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Today: can we automate 
the study of distributed 
computing?
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Toy example:
Locally checkable 
problems in cycles
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Setting
•Computer network: cycle of n computers
• globally consistent orientation
• each node has one “successor”
and one “predecessor”
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Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
• synchronous communication rounds
• time = number of rounds until
all nodes stop
• unbounded message size
• unlimited local computation
• unique identifiers



Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define 
with local constraints
• finite number of output labels
• relation that tells which
label sequences are valid



Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more
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•maximal = cannot greedily add more

•Valid if you only see these:
001, 010, 100, 101



Local problems

•Valid if you only see these:
001, 010, 100, 101

Problem
specification



Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set:  001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

All possible
output labelings

in a window
of size k
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Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

Polynomial time
(in the size
of problem
description)



How?
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101 This graph
is all that
we need!
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independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Algorithm:
Constant output
(e.g. here all-0)
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solvable
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Proof: No self-loop
→ any solution breaks symmetry everywhere
→ can be used to find 3-coloring
→ not possible in o(log* n) rounds
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Self-returning
walk of length k
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polynomial time

(how?)



maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds



maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Algorithm: ???

solvable in
O(log* n) rounds





Find markers 
separated by

≥ k0 hops
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Algorithm:
• split in blocks of length ≥ k0
• use the flexible configuration

at each block boundary
• fill in between boundaries by 

following a self-returning walk

solvable in
O(log* n) rounds
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101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds

Proof: Not flexible → must use
the same non-flexible configuration
at least twice far from each other;
not compatible for all distances
→ global coordination needed
→ not possible in o(n) rounds
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Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)



Can we generalize
beyond directed cycles?
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solution ≈
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a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions 
(efficiently)
decidable

Many questions 
undecidable



Undecidable
≠

hopeless
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Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

Proof idea: Coloring ≈ locally unique identifiers.
If A fails with such fake identifiers, it also fails
in some small graph with some real identifiers.
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Finite computation for
a given candidate B:
no worries about
the halting problem



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Undecidability:
don’t know when to stop if
fast algorithms don’t exist



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Computational complexity:
typically doubly-exponential in k
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Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set
• represent “candidate B is good for this value of k”
as a Boolean formula and use modern SAT solvers
to find such a B



Sometimes doable!
•Example: 4-coloring in grids
•Computers were much faster than human 
beings in figuring out that this is solvable in 
O(log* n) rounds
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Grids

solution ≈
execution history of
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Many questions 
(efficiently)
decidable

Many questions 
undecidable

(but there is hope!)



Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Bad news apply to
any graph family that
contains large grids



Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

What is here
between paths 

and grids?



Big picture:
meta-computational
questions and
algorithms synthesis



Meta questions
•Designing algorithms that design 
algorithms?
•Studying the computational complexity of 
studying computational complexity?
•Using computation (in practice) to
understand computation (in theory)?
…



Verification & synthesis
•Algorithm verification:
• given problem P and algorithm A
• does A solve P?

•Algorithm synthesis:
• given problem P
• find an algorithm A that solves P?



Verification & synthesis
•Algorithm verification often hard
• recall: halting problem

•Algorithm synthesis can be easier!
• verification must handle arbitrary algorithms
• synthesis can produce “nice” algorithms



Conclusions



Take-home messages
•Algorithm design can be made systematic 
and mechanical, even computers can do it!
•we need the right representations for
computational problems & algorithms
• this is not machine learning — but is this AI?

•Key concepts:
•meta-computational problems
• algorithm verification vs. algorithm synthesis


