
Local algorithms

and max-min linear programs

Patrik Floréen,

Marja Hassinen,

Joel Kaasinen,

Petteri Kaski,

Topi Musto,

Jukka Suomela

HIIT,

University of Helsinki,

Finland

TU Braunschweig

11 September 2008

Local algorithms

Local algorithm: output of a node is a function of input

within its constant-radius neighbourhood

(Linial 1992; Naor and Stockmeyer 1995)

2 / 39

Local algorithms

Local algorithm: changes outside the local horizon

of a node do not affect its output

(Linial 1992; Naor and Stockmeyer 1995)

3 / 39

Local algorithms

Local algorithms are efficient:

◮ Space and time complexity is constant per node

◮ Distributed constant time (even in an infinite network)

. . . and fault-tolerant:

◮ Topology change only affects a constant-size part

(Naor and Stockmeyer 1995)

◮ Can be turned into self-stabilising algorithms

(Awerbuch and Sipser 1988; Awerbuch and Varghese 1991)

(In this presentation, we assume bounded-degree graphs)

4 / 39

Local algorithms

Applications beyond distributed systems:

◮ Simple linear-time centralised algorithm

◮ In some cases randomised, approximate

sublinear-time algorithms (Parnas and Ron 2007)

Consequences in theory of computing:

◮ Bounded-fan-in, constant-depth Boolean circuits: in NC0

◮ Insight into algorithmic value of information

(cf. Papadimitriou and Yannakakis 1991)

5 / 39

Local algorithms

Great, but do they exist? Fundamental hurdles:

1. Breaking the symmetry:

e.g., colouring a ring of identical nodes

2. Non-local problems:

e.g., constructing a spanning tree

Strong negative results are known:

◮ 3-colouring of n-cycle not possible,

even if unique node identifiers are given (Linial 1992)

◮ No constant-factor approximation of vertex cover, etc.

(Kuhn et al. 2004; Kuhn 2005)

6 / 39

Local algorithms

Side information

Many positive results are known,

if we assume some side information

(e.g., coordinates, clustering)
(Czyzowicz et al. 2008; Floréen et al. 2007; Hassinen et al. 2008;

Urrutia 2007; Wang and Li 2006; Wiese and Kranakis 2008; . . .)

Side information helps to break the symmetry

But what if we have no side information?

7 / 39

Local algorithms

Some previous positive results:

◮ Locally checkable labellings (Naor and Stockmeyer 1995)

◮ Dominating set

(Kuhn and Wattenhofer 2005; Lenzen et al. 2008)

◮ Packing and covering LPs

(Papadimitriou and Yannakakis 1993; Kuhn et al. 2006)

Present work:

◮ Max-min LPs (Floréen et al. 2008a,b,c,d)

8 / 39

Max-min linear program

Let A ≥ 0, ck ≥ 0

Objective:

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Generalisation of packing LP:

maximise c · x

subject to A x ≤ 1,

x ≥ 0

9 / 39

Max-min linear program

Let A ≥ 0, C ≥ 0

Equivalent formulation:

maximise ω

subject to A x ≤ 1,

C x ≥ ω1,

x ≥ 0

Applications: mixed packing and covering, linear equations

find x s.t. A x ≤ 1, find x s.t. A x = 1,

C x ≥ 1, x ≥ 0

x ≥ 0

10 / 39

Max-min linear program

Distributed setting:

◮ one node v ∈ V for each variable xv ,

one node i ∈ I for each constraint ai · x ≤ 1,

one node k ∈ K for each objective ck · x

◮ v ∈ V and i ∈ I adjacent if aiv > 0,

v ∈ V and k ∈ K adjacent if ckv > 0

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

11 / 39

Max-min linear program

Distributed setting:

◮ one node v ∈ V for each variable xv ,

one node i ∈ I for each constraint ai · x ≤ 1,

one node k ∈ K for each objective ck · x

◮ v ∈ V and i ∈ I adjacent if aiv > 0,

v ∈ V and k ∈ K adjacent if ckv > 0

Key parameters:

◮ ∆I = max. degree of i ∈ I

◮ ∆K = max. degree of k ∈ K

12 / 39

Example

Task: Data gathering in a sensor network

◮ circle = sensor

◮ square = relay

◮ edge = network connection

13 / 39

Example

Task: Maximise the minimum amount of data gathered from

each sensor

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

1

2

3

7

8

9

4

5

6

14 / 39

Example

Task: Maximise the minimum amount of data gathered from

each sensor; each relay has a limited battery capacity

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0
1

2

3

7

8

9

4

5

6

15 / 39

Example

Task: Maximise the minimum amount of data gathered from

each sensor; each relay has a limited battery capacity

An optimal solution:

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0

1

2

3

7

8

9

4

5

6

16 / 39

Example

Communication graph: G = (V ∪ I ∪ K , E)

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0

k ∈ K

i ∈ I

v ∈ V

17 / 39

Example

Communication graph: G = (V ∪ I ∪ K , E)

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0

k ∈ K

i ∈ I

v ∈ V

18 / 39

Example

Communication graph: G = (V ∪ I ∪ K , E)

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0

k ∈ K

i ∈ I

v ∈ V

19 / 39

Old results

“Safe algorithm”:

Node v chooses

xv = min
i : aiv >0

1

aiv |{u : aiu > 0}|

(Papadimitriou and Yannakakis 1993)

Factor ∆I approximation

Uses information only in radius 1 neighbourhood of v

A better approximation ratio with a larger radius?

20 / 39

New results, general case

The safe algorithm is factor ∆I approximation

Theorem

For any ǫ > 0, there is a local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K) + ǫ

Theorem

There is no local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K)

Degree of a constraint i ∈ I is at most ∆I

Degree of an objective k ∈ K is at most ∆K

21 / 39

New results, bounded growth

Assume bounded relative growth beyond radius R:

|B(v , r + 2)|

|B(v , r)|
≤ 1 + δ for all v ∈ V , r ≥ R

where B(v , r) = agents in radius r neighbourhood of v

Theorem

There is a local algorithm for max-min LPs

with approximation ratio 1 + 2δ + o(δ)

There is no local algorithm for max-min LPs

with approximation ratio 1 + δ/2

(assuming ∆I ≥ 3, ∆K ≥ 3, 0.0 < δ < 0.1)

22 / 39

Approximability, bounded growth

Step 1: Choose local constant-size subproblems

Step 3: Solve them optimally

Step 3: Take averages of local solutions, add some slack

23 / 39

Approximability, general case

Preliminary step 1:

Unfold the graph into an infinite tree

a

b

c

d

a

b c

c b
d

a
d

a

b c

c

a b
d

b a

c c

a
d

b
d

a

c

b

a

c

b

d

d

24 / 39

Approximability, general case

Preliminary step 2:

Apply a sequence of local transformations (and unfold again)

7→ 7→ 7→ 7→

25 / 39

Approximability, general case

It is enough to design a local approximation algorithm

for the following special case:

◮ Communication graph G is an (infinite) tree

◮ Degree of each constraint i ∈ I is exactly 2

◮ Degree of each objective k ∈ K is at least 2

◮ Each agent v ∈ V adjacent to at least one constraint

◮ Each agent v ∈ V adjacent to exactly one objective

◮ ckv ∈ {0, 1}

26 / 39

Approximability, general case

After the local transformations,

we have an infinite tree

with a fairly regular structure

In a centralised setting,

we could organise

the nodes into layers

Then we could design

an approximation algorithm. . .

27 / 39

Approximability, general case

“Switch off” every

Rth layer of objectives

28 / 39

Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)

29 / 39

Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)

30 / 39

Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)

Solve the LP for the “active” layers,

take averages

Factor R/(R − 1) approximation

31 / 39

Approximability, general case

We could solve the LP simply by

propagating information upwards

between a pair of “passive” layers

But we cannot choose the layers

by any local algorithm!

Two fundamentally different roles

for agents: “up” and “down”

How to choose the roles?

How to break the symmetry?

32 / 39

Approximability, general case

Trick: consider both possible roles

for each agent, “up” an “down”

Compute locally two candidate

solutions, one for each role

Take averages

Surprise: factor ∆I (1 − 1/∆K) + ǫ
approximation, best possible!

33 / 39

Approximability, general case

Some complications:

◮ several optimal solutions

◮ how to make sure that

the local choices are

“compatible” with each other?

Key idea:

◮ “down” nodes choose

as large values as possible

◮ “up” nodes choose

as small values as possible

34 / 39

Inapproximability

Regular high-girth graph or regular tree?

35 / 39

Inapproximability

Locally indistinguishable

36 / 39

Inapproximability

Optimum ≤ 2/3 vs. optimum ≥ 1

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1 1 1 1 1 1 1 1

37 / 39

Inapproximability

Approx. ratio ≥ 1/(2/3) = 3 (1 − 1/2) = ∆I (1 − 1/∆K)

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1

0 0

1 1 1 1 1 1 1 1

38 / 39

Summary

Max-min linear programs: given A, ck ≥ 0,

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Local algorithms: output of a node is a function of input

within its constant-radius neighbourhood

Main result: tight characterisation of local approximability

http://www.hiit.fi/ada/geru — jukka.suomela@cs.helsinki.fi

39 / 39

References (1)

B. Awerbuch and M. Sipser (1998). Dynamic networks are as fast as

static networks. FOCS 1988. [DOI]

B. Awerbuch and G. Varghese (1991). Distributed program checking:

a paradigm for building self-stabilizing distributed protocols.

