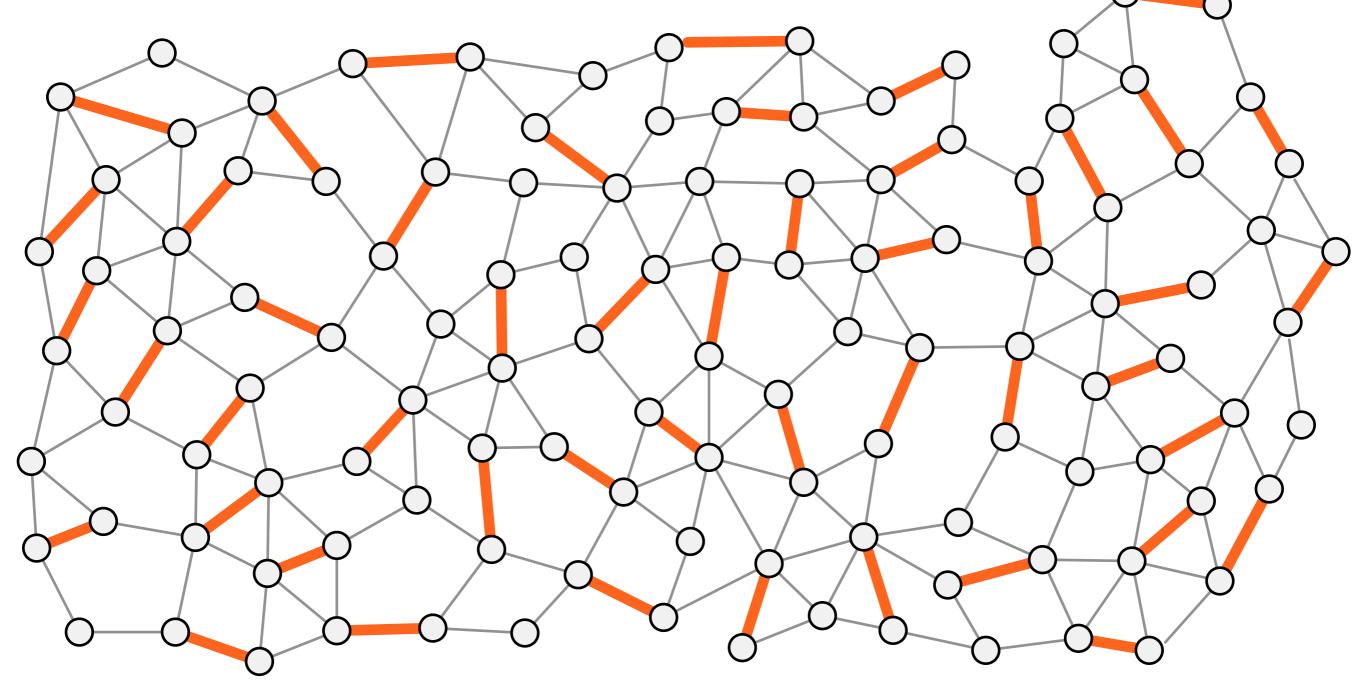
Local coordination and symmetry breaking

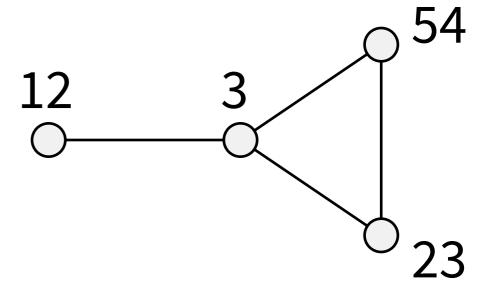
Jukka Suomela Aalto University, Finland

Chalmers, 16 October 2015

Running example: Maximal matching



- Input: simple undirected graph G
 - communication network
 - nodes labelled with unique O(log n)-bit identifiers

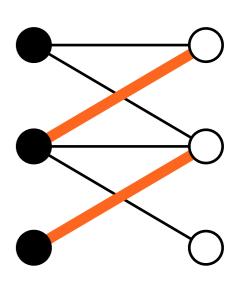


- Input: simple undirected graph G
- Output: each node v produces a local output
 - graph colouring: colour of node v
 - vertex cover: 1 if v is in the cover
 - matching: with whom v is matched

- Nodes exchange messages with each other, update local states
- Synchronous communication rounds
- Arbitrarily large messages

