Median Filtering
Is Equivalent
to Sorting

— I Y

Jukka Suomela - Aalto University
TU Berlin - 6 August 2014




Median filter

input: n elements

window size: k
output: n—-k+1 medians

a.k.a. sliding window median,
moving median, running median,
rolling median, median smoothing



Median filter

« In numerous scientific computing systems:

e R:“runmed”

« Mathematica: “MedianFilter”

« Matlab: “medfiltl”

« Octave: “medfiltl” (signal package)

e SciPy: “medfiltl” (scipy.signal module)



Median filter

« In numerous scientific computing systems:

« R, Mathematica, Matlab, Octave, SciPy ...

e 2D version in image processing:

« Photoshop: “Median” filter
« Gimp: “Despeckle” filter



original

corrupted
1.O_I | | | I_
moving I |
average 0.5 MV\/W
O'O_l | | | L
1.O—I | | | I_

moving I |
median 0> W
0.0




n: input size
k: window size

Prior work

e Trivial:

» compute each median separately
e O(nk)

e “Streaming approach”:

» maintain a sliding window
» O(nlog k)



n: input size
k: window size

Prior work

o “Streaming approach”

 Sliding window data structure,
supports operations:

e “find median”
e “remove oldest and add new element”



n: input size
k: window size

Prior work

 Sliding window data structures
for B-bit integers:

o histogram with 2° buckets

» with linear scanning: O(n2°)

 with binary trees: O(nB)

 with van Emde Boas trees: O(n log B)



n: input size
k: window size

Prior work

o General sliding window data structures:
» maxheap-minheap pair: O(n log k)
o binary search trees: O(n log k)
o finger trees: O(n log k)
 doubly-linked lists: O(nk)
« sorted arrays: O(nk)



n: input size
k: window size

Prior work

« Maxheap-minheap pair

« Astola-Campbell (1989)
Juhola et al. (1991)
Hardle-Steiger (1995) ...

e Fast in practice

e Fast in theory, O(n log k) comparisons



n: input size
k: window size

Lower bounds

« For comparison-based algorithms:
O(n log k) is optimal

« Juhola et al. (1991)
Krizanc et al. (2005) ...

o Reduction from sorting



n: input size
k: window size

State of the art

e O(n log k) comparisons is optimal
e known since 1990s

» nothing more to do here,
case closed, problem solved



n: input size
k: window size

State of the art

e O(nlog k) comparisons is optimal

« But we also know that O(n log n) comparisons
is optimal for sorting in the worst case,
yet this is not the full story!

» integer sorting, adaptive sorting,
cache-efficient sorting, GPU sorting ...



n: input size
k: window size

State of the art

« And what about implementations...
e R: =0(n log k)
« Mathematica: = O(nk)
« Matlab: = O(nk)
. why?!
« Octave: = O(nk) |
, N didn’t we do better
+ SciPy: = O(nk) already in 1980s?



Key idea

e Prior work:

« “median filtering is as hard as sorting”

e Could we prove a matching upper bound:

» “median filtering is as easy as sorting” 77



Key idea

e If we could show that:

« “median filtering is equivalent to sorting”

« Then we could apply everything that
we know about sorting here!

» adaptive sorting > adaptive median filter
o integer sorting - integer median filter ...



Key idea

e If we could show that:

« “median filtering is equivalent to sorting”

« Then we could apply everything that
we know about sorting here!

» all scientific computing packages know
how to sort efficiently



Sorting-based
lower bound

» Piecewise sorting: sort n/k blocks of size k

» with comparison sort: O(n log k) optimal




Sorting-based
lower bound

712]5|1/4/319/6/8| padwith teo

-[1[4[3[+[+]-]-[9]6[8[+[+

median filter |

111/1/3/4/4|3]9

6819




n: input size

SOrting'based k: window size
lower bound

e Piecewise sorting: sort n/k blocks of size k
» with comparison sort: O(n log k) optimal
e Can be solved with O(1) median filter
operations

» and some preprocessing & postprocessing



n: input size

Sorting'based k: window size
median filter

» Piecewise sorting: sort n/k blocks of size k

e Prior work:

» median filter = as hard as piecewise sorting

o This work:

» median filter = as easy as piecewise sorting



Sorting-based
median filter

» High-level idea:
» preprocessing = piecewise sorting
» median filtering now possible in linear time!

o Simple and efficient

» works very well also in practice



Sorting-based
median filter

e Prior work:

» median filtering =~ data structure problem
» how to maintain sliding window efficiently?

e This work:

» median filtering = algorithm problem
« how to preprocess data?



Sorting-based

median filter

« How does piecewise sorting help?
We only know one median per block...

9(12(4]|1(6]|5
112/4/6/9|0

HE

? ]

7
38

input
sorted blocks

output



Sorting-based
median filter

« Basic idea: maintain sorted doubly-linked lists
for each block




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

e Sliding window = two sorted linked lists




Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)

=
=



Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)

=
=



Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)

9 1Z214]11)|6 5 0] 3 &8 [
O-1] 2 [4116] 19 @ 0] 2 [3] /] 8
T T



Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)

» A=



Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)

=» U1



Sorting-based
median filter

o Maintain “median pointers” for each list
(one of these is the median)




Sorting-based
median filter

e Median pointers:

o straightforward in O(1) time per element
o cf. merge sort

o Sorted linked lists:

e how to insert & delete in O(1) time?



Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it




Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it

? 21416 51101 (3] 18]
T 1T 71
0»1*2»4»6\ 9 gD C@ O3 § (118 gD




Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it

N
A
N
o
U
o
o
CO
~

Al — (O

N
SN
!
A0
O
»Q
e
0N

> U1
Y
O
»O




Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it

N

o

N
(o)
(8|
o
w
oo
~

Al — (O

NO
=
> O)
O
Ne
o
;
W
;
A U1
—
09
Ne




Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it

=t — /O

MO [— | =




Sorting-based
median filter

o Deletions are easy if we know what to delete:
start with a sorted list + pointers to it

21 14][1]]6 5/ 0] (3] (8|7

(_>1

) 46 90 ofoH3H5HTH8RO

— — — WO




Sorting-based
median filter

e Asymmetry:
» deletions from sorted linked lists easy
» insertions to sorted linked lists hard

» Reverse time!

» insertions become deletions, easy



Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list




Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list




Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list




Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list

O
NO
D
b
(@)
(6) |
o

—
1—— W

7
| b
NO
S
v
O
O
»O
¥
AQ
G




Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list

0 [3][8][f
— =
3 S [ 3




Sorting-based
median filter

« Reverse time: insertions become deletions,
easy to do if we start with a sorted list

L0387
— =
319 [7]|8




Sorting-based
median filter

» Reverse time

« How does this help?

e insertions become deletions, nice
 deletions become insertions, bad

o Solution: reverse time again



Sorting-based

median filter

» Reverse time again:
insert = undo deletion

9

2

4

1

6

1

2

4

6

9




Sorting-based
median filter

» Reverse time again:
insert = undo deletion

J1112] (4]11] (6 5

o-1H2H4aH6] 9 ¢ Q0




Sorting-based
median filter

» Reverse time again:
insert = undo deletion

J0 1 Z214]11] (6 5

Q»]\_Zfl*6\9<; O+ 0

1—— W




Sorting-based
median filter

» Reverse time again:
insert = undo deletion




Sorting-based
median filter

» Reverse time again:
insert = undo deletion




Sorting-based
median filter

» Reverse time again:
insert = undo deletion




Sorting-based
median filter

» Shrinking list: start with a sorted list

» process one element =one deletion

» Growing list: start with a sorted list

o first delete each elementin reverse order
« process one element =undo one deletion



Undo deletions from
doubly-linked lists

o Knuth (2000): “dancing links”

e Delete: prev|next|/]] « prev|/
next[prev|i]] < next[/

e Undo: prev|next[/]] «i
next|prevl|i]] < i




Sorting-based
median filter

« Preprocessing: piecewise sorting

o Sliding window = sorted doubly-linked lists
e shrinking list: easy
» growing list: reverse time twice

e insert =undo deletion,
easy with dancing links



Sorting-based
median filter

« Optimal algorithm for any input distribution,
for almost any model of computing

» just use optimal sorting algorithm
for this setting

 then O(n) time postprocessing suffices

« Matching lower bound



Sorting-based
median filter

e Easy to implement

e Very fast



def create_array(n):

return [None] * n def undelete(self, 1i):
self.next[self.prev[i]] =
def sort_block(alpha): self.prev[self.next[i]] =
pairs = [(alpha[i], i) for i in range(len(alpha))] if self.is_small(di):
return [i for v,i in sorted(pairs)] self.m = self.prev[self.m]
class Block: def advance(self):
def __init__(self, h, alpha): self.m = self.next[self.m]
self.k = len(alpha) self.s += 1
self.alpha = alpha
self.pi = sort_block(alpha) def at_end(self):
self.prev = create_array(self.k + 1) return self.m == self.tail
self.next = create_array(self.k + 1)
self.tail = self.k def peek(self):
self.init_links() return float('Inf') if self.at_end() \
self.m = self.pil[h] else self.alpha[self.m]
self.s = h
def get_pair(self, 1i):
def init_links(self): return (self.alpha[i], 1)
p = self.tail
for i in range(self.k): def is_small(self, 1i):
qg = self.pi[i] return self.at_end() or \
self.next[p] = q self.get_pair(i) < self.get_pair(self.m)
self.prev[q] = p
P =q def sort_median(h, b, x):
self.next[p] = self.tail k =2 *xh+1
self.prev[self.tail] = p B = Block(h, x[0:k])
y = [1]
def unwind(self): y.append(B.peek())
for i in range(self.k-1, -1, -1): for j in range(1, b):
self.next[self.prev[i]] = self.next[i] A =8B
self.prev[self.next[i]] = self.prev[i] B = Block(h, x[j*xk:(j+1)xk])
self.m = self.tail B.unwind()
self.s = 0 for i in range(k):
A.delete(d)
def delete(self, 1i): B.undelete (i)
self.next[self.prev[i]] = self.next[1i] if A.s + B.s < h:
self.prev[self.next[i]] = self.prev[i] if A.peek() <= B.peek():
if self.is_small(i): A.advance()
self.s -= 1 else:
else: B.advance()
if self.m == 1: y.append(min(A.peek(), B.peek()))
self.m = self.next[self.m] return y

if self.s > 0O:
self.m = self.prev[self.m]

setfs =1 complete Python implementation



10°

10% |

time (seconds)

1077

bh = 10°

half-window size h

T
+—+ Mathematica O—0O SortMedian.py
——  SciPy s~ TreeMedian
—— Matlab #—= R, Turlach
0—0 R, Stuetzle m—u HeapMedian
—0 Octave e—o SortMedian
V— MoveMedian
()
O
O\ —0
// ,/
-
—
\/ 4 :'
A A L | A |
10° 10* 107 10° 10*




200
= 150
-
Q
©
%
- 100
£

50

bh = 10°, all generators

B—8 HeapMedian
&0 SortMedian

10" 10* 102

10° 10*

half~-window size h

10°

10°

107

10°



Conclusions

» Median filtering = piecewise sorting
e In theory and in practice

e arXiv:1406.1717




