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Local algorithms

Local algorithm: output of a node is a function of input

within its constant-radius neighbourhood

(Linial 1992; Naor and Stockmeyer 1995)
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Local algorithms

Local algorithm: changes outside the local horizon

of a node do not affect its output

(Linial 1992; Naor and Stockmeyer 1995)
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Local algorithms

Local algorithms are efficient:

◮ Space and time complexity is constant per node

◮ Distributed constant time (even in an infinite network)

. . . and fault-tolerant:

◮ Topology change only affects a constant-size part

(Naor and Stockmeyer 1995)

◮ Can be turned into self-stabilising algorithms

(Awerbuch and Sipser 1988; Awerbuch and Varghese 1991)

(In this presentation, we assume bounded-degree graphs)
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Local algorithms

Applications beyond distributed systems:

◮ Simple linear-time centralised algorithm

◮ In some cases randomised, approximate

sublinear-time algorithms (Parnas and Ron 2007)

Consequences in theory of computing:

◮ Bounded-fan-in, constant-depth Boolean circuits: in NC0

◮ Insight into algorithmic value of information

(cf. Papadimitriou and Yannakakis 1991)
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Local algorithms

Great, but do they exist? Fundamental hurdles:

1. Breaking the symmetry:

e.g., colouring a ring of identical nodes

2. Non-local problems:

e.g., constructing a spanning tree

Strong negative results are known:

◮ 3-colouring of n-cycle not possible,

even if unique node identifiers are given (Linial 1992)

◮ No constant-factor approximation of vertex cover, etc.

(Kuhn et al. 2004; Kuhn 2005)
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Local algorithms

Side information

Many positive results are known,

if we assume some side information

(e.g., coordinates, clustering)
(Czyzowicz et al. 2008; Floréen et al. 2007; Hassinen et al. 2008;

Urrutia 2007; Wang and Li 2006; Wiese and Kranakis 2008; . . . )

Side information helps to break the symmetry

But what if we have no side information?
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Local algorithms

Some previous positive results:

◮ Locally checkable labellings (Naor and Stockmeyer 1995)

◮ Dominating set

(Kuhn and Wattenhofer 2005; Lenzen et al. 2008)

◮ Packing and covering LPs

(Papadimitriou and Yannakakis 1993; Kuhn et al. 2006)

Present work:

◮ Max-min LPs (Floréen et al. 2008a,b,c,d)
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Max-min linear program

Let A ≥ 0, ck ≥ 0

Objective:

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Generalisation of packing LP:

maximise c · x

subject to A x ≤ 1,

x ≥ 0
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Max-min linear program

Let A ≥ 0, C ≥ 0

Equivalent formulation:

maximise ω

subject to A x ≤ 1,

C x ≥ ω1,

x ≥ 0

Applications: mixed packing and covering, linear equations

find x s.t. A x ≤ 1, find x s.t. A x = 1,

C x ≥ 1, x ≥ 0

x ≥ 0
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Max-min linear program

Distributed setting:

◮ one node v ∈ V for each variable xv ,

one node i ∈ I for each constraint ai · x ≤ 1,

one node k ∈ K for each objective ck · x

◮ v ∈ V and i ∈ I adjacent if aiv > 0,

v ∈ V and k ∈ K adjacent if ckv > 0

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0
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Max-min linear program

Distributed setting:

◮ one node v ∈ V for each variable xv ,

one node i ∈ I for each constraint ai · x ≤ 1,

one node k ∈ K for each objective ck · x

◮ v ∈ V and i ∈ I adjacent if aiv > 0,

v ∈ V and k ∈ K adjacent if ckv > 0

Key parameters:

◮ ∆I = max. degree of i ∈ I

◮ ∆K = max. degree of k ∈ K
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Example

Task: Data gathering in a sensor network

◮ circle = sensor

◮ square = relay

◮ edge = network connection
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Example

Task: Maximise the minimum amount of data gathered from

each sensor

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}
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Example

Task: Maximise the minimum amount of data gathered from

each sensor; each relay has a limited battery capacity

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0
1
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Example

Task: Maximise the minimum amount of data gathered from

each sensor; each relay has a limited battery capacity

An optimal solution:

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0
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Example

Communication graph: G = (V ∪ I ∪ K , E)

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0

k ∈ K

i ∈ I

v ∈ V
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Example

Communication graph: G = (V ∪ I ∪ K , E)

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,
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v ∈ V

19 / 39



Old results

“Safe algorithm”:

Node v chooses

xv = min
i : aiv >0

1

aiv |{u : aiu > 0}|

(Papadimitriou and Yannakakis 1993)

Factor ∆I approximation

Uses information only in radius 1 neighbourhood of v

A better approximation ratio with a larger radius?
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New results, general case

The safe algorithm is factor ∆I approximation

Theorem

For any ǫ > 0, there is a local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K ) + ǫ

Theorem

There is no local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K )

Degree of a constraint i ∈ I is at most ∆I

Degree of an objective k ∈ K is at most ∆K
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New results, bounded growth

Assume bounded relative growth beyond radius R:

|B(v , r + 2)|

|B(v , r)|
≤ 1 + δ for all v ∈ V , r ≥ R

where B(v , r) = agents in radius r neighbourhood of v

Theorem

There is a local algorithm for max-min LPs

with approximation ratio 1 + 2δ + o(δ)

There is no local algorithm for max-min LPs

with approximation ratio 1 + δ/2

(assuming ∆I ≥ 3, ∆K ≥ 3, 0.0 < δ < 0.1)
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Approximability, bounded growth

Step 1: Choose local constant-size subproblems

Step 3: Solve them optimally

Step 3: Take averages of local solutions, add some slack
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Approximability, general case

Preliminary step 1:

Unfold the graph into an infinite tree
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Approximability, general case

Preliminary step 2:

Apply a sequence of local transformations (and unfold again)

7→ 7→ 7→ 7→
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Approximability, general case

It is enough to design a local approximation algorithm

for the following special case:

◮ Communication graph G is an (infinite) tree

◮ Degree of each constraint i ∈ I is exactly 2

◮ Degree of each objective k ∈ K is at least 2

◮ Each agent v ∈ V adjacent to at least one constraint

◮ Each agent v ∈ V adjacent to exactly one objective

◮ ckv ∈ {0, 1}
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Approximability, general case

After the local transformations,

we have an infinite tree

with a fairly regular structure

In a centralised setting,

we could organise

the nodes into layers

Then we could design

an approximation algorithm. . .
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Approximability, general case

“Switch off” every

Rth layer of objectives

28 / 39



Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)
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Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)

30 / 39



Approximability, general case

“Switch off” every

Rth layer of objectives

Consider all possible locations

(shifting strategy)

Solve the LP for the “active” layers,

take averages

Factor R/(R − 1) approximation
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Approximability, general case

We could solve the LP simply by

propagating information upwards

between a pair of “passive” layers

But we cannot choose the layers

by any local algorithm!

Two fundamentally different roles

for agents: “up” and “down”

How to choose the roles?

How to break the symmetry?
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Approximability, general case

Trick: consider both possible roles

for each agent, “up” an “down”

Compute locally two candidate

solutions, one for each role

Take averages

Surprise: factor ∆I (1 − 1/∆K ) + ǫ
approximation, best possible!
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Approximability, general case

Some complications:

◮ several optimal solutions

◮ how to make sure that

the local choices are

“compatible” with each other?

Key idea:

◮ “down” nodes choose

as large values as possible

◮ “up” nodes choose

as small values as possible
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Inapproximability

Regular high-girth graph or regular tree?

35 / 39



Inapproximability

Locally indistinguishable
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Inapproximability

Optimum ≤ 2/3 vs. optimum ≥ 1
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Inapproximability

Approx. ratio ≥ 1/(2/3) = 3 (1 − 1/2) = ∆I (1 − 1/∆K )
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Summary

Max-min linear programs: given A, ck ≥ 0,

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Local algorithms: output of a node is a function of input

within its constant-radius neighbourhood

Main result: tight characterisation of local approximability

http://www.hiit.fi/ada/geru — jukka.suomela@cs.helsinki.fi
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