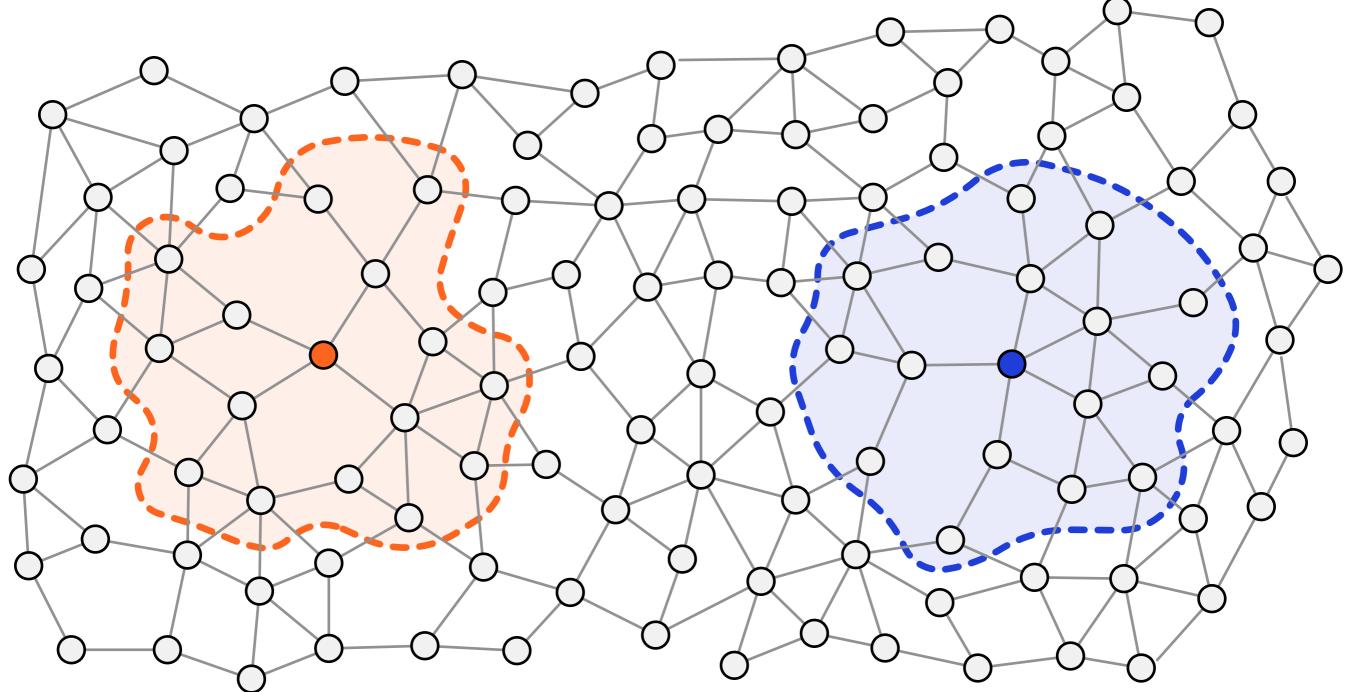
Maximal matching in 2-coloured graphs

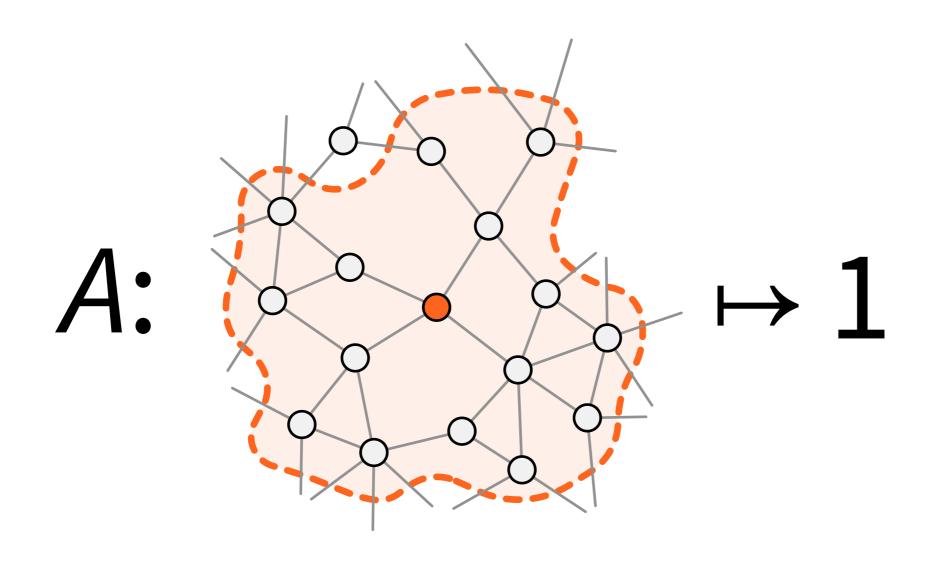
- Black nodes send proposals to their neighbours, one by one
- White nodes accept the first proposal that they get
- $O(\Delta)$ communication rounds in graphs of maximum degree Δ



- Time = number of communication rounds
 - until all nodes stop and produce their local outputs

- Time = number of communication rounds
- Time = distance:
 - in t communication rounds, all nodes can learn everything in their radius-t neighbourhoods



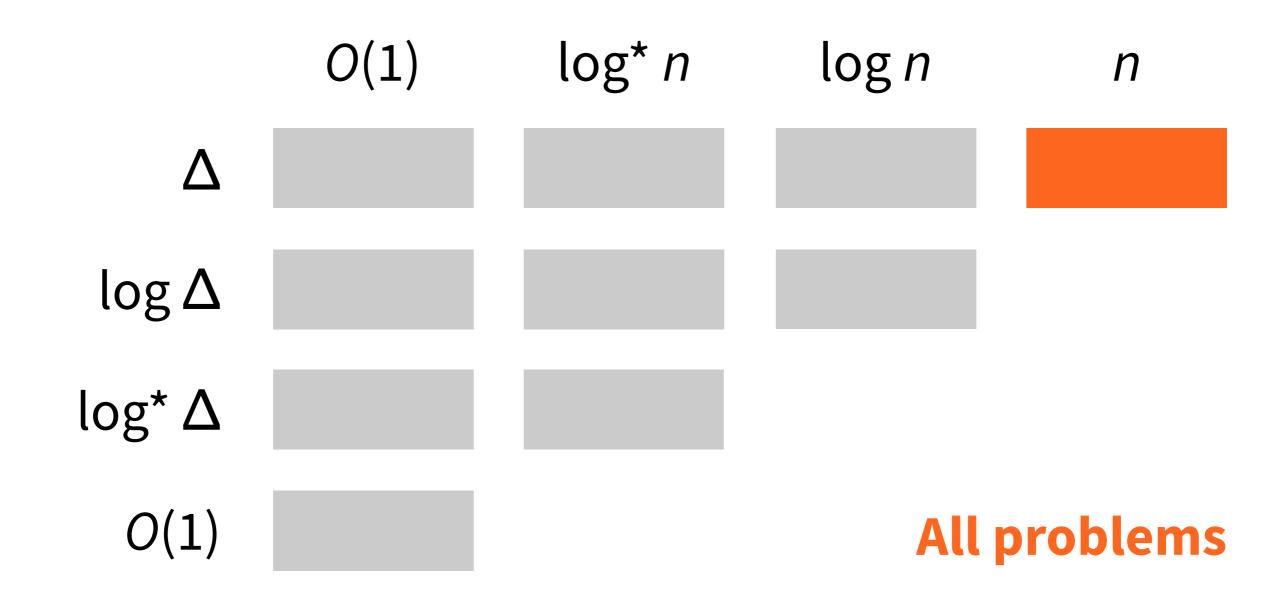


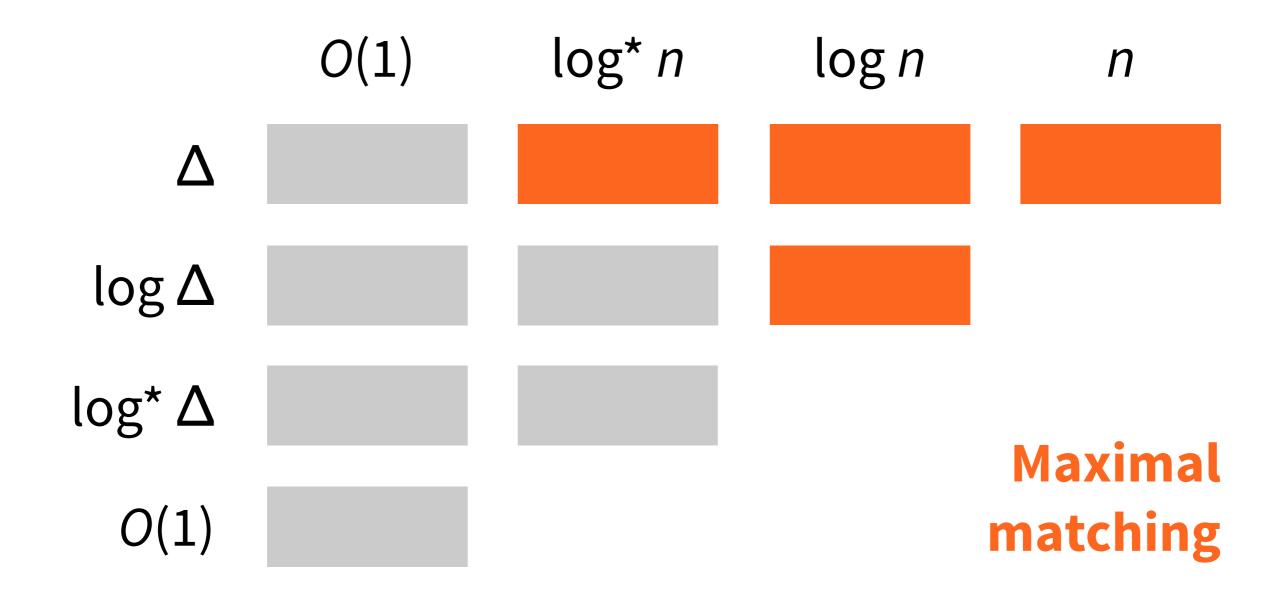
- Everything trivial in time diam(G)
 - all nodes see whole *G*, can compute any function of *G*
- What can be solved much faster?

