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Vertex cover problem

e Vertex cover C
for a graph G:

e Subset C of nodes
that “covers” all
edges of the graph

e Each edge has at least
one endpoint in C

e Can we find a small
vertex cover?



Vertex cover problem

e Classical NP-hard
optimisation problem

e Simple 2-approximation
algorithm: endpoints
of a maximal matching

e No polynomial-time
algorithm with
O approximation factor
1.999 known




Research question

e Distributed approximation
algorithms for vertex cover Q Q

e Find a small vertex cover in

any communication network

e Best possible approximation ratio

e As fast as possible: running time independent of n

o Weakest possible models:
no randomness, no unique node identifiers

e Let’s first define the models...



Distributed algorithms

« Communication graph G
G e Node = computer

 Edge = communication
link

« Computers exchange
messages and finally
decide whether they
are in vertex cover C

e “Local output”, O or 1



Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a valid vertex
cover in any graph G



Model 1:
Unique identifiers

Do—a

e The “standard model”

 Node identifiers
are a subset of

1, 2, ..., poly(n)

e Subset chosen
by adversary



Model 2:
Port-numbering model

e No unique identifiers

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary




Model 3:
Broadcast model

o No identifiers,
no port numbers

Send “A”]

e A nhode has to send
the same message
to each neighbour

[Send “A”

Receives: | * Anode does not know
. 2 x “A” which message was
Send “B o ) .
X 1 x“B B received from which

neighbour (multiset)



Deterministic distributed algorithms
for vertex cover

e Guaranteed approximation ratios?

e E.g., 2-approximation of minimum vertex cover =
at most 2 times as large as the smallest vertex cover

e Fast?
e Time = number of communication rounds
e N = number of nodes

e A =maximum degree

e In weak models of distributed computing?
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 1
Z
f(8) + polylog(n) - 7
Trivial
f(4) + O(log® n) .
algorithm
f(0) - :
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 1
f(4) + polylog(n) - \ 2
f(8) + O(log" n) Maximal matching |
(Panconesi & Rizzi 2001)
f(2) - )
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) e ™ 2 1
f(A) + polylog(n) Near-maximal —— 2 )
) edge packing
f(A) * O(log n) (Khuller et al. 1994) 2
f(b) S g
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) e ™ 2 1
f(A) + polylog(n) Deterministic ) )

LP rounding

f(8) + O(log™ n) (Kuhn et al. 2006) 2+¢ 2
f(A) ~ —r2 4 2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 2 1
f(A) + polylog(n) 2 2
Czygrinow et al. 2008
f(A) + O(log* n) | Lenzen & Wattenhofer 2008 | 2 + € 2
f(A) 2 2 | 2+g] 2 |2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 2 2 2 1
y
f(0) + polylog(n) | 2 (2 | 2 2
Trivial
f(A) + O(log* n) 2 2 2 +¢€ 2
(cycles)
f(A) 2~ 42 | 2+g| 2 |2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 2 2 2 1
f(A) + polylog(n) 2 2 2 2
f(A) + O(log* n) 2 2 2 +¢€ 2
f(A) 2 2 2 +€ 2 2 +€
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

~

Time lower | upper | lower | upper | lower | upper
4 )
O(n 2 ? .

") Anything |~
f(A) + polylog(n) | 2 ? here? Could we
A have 2?

A) + O(log™ n 2 ? 2 2+¢€

f(8) + O(log* n) ) / l

f(A) 2 ? 2 2+¢€ 2 2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 2 ? 2 2 p
f(A) + polylog(n) | 2 ? 2 2 DISC
2009
A) + O(log* n 2 ? 2 2
f(4) + O(log® n) /.
f(A) 2 ? 2 2 2
Broadcast Port Unique

model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
o(n) 2 2 |( h
-atest _/+ faster and\
f(A) + polylog(n) | 2 2 results || more general
£(B) + O(log* n) 9 9 5 > /solutlon herej
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

Time lower | upper | lower | upper | lower | upper
O(n) 2 2 2 2
. ; N
Let’s study
f(A) + polylog(n) 2 2 2 2 this case
) first...
f(A) + O(log* n) 2 2 2 2 /. Y
f(A) 2 2 2 2 2
Broadcast Port Unique
model numbering identifiers
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Vertex cover
in the port-numbering model

e Convenient to study a more general problem:
minimum-weight vertex cover

e More general problems
are sometimes : 5
easier to solve?

Notation:
w(v) = weight of v 6 3
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Edge packings and vertex covers

e Edge packing: weight y(e) > 0 for each edge e

o Packing constraint: y[v] < w(v) for each node v,
where y[v] = total weight of edges incident to v

4 )
edge packing
~ fractional
matching

(LP relaxation)
- .
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Edge packings and vertex covers

e Node v is saturated if y[v] = w(v)

o Total weight of edges incident to v is equal to w(v),
i.e., the packing constraint holds with equality

@ vlv] = w(v)
QO ylv] < w(v)
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Edge packings and vertex covers

e Edge e is saturated if
at least one endpoint of e is saturated

e Equivalently: edge weight y(e) can’t be increased

~
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Edge packings and vertex covers

« Maximal edge packing: all edges saturated
= none of the edge weights y(e) can be increased
— saturated nodes form a vertex cover

26



Edge packings and vertex covers

« Maximal edge packing: all edges saturated
< saturated nodes form a vertex cover

e ... and saturated nodes are 2-approximation of
minimum-weight vertex cover (Bar-Yehuda & Even 1981)

 How to find a maximal edge packing...?