FOCS 1991. [DOI]

J. Czyzowicz, S. Dobrev, T. Fevens, H. González-Aguilar, E. Kranakis,

J. Opatrny, and J. Urrutia (2008). Local algorithms for dominating and

connected dominating sets of unit disk graphs with location aware

nodes. LATIN 2008. [DOI]

P. Floréen, P. Kaski, T. Musto, and J. Suomela (2007). Local

approximation algorithms for scheduling problems in sensor networks.

ALGOSENSORS 2007. [DOI]

P. Floréen, P. Kaski, T. Musto, and J. Suomela (2008a). Approximating

max-min linear programs with local algorithms. IPDPS 2008. [DOI]

http://dx.doi.org/10.1109/SFCS.1988.21938
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1007/978-3-540-78773-0_14
http://dx.doi.org/10.1007/978-3-540-77871-4_10
http://dx.doi.org/10.1109/IPDPS.2008.4536235

References (2)

P. Floréen, M. Hassinen, P. Kaski, and J. Suomela (2008b). Local

approximation algorithms for a class of 0/1 max-min linear programs.

Manuscript, arXiv:0806.0282 [cs.DC].

P. Floréen, M. Hassinen, P. Kaski, and J. Suomela (2008c).

Tight local approximation results for max-min linear programs.

ALGOSENSORS 2008.

P. Floréen, J. Kaasinen, P. Kaski, and J. Suomela (2008d). An optimal

local approximation algorithm for max-min linear programs.

Manuscript, arXiv:0809.1489 [cs.DC].

M. Hassinen, V. Polishchuk, and J. Suomela (2008). Local

3-approximation algorithms for weighted dominating set and vertex

cover in quasi unit-disk graphs. LOCALGOS 2008.

F. Kuhn (2005). The Price of Locality: Exploring the Complexity of

Distributed Coordination Primitives. PhD thesis.

References (3)

F. Kuhn and R. Wattenhofer (2005). Constant-time distributed dominating

set approximation. Distributed Computing, 17(4):303–310. [DOI]

F. Kuhn, T. Moscibroda, and R. Wattenhofer (2004).

What cannot be computed locally! PODC 2004. [DOI]

F. Kuhn, T. Moscibroda, and R. Wattenhofer (2006).

The price of being near-sighted. SODA 2006. [DOI]

C. Lenzen, Y. A. Oswald, and R. Wattenhofer (2008).

What can be approximated locally? SPAA 2008.

N. Linial (1992). Locality in distributed graph algorithms.

SIAM Journal on Computing, 21(1):193–201. [DOI]

M. Naor and L. Stockmeyer (1995). What can be computed locally?

SIAM Journal on Computing, 24(6):1259–1277. [DOI]

http://dx.doi.org/10.1007/s00446-004-0112-5
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/S0097539793254571

References (4)

C. H. Papadimitriou and M. Yannakakis (1991). On the value of

information in distributed decision-making. PODC 1991. [DOI]

C. H. Papadimitriou and M. Yannakakis (1993).

Linear programming without the matrix. STOC 1993. [DOI]

M. Parnas and D. Ron (2007). Approximating the minimum vertex cover

in sublinear time and a connection to distributed algorithms.

Theoretical Computer Science, 381(1–3):183–196. [DOI]

J. Urrutia (2007). Local solutions for global problems in wireless

networks. Journal of Discrete Algorithms, 5(3):395–407. [DOI]

Y. Wang and X.-Y. Li (2006). Localized construction of bounded degree

and planar spanner for wireless ad hoc networks.

Mobile Networks and Applications, 11(2):161–175. [DOI]

A. Wiese and E. Kranakis (2008). Local PTAS for independent set and

vertex cover in location aware unit disk graphs. DCOSS 2008. [DOI]

http://dx.doi.org/10.1145/112600.112606
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1016/j.tcs.2007.04.040
http://dx.doi.org/10.1016/j.jda.2006.05.004
http://dx.doi.org/10.1007/s11036-006-4469-5
http://dx.doi.org/10.1007/978-3-540-69170-9_28

	Cover page
	Local algorithms
	Max-min linear program
	Example
	Old results
	New results
	Approximability
	Inapproximability
	Summary
	Appendix
	References