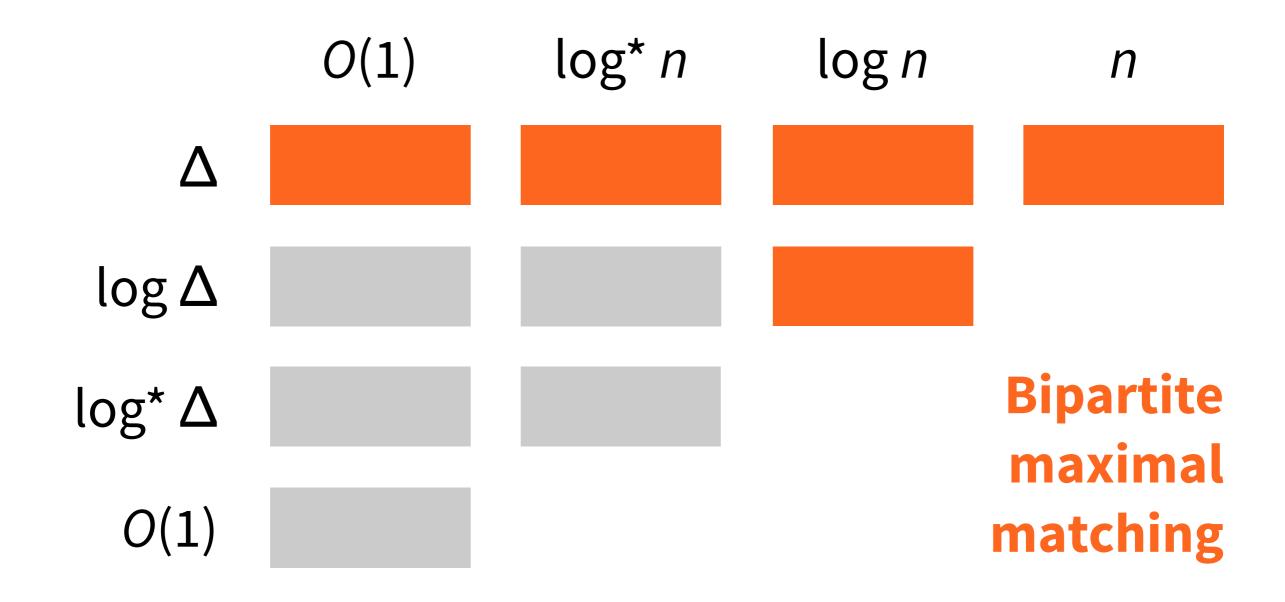
Distributed time complexity

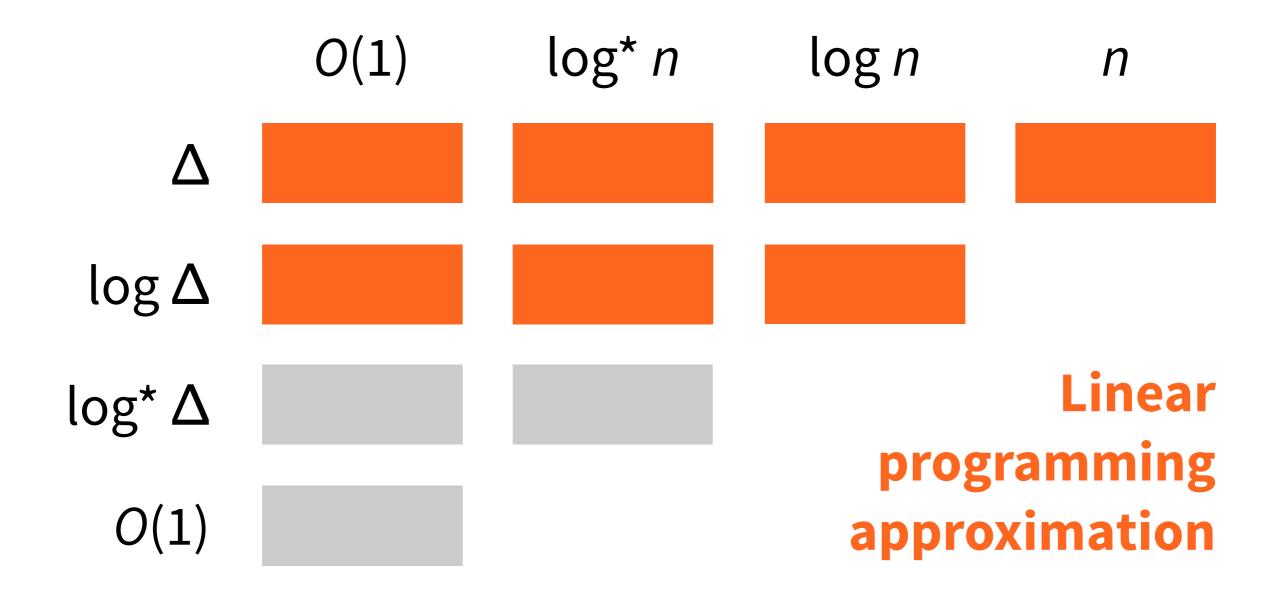
- n = number of nodes
- Δ = maximum degree
 - $\Delta < \eta$
- Time complexity $t = t(n, \Delta)$

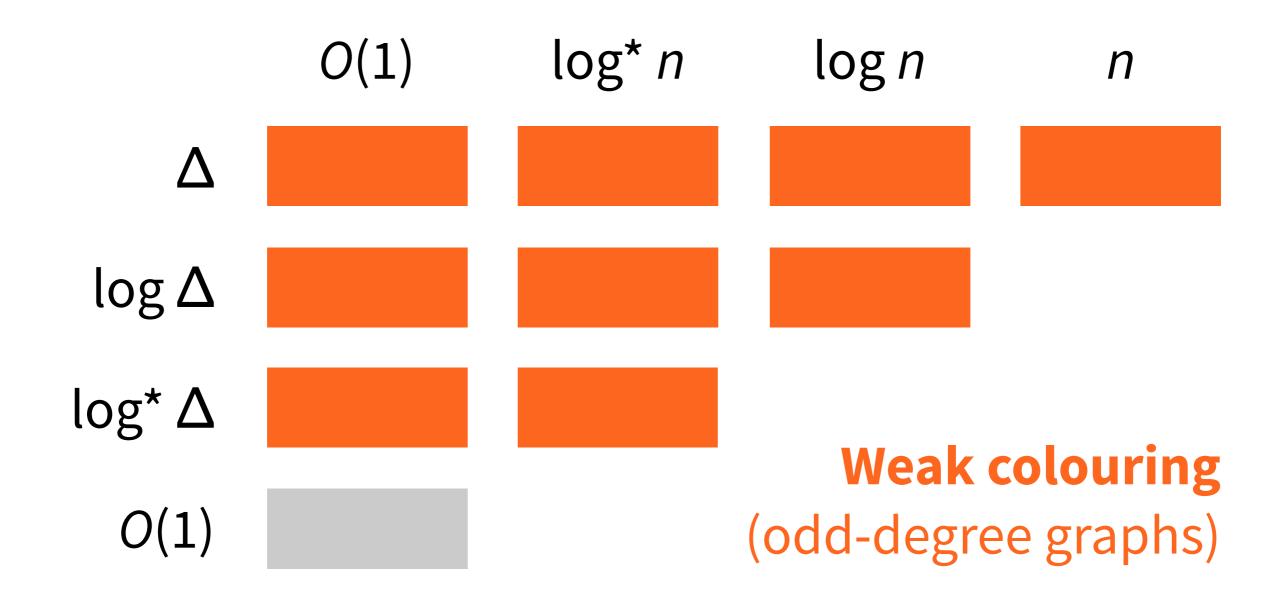
O(1)log* n log n n $log \Delta$ $log^* \Delta$ O(1)

