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LOCAL model
• Input: simple undirected graph G 

• communication network 
• nodes labelled with 

unique O(log n)-bit 
identifiers 3
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LOCAL model
• Input: simple undirected graph G 

• Output: each node v produces a local output 

• graph colouring:  colour of node v 

• vertex cover:  1 if v is in the cover 

• matching: with whom v is matched



LOCAL model
• Nodes exchange messages with each other,  

update local states 

• Synchronous communication rounds 

• Arbitrarily large messages



LOCAL model
• Time = number of communication rounds 

• until all nodes stop and 
produce their local outputs



LOCAL model
• Time = number of communication rounds 

• Time = distance: 
• in t communication rounds, 

all nodes can learn everything 
in their radius-t neighbourhoods



LOCAL model
time t = 2



LOCAL model

A: � 1



LOCAL model
• Everything trivial in time diam(G) 

• all nodes see whole G, 
can compute any function of G 

• What can be solved much faster?



Distributed 
time complexity
• Smallest t such that the problem 

can be solved in time t



Distributed 
time complexity
• n = number of nodes 

• Δ = maximum degree 
• Δ < n 

• Time complexity t = t(n, Δ)
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our focus today 
n >> Δ
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Typical state of the art
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positive: O(log* n)

negative: o(log* n)
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positive: O(Δ)

Typical state of the art

Δ

log* Δ

log Δ

log* nO(1)

O(1)

yes

? ? ?

negative: nothing

exponential gap 
as a function of Δ 
— or much worse
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Example: 
LP approximation
• O(log Δ): possible 

• Kuhn et al. (2004, 2006) 

• o(log Δ): not possible 
• Kuhn et al. (2004, 2006)



Example: 
Maximal matching
• O(Δ + log* n): possible 

• Panconesi & Rizzi (2001) 

• O(Δ) + o(log* n): not possible 
• Linial (1992) 

• o(Δ) + O(log* n): unknown



Example: 
(Δ+1)-colouring
• O(Δ + log* n): possible 

• Barenboim & Elkin (2008), Kuhn (2008) 

• O(Δ) + o(log* n): