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LOCAL model

e Input: simple undirected graph G

e communication network

e nodes labelled with
unique O(log n)-bit
identifiers
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LOCAL model

 Input: simple undirected graph G

e Output: each node v produces a local output

» graph colouring: colour of node v
o vertex cover: 1ifvisinthe cover

» matching: with whom v is matched



LOCAL model

 Nodes exchange messages with each other,
update local states

e Synchronous communication rounds

 Arbitrarily large messages



LOCAL model

e Time = number of communication rounds

» until all nodes stop and
produce their local outputs



LOCAL model

e Time = number of communication rounds

« Time =distance:

e int communication rounds,
all nodes can learn everything
in their radius-t neighbourhoods
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LOCAL model

o Everything trivial in time diam(G)

 all nodes see whole G,
can compute any function of G

e What can be solved much faster?



Distributed
time complexity

« Smallest t such that the problem
can be solved in time t



Distributed
time complexity

e n = number of nodes

« A =maximum degree
o A <N

 Time complexity t = t(n, A)
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O(1) t = O(A + log* n)
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Landscape

Weak colouring
(odd-degree graphs)



Landscape

Dominating sets
(planar graphs)



Landscape

log n n

our focus today
n>>A




Typical state of the art

log™ n

positive: O(log™* n)

log & tight bounds

as a function of n

log* A

negative: o(log* n)



Typical state of the art
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Typical state of the art

log™ n

» IR oo

log A exponential gap
as a function of A

— or much worse

negative: nothing
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Fxample:
LP approximation

e O(log A): possible
« Kuhn et al. (2004, 2006)

e 0(log A): not possible
. Kuhn et al. (2004, 2006)



Fxample:
Maximal matching

e« O(A + log* n): possible
« Panconesi & Rizzi (2001)

e O(A) +o(log™ n): not possible
e Linial (1992)

e 0(A) + O(log* n): unknown



Fxample:
(A+1)-colouring

e« O(A + log* n): possible
« Barenboim & Elkin (2008), Kuhn (2008)

e O(A) +o(log™ n): not possible
e Linial (1992)

e 0(A) + O(log* n): unknown



Fxample: Bipartite
maximal matching

e O(A): trivial
« Hanckowiak et al. (1998)

e 0(A): unknown



Fxample:
Semi-matching

e O(A>): possible
« Czygrinow et al. (2012)

e 0(A°): unknown



Fxample:
Semi-matching

e O(A>): possible
« Czygrinow et al. (2012)

e 0(A>): unknown

e 0(A): unknown



Fxample:
Weak colouring

e O(log* A): possible (in odd-degree graphs)
« Naor & Stockmeyer (1995)

e 0(log™ A): unknown
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Orthogonal challenges?

e n: “symmetry breaking”

» fairly well understood

« Cole & Vishkin (1986), Linial (1992),
Ramsey theory ...

e A: “local coordination”

 poorly understood
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Orthogonal challenges

« Example: maximal matching, O(A + log* n)

e Restricted versions:
» pure symmetry breaking, O(log™* n)
» pure local coordination, O(A)



Orthogonal challenges

« Example: maximal matching, O(A + log* n)

e Pure symmetry breaking:
 input =cycle
» no need for local coordination
» O(log™ n)is possible and tight



Orthogonal challenges

« Example: maximal matching, O(A + log* n)

» Pure local coordination:
e input = 2-coloured graph
» no need for symmetry breaking
» O(A)is possible —is it tight?



Maximal matching
in 2-coloured graphs

 Trivial algorithm:

 black nodes send proposals

to their neighbours, one by one

« white nodes accept the first
proposal that they get

e “Coordination” = one by one traversal



Maximal matching
in 2-coloured graphs

 Trivial algorithm:

 black nodes send proposals

to their neighbours, one by one

« white nodes accept the first
proposal that they get

e Clearly O(A), but is this tight?



Maximal matching
in 2-coloured graphs

e General case:

 upper bound: O(A)
» lower bound: Q(log A) — Kuhn et al.

 Regular graphs:
« upper bound: O(A)
» lower bound: nothing!



Linear-in-A bounds

« Many combinatorial problems seem to
require “local coordination”, takes O(A) time?

» Lacking: linear-in-A lower bounds

» known for restricted algorithm classes
(Kuhn & Wattenhofer 2006)

» not previously known for the LOCAL model



Recent progress

 Maximal fractional matching

e« O(A): possible
« SPAA 2010

e 0(A): not possible
« PODC 2014



Matching

« Edges labelled with integers {0, 1}
 Sum of incident edges at most 1

« Maximal matching:
cannot increase the value of any label



Fractional
matching

o Edges labelled with real numbers [0, 1]
 Sum of incident edges at most 1

« Maximal fractional matching:
cannot increase the value of any label



Maximal
fractional matching

e Possible in time O(A)

 does not require symmetry breaking
. d-regular graph: label all edges with 1/d

» Nontrivial part: graphs that are not regular...



Maximal
fractional matching

e Not possible in time o(A), independently of n

» note: we do not say anything about e.g.
possibility of solving in time o(A) + O(log™ n)

» Key ingredient of the proof:
analyse many different models of
distributed computing



ID: unique identifiers

Nodes have unique identifiers,
output may depend on them

I 23




Ol: order invariant

Output does not change if we change
identifiers but keep their relative order

I 23




PO: ports & orientation

No identifiers

Node v labels
incident edges
with 1, ..., deg(v)

Edges oriented




EC: edge colouring

No identifiers
No orientations 3

Edges coloured 1
with O(A) colours



23

54

3 12
a b
a<b<c<d




23



Simulation argument

e Trivial: ID > Ol > PO

 for any problem

e We show: EC > PO->0I>1ID

» for maximal fractional matching
in “loopy graphs”



Proof overview

« EC modelis very limited

» maximal fractional matching requires
(Q(A) time in EC, even for “loopy graphs”

o Simulation argument: EC> PO ->0Il->ID

» maximal fractional matching requires
()(A) time in ID, at least for “loopy graphs”



EC 2

o Recursively construct a degree-i graph
where this algorithm takes time i

e Focus on “loopy graphs”
« highly symmetric

» forces algorithm to produce “tight” outputs
(all nodes saturated, “perfect matching”)



EC-> PO

“Unhelpful” port numbering & orientation
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Ol->ID

‘“Unhelpful” unique identifiers

Ramsey-like argument:
for any algorithm we can find unique identifiers
that do not help in comparison with total order



EC>PO0O->0I->ID

 In general: stronger models help

e In our case: we can always come up
with situations in which ID model
Is not any better than EC model



What about
other problems?

e Now we have a linear-in-A lower bound
for maximal fractional matching

« Can we use the same techniques to prove
lower bounds for other problems?

e €.g., maximal matching?



General recipe

1. Find a suitable “simple model”

2. Prove a lower bound for the simple model
« keep input “symmetric”
 keep output “tight” and “fragile”
» local changes have non-local consequences



General recipe

1. Find a suitable “simple model”

2. Prove a lower bound for the simple model

3. Amplify the lower bound

 simple model » Ol (some thinking required)
« Ol > ID (standard techniques)



What about
maximal matchings?

e Could we use the same techniques to show
that o(A) + O(log* n) is not sufficient
for maximal matching?

e Two obstacles...



What about
maximal matchings?

e Obstacle 1 — final step:

» final step Ol > ID based on
a Ramsey argument

» works great for t independent of n

e failsift=log*n



What about
maximal matchings?

e Obstacle 2 — starting point:

» O(log* n) time enough to find
e.g. graph colouring

e cannot assume “symmetric” input

o difficult to force “tight” and “fragile” output



What about
maximal matchings?

« Two hard, interlinked obstacles

« How to proceed:

» getrid of obstaclel — log* n

» focus on obstacle2 — asymmetry

o Start with bipartite maximal matchings



Maximal matching
in 2-coloured graphs

e Can be solved in time O(A) independently of n
e Can focus on just one obstacle: asymmetry

e Most of the other machinery already exists!

» We just need tight bounds for simple models

» should be easy to generalise to LOCAL model



Maximal matching
in 2-coloured graphs

e Until we have lower bounds:
reductions, conditional lower bounds

« many other problems are at least
as hard as bipartite maximal matching

o locally optimal semi-matchingintime T
> bipartite maximal matchingin time T



Summary

e Distributed time complexity, LOCAL model
e O(log* n): “symmetry breaking”, OK
e O(A): “local coordination”, poorly understood

« Maximal fractional matching solved,
next step: bipartite maximal matching