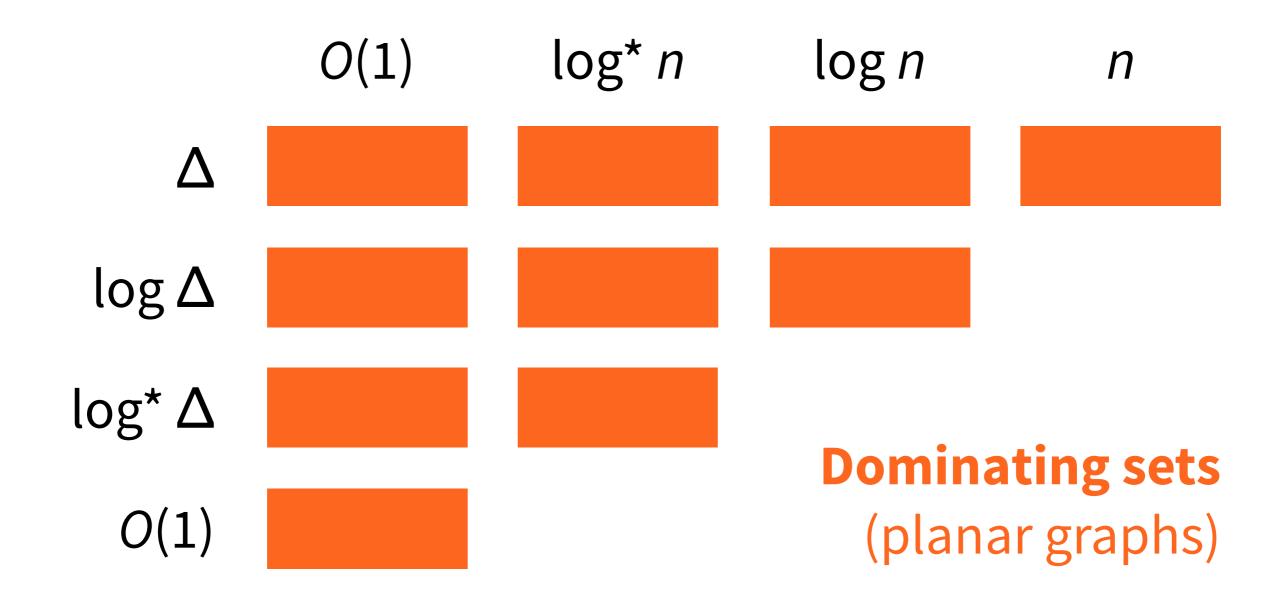


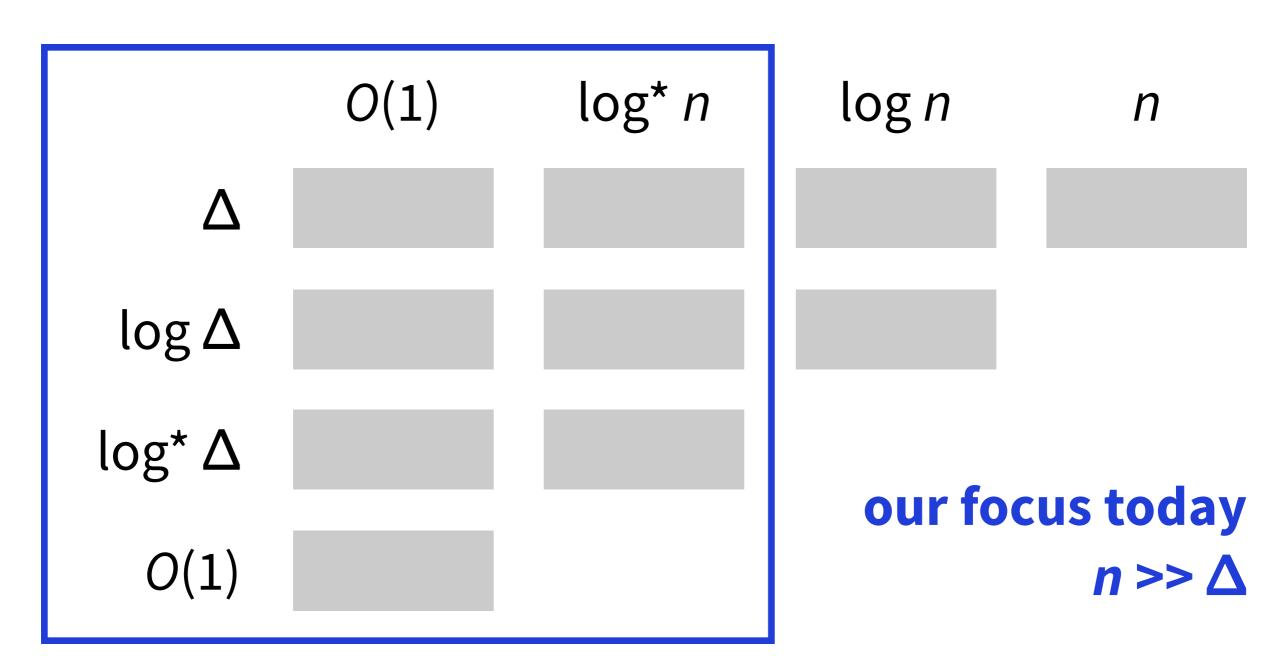




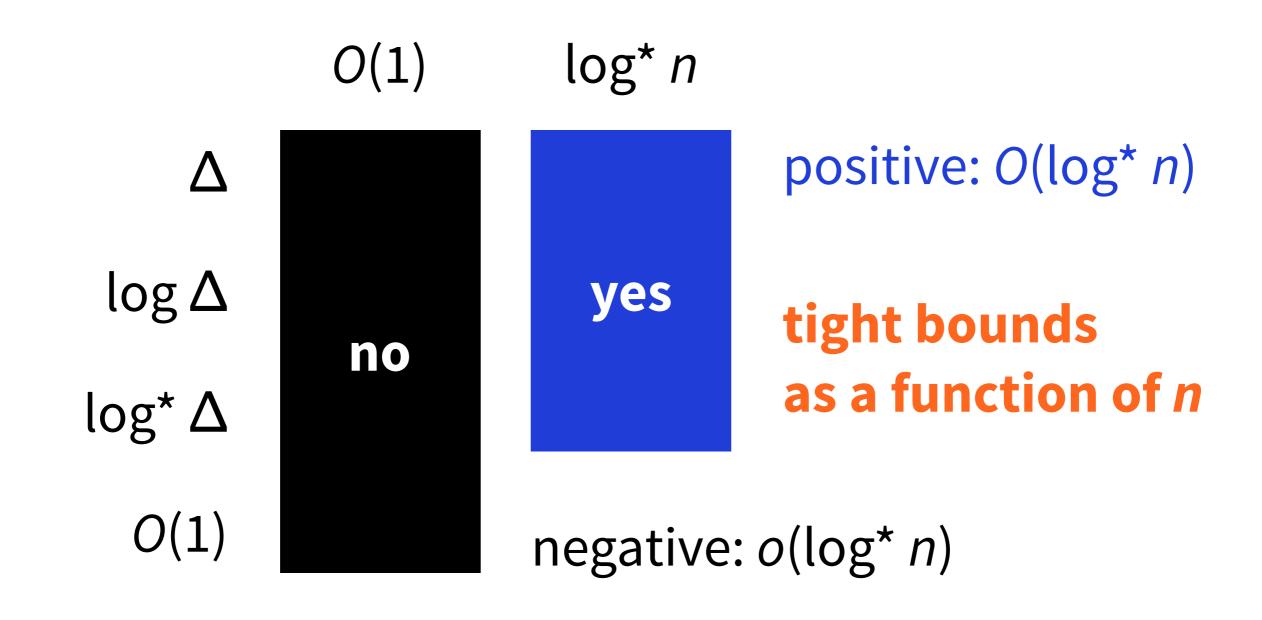




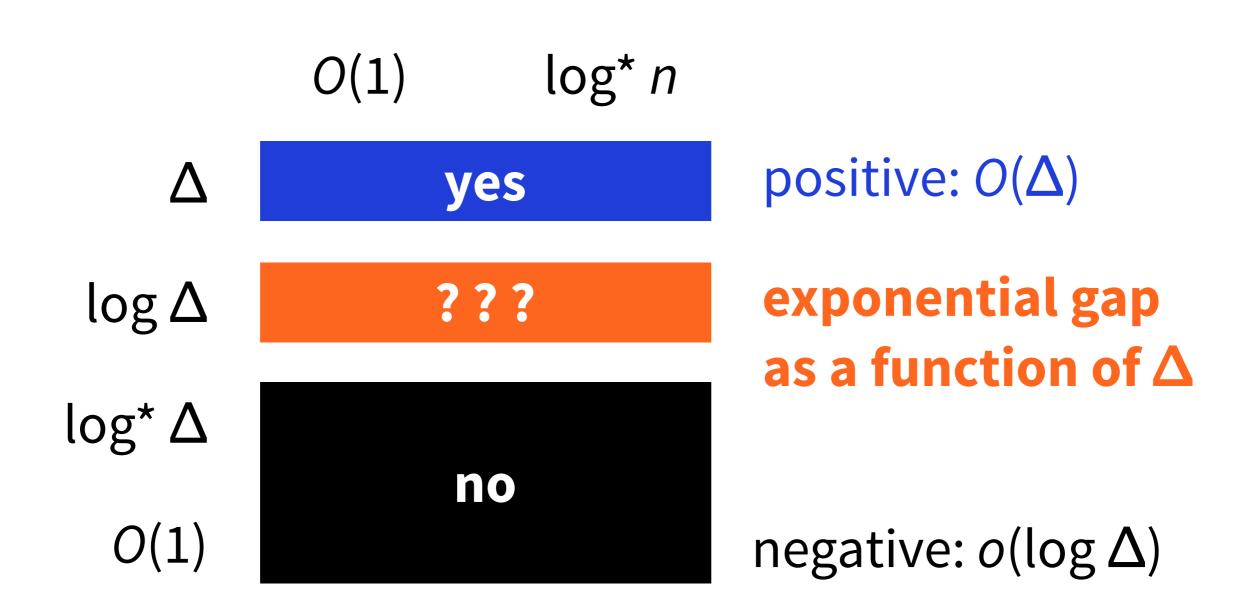




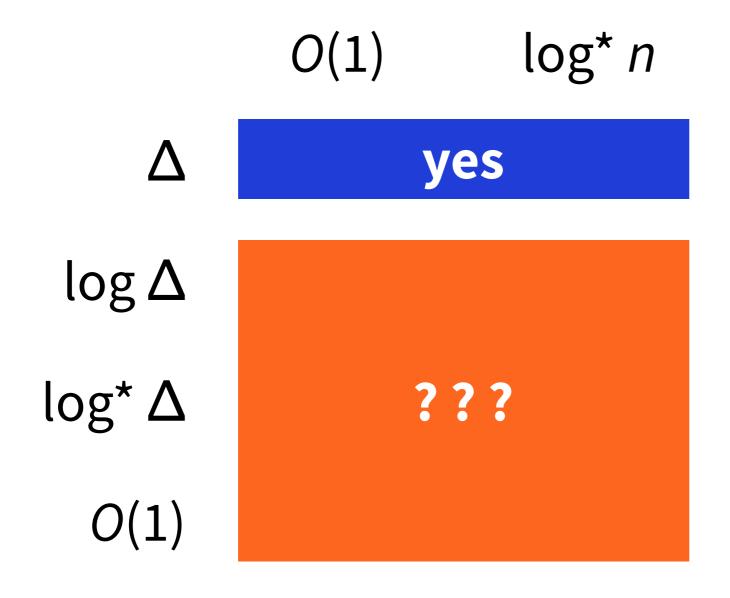
Typical state of the art



Typical state of the art



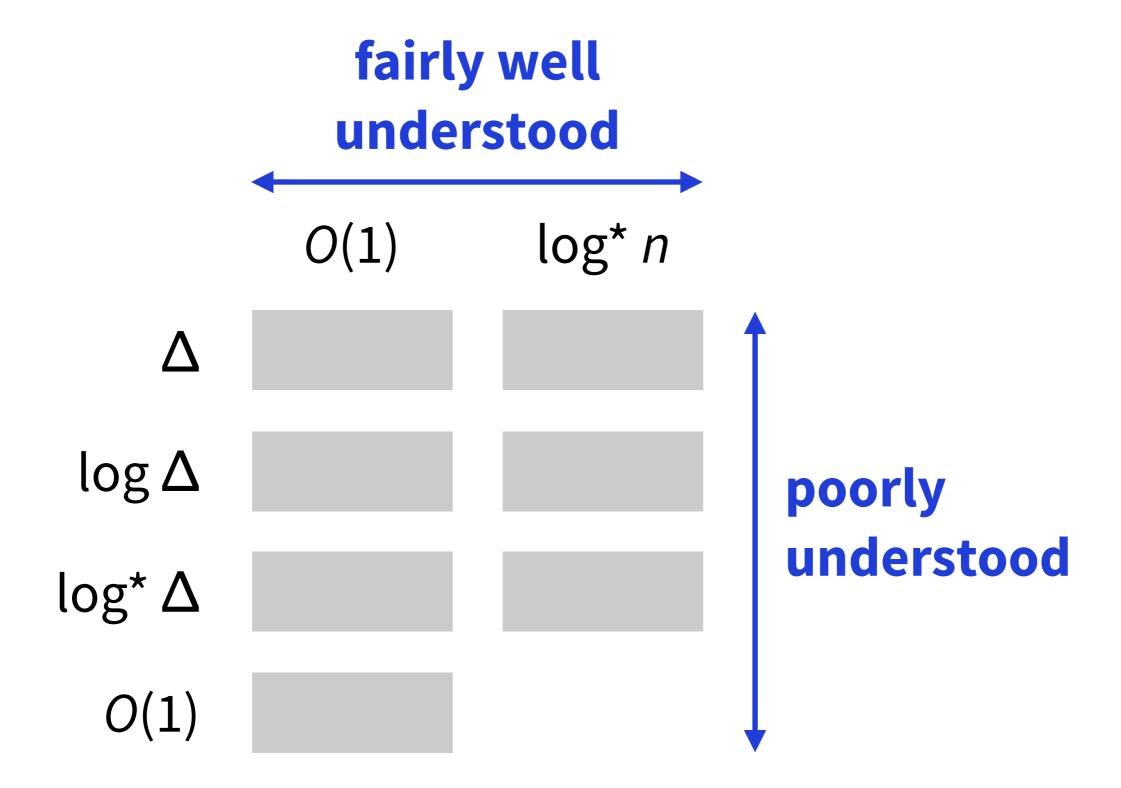
Typical state of the art



positive: $O(\Delta)$

exponential gap as a function of Δ — or much worse

negative: nothing



Example: LP approximation

- $O(\log \Delta)$: possible
 - Kuhn et al. (2004, 2006)