e Phase I: “greedy but safe”, cf. Khuller et al. (1994),
Papadimitriou & Yannakakis (1993)

e Phase IlI: if phase | fails to saturate an edge e = {u, v},
we can break symmetry between u and v; exploit it!
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Finding a maximal edge packing:
phase |

e v[v] = total weight of edges incident to node v
e Residual capacity of node v: r(v) = w(v) - y[V]

e Saturated node: 1 1
r(v) =0
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Finding a maximal edge packing:
phase |

Start with a trivial
edge packing y(e) = 0
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Finding a maximal edge packing:
phase |

Each node v offers
r(v)/deg(v) units to
each incident edge
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Finding a maximal edge packing:
phase |

Each edge accepts

the smallest of the ' 5/2
2 offers it received , g
Q. 32 Q 3/2 6
9 6
5 1 g 3/2 3/2 6 6
9@—3/2%3/2%3—3/2—@
Increase y(e) 9 214 No 3/
by this amount
y of XS
e Safe, can’t violate 6 3
packing constraints 6 3
6 3/2
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Finding a maximal edge packing:
phase |

Update residuals...

0 2
1 5
O\ 1/2 = 3/2

1 g 3/2 3/2

15/2@—3/2%3/2%3—3/2—@
9

3/2 3/2 3/2

of hof

6 3
9/2 0
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Finding a maximal edge packing:
phase |

Update residuals,
discard saturated

nodes and edges... %
Jo
162312
15/2@—3/2—/d
? 3/2
of ®
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Finding a maximal edge packing:
phase |

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 1/6 O
1/2
Offers... 15/2 9 3/2
15/2@—3/2—/d
> 3n
of O
6
9/2



Finding a maximal edge packing:
phase |

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 176 O
1/2
Offers... 15/2 9 3/3
/
Increase 15/30_5 3 7Q
: 5/3
weights...
of O
6
9/2



Finding a maximal edge packing:
phase |

Update residuals,
discard saturated

nodes and edges, 1%/3
repeat... @ O 5
Offers... g 5/3
Increase 22/30_5/;’/3_/C{
weights...

X . of O
Update residuals... 6
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Finding a maximal edge packing:

phase |

Update residuals,
discard saturated
nodes and edges,

repeat... @
Offers...

Increase 22/30
weights...

Update residuals 6

and graph, etc. 13/3
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Finding a maximal edge packing:
phase |

We are making 1 2 4 8 16 32 64 128
some progress O—O0—CO0—CO0—0O0—CO0——C0—=—0--
towards finding 1 % g 3 186 ?é gg 16248
a maximal edge 1 1 2 4 8 16 32 64
packing... 0 0 1 2 4 8 16 32
. 1 1 2 4 8 16
But this is {1 2 4 8 16
|
too slow! 0 0 1 2 4 s
How to make 11112244
it faster?

38



Finding a maximal edge packing:

colouring trick

e Offer is a local minimum:

 Node will be saturated

e And all edges incident to it

will be saturated as well
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Residual capacity
was 8, will be 0

)




Finding a maximal edge packing:
colouring trick

o Offer is a local minimum: 4 3

 Node will be saturated

o Otherwise there is a neighbour
with a different offer: 5 2

e Interpret the offer
sequences as colours

e Nodes u and v have
different colours:
fu, v} is multicoloured

40



Finding a maximal edge packing:
colouring trick

» Progress guaranteed: 4

« On each iteration, for each node,
at least one incident edge becomes
saturated or multicoloured

e Such edges are be discarded
in phase I; maximum degree A
decreases by at least one

e Hence in A rounds all edges
are saturated or multicoloured
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Finding a maximal edge packing:

colouring trick

e Colours are sequences of
A offers (rational numbers)

e Assume that node weights
are integers 1, 2, ..., W

« Then offers are rationals
of the form g/ (A!)? with
qgef{l, 2, ..., WA!)*}

((2,2/3,116,1/12) [

42

A
((2,2/3,1/6,1/24) )




Finding a maximal edge packing:
colouring trick

e Colours are sequences of
A offers (rational numbers)

e Assume that node weights
are integers 1, 2, ..., W

« Then offers are rationals
of the form g/ (A!)? with

qgef{l, 2, ..., WA}
e k= (W(A)2)2 possible -
colours, replace with w
integers 1, 2, ..., k ( 2789 )
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Finding a maximal edge packing:
phase |l

e Proper k-colouring of the unsaturated subgraph

e Orient from lower to higher colour
e Partition in A forests Oﬁ‘@—>
e Use Cole-Vishkin (1986) style @\g
colour reduction algorithm O
o Use colour classes

to saturate edges 3 O\O,,Q
e O(A + log* W) rounds , C—yg@
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Finding a maximal edge packing:
summary

 Maximal edge packing and
2-approximation of vertex cover
in time O(A + log® W)

e W = maximum node weight
 Unweighted graphs: O :ig

running time simply O(4), 3 q

O—@—0<0O

independent of n 9
p ® .\MQ

o Everything can be implemented O g0

in the port-numbering model
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Vertex cover and set cover in
anonymous networks: summary

e 2-approximation of vertex cover in time O(A)
in the port-numbering model

e |dea: consider a more general problem,
minimum-weight vertex cover

e 2-approximation of vertex cover in time poly(A)
in the broadcast model?

e |dea: consider a more general problem,
minimum-weight set cover!
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Take-home messages

e Algorithms that we saw today are strictly local
e Running time independent of the number of nodes
e Output of a node depends only on its local neighbourhood

e Very efficient, can be used in arbitrarily large networks

e Deterministic, highly fault-tolerant

e There are non-trivial graph problems that
can be solved with strictly local algorithms!

e More: www.cs.helsinki.fi/jukka.suomela/local-survey
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