- $o(\log \Delta)$: not possible
 - Kuhn et al. (2004, 2006)

Example: Maximal matching

- $O(\Delta + \log^* n)$: possible
 - Panconesi & Rizzi (2001)
- $O(\Delta) + o(\log^* n)$: not possible
 - Linial (1992)
- $o(\Delta) + O(\log^* n)$: unknown

Example: Bipartite maximal matching

- $O(\Delta)$: trivial
 - Hańckowiak et al. (1998)
- $o(\Delta)$: unknown

Example: Bipartite maximal matching

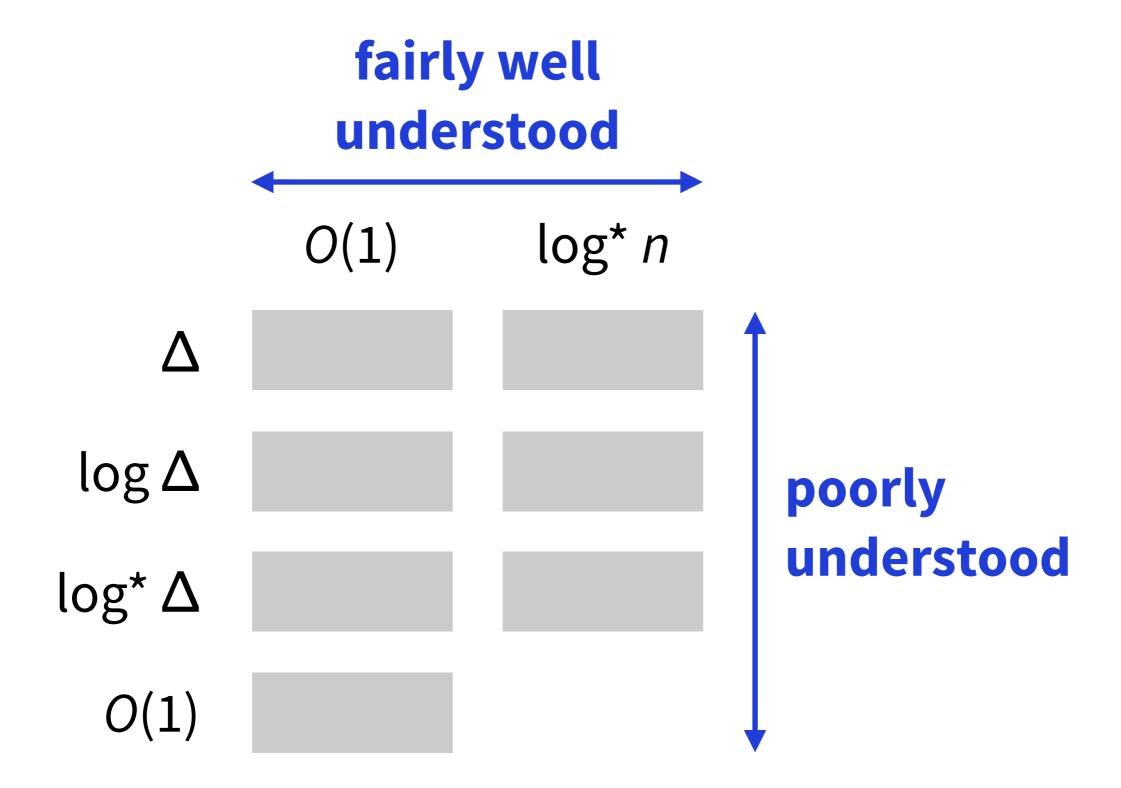
- $O(\Delta)$: trivial for Δ -regular graphs
 - Hańckowiak et al. (1998)
- O(1): unknown for Δ -regular graphs

Example: Semi-matching

- $O(\Delta^5)$: possible
 - Czygrinow et al. (2012)
- $o(\Delta)$: unknown

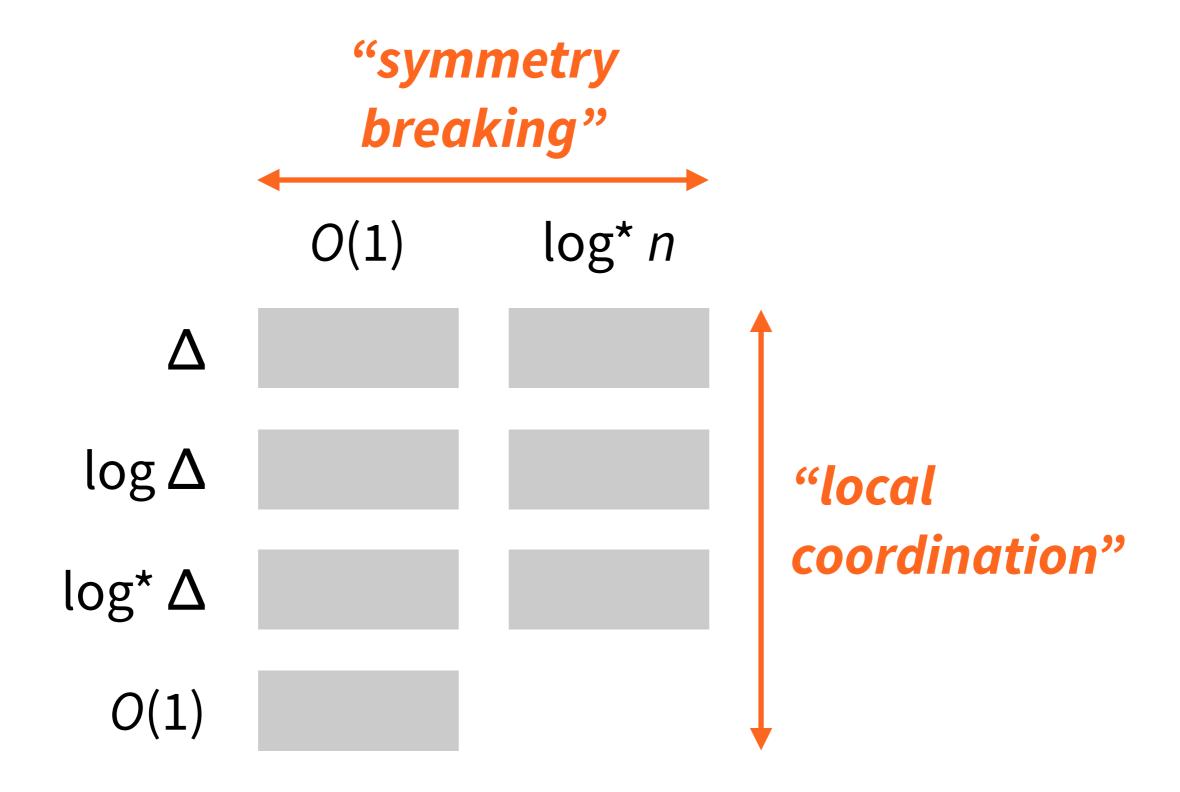
Example: Weak colouring

- $O(log* \Delta)$: possible (in odd-degree graphs)
 - Naor & Stockmeyer (1995)
- $o(\log^* \Delta)$: unknown



Orthogonal challenges?

- n: "symmetry breaking"
 - fairly well understood
 - Cole & Vishkin (1986), Linial (1992),
 Ramsey theory ...
- Δ: "local coordination"
 - poorly understood



Orthogonal challenges

- Example: maximal matching, $O(\Delta + \log^* n)$
- Restricted versions:
 - pure symmetry breaking, O(log* n)
 - pure local coordination, $O(\Delta)$

Orthogonal challenges

- Example: maximal matching, $O(\Delta + \log^* n)$
- Pure symmetry breaking:
 - input = cycle
 - no need for local coordination
 - O(log* n) is possible and tight

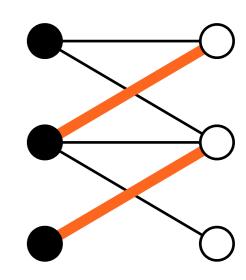
Orthogonal challenges

- Example: maximal matching, $O(\triangle + \log^* n)$
- Pure local coordination:
 - input = 2-coloured graph
 - no need for symmetry breaking
 - $O(\Delta)$ is possible is it tight?

Maximal matching in 2-coloured graphs

Trivial algorithm:

- black nodes send proposals to their neighbours, one by one
- white nodes accept the first proposal that they get



"Coordination" ≈ one by one traversal

Maximal matching in 2-coloured graphs

General case:

- upper bound: $O(\Delta)$
- lower bound: $\Omega(\log \Delta)$ Kuhn et al.

Regular graphs:

- upper bound: $O(\Delta)$
- lower bound: nothing!

Linear-in- Δ bounds

- Many combinatorial problems seem to require "local coordination", takes $O(\Delta)$ time?
- Lacking: linear-in-△ lower bounds
 - known for restricted algorithm classes (Kuhn & Wattenhofer 2006)

Good news

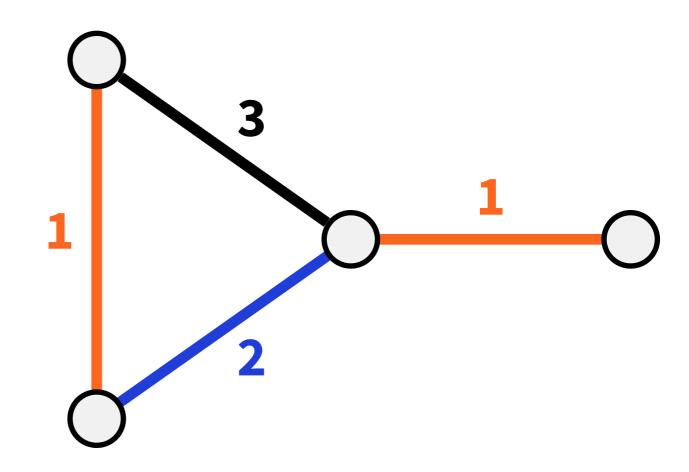
- We are finally making some progress!
- Key problem: maximal matching
- Start with a "toy model": edge colouring model

EC: edge colouring

No identifiers

No orientations

Edges coloured with $O(\Delta)$ colours



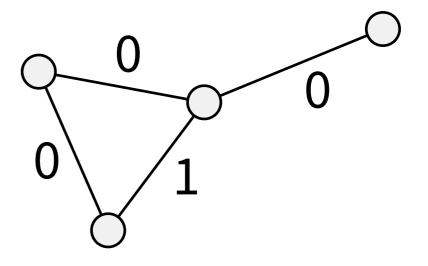
Recent progress

- Maximal matching in EC model
- $O(\Delta)$: trivial
 - greedily by colour classes
- $o(\Delta)$: not possible
 - PODC 2012

What about the LOCAL model?

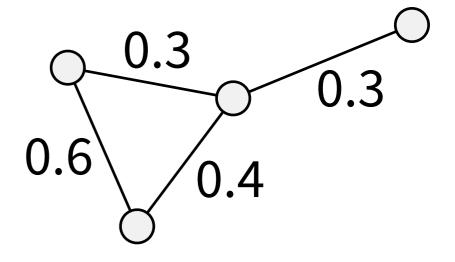
- Not yet there with maximal matchings...
- But we can prove lower bounds for maximal fractional matchings!

Matching



- Edges labelled with integers {0, 1}
- Sum of incident edges at most 1
- Maximal matching: cannot increase the value of any label

Fractional matching



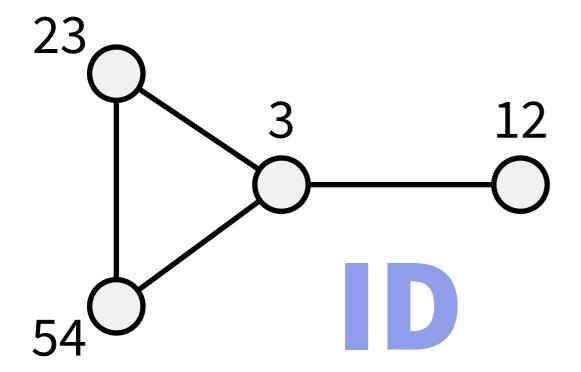
- Edges labelled with real numbers [0, 1]
- Sum of incident edges at most 1
- Maximal fractional matching: cannot increase the value of any label

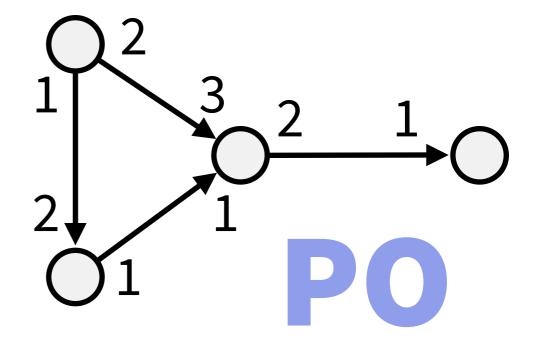
Maximal fractional matching

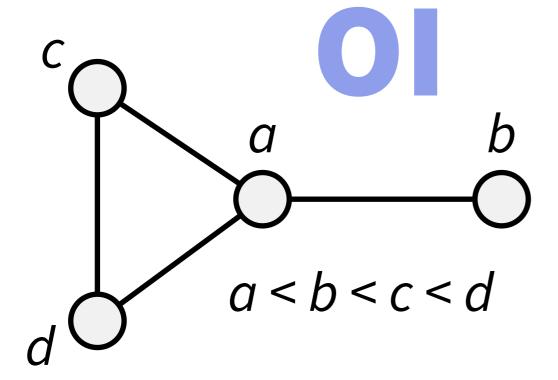
- Possible in time $O(\Delta)$
 - does not require symmetry breaking
 - d-regular graph: label all edges with 1/d
- Nontrivial part: graphs that are not regular...

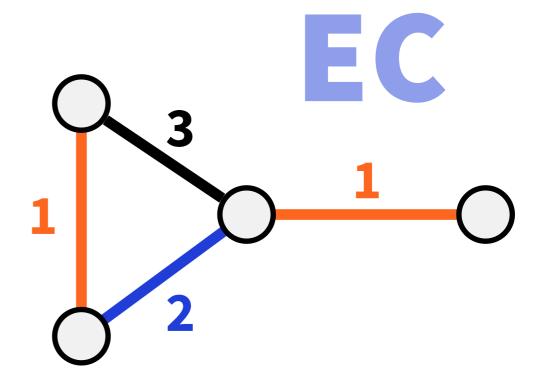
Recent progress

- Maximal fractional matching in LOCAL model
- $O(\Delta)$: possible
 - SPAA 2010
- $o(\Delta)$: not possible
 - PODC 2014









- Problems with $O(\Delta + \log^* n)$ algorithms:
 - maximal matching
 - maximal independent set
 - vertex colouring with Δ +1 colours
 - edge colouring with $2\Delta 1$ colours ...

- Problems with $O(\Delta + \log^* n)$ algorithms
- Problems with $O(\Delta)$ algorithms:
 - maximal fractional matching
 - bipartite maximal matching ...

- Problems with $O(\Delta + \log^* n)$ algorithms
- Problems with $O(\Delta)$ algorithms
- Some linear-in-∆ lower bounds:
 - maximal matchings, EC model
 - maximal fractional matchings, LOCAL model

- All these problems characterised as follows:
 - any partial solution can be completed
 - but completion may be unique
- "Completable but tight" problems
 - greedy algorithm works, but it may be constrained

• Conjecture: "completable but tight" problems cannot be solved in time $o(\Delta) + O(log* n)$

- Conjecture: "completable but tight" problems cannot be solved in time $o(\Delta) + O(log*n)$
- Wrong!

- Barenboim (PODC 2015):
 - *vertex colouring* with Δ +1 colours
 - can be solved in time $o(\Delta) + O(\log^* n)$

We have a separation!

- Barenboim (PODC 2015):
 - edge colouring with $2\Delta-1$ colours
 - possible in time $o(\Delta)$ in EC model
- PODC 2012:
 - maximal matching
 - not possible in time $o(\Delta)$ in EC model

- Separation for maximal independent set and (Δ +1)-vertex colouring in weak models
- Model: anonymous vertex-coloured graphs
- Lower bound: just take line graphs
- Upper bound: adapt Barenboim's idea ??

- What is the new conjecture?
- Which problems require linear-in- Δ rounds?
- $(\Delta+1)$ -colouring: *not*
- Greedy colouring: perhaps??
 - lower bounds: e.g. Gavoille et al. (2009)

- Linear-in-Δ lower bound for bipartite maximal matching
- Good: pure local coordination, no symmetry-breaking needed
- Needed: extend known techniques so that they tolerate 2-coloured inputs

- Poorly understood: optimisation problems
- Example: minimum vertex cover (VC)
 vs. maximal fractional matchings (MFM)
- Good: MFM → 2-approximation of VC
- Needed: 2-approximation of VC → MFM ???

- Reductions, conditional lower bounds!
 - hardness, completeness?
- Problems that are at least as hard as bipartite maximal matching
- Problems that are at most as hard as bipartite maximal matching

Summary

- Distributed time complexity, LOCAL model
- O(log* n): "symmetry breaking", OK
- $O(\Delta)$: "local coordination", poorly understood
- Next step: bipartite maximal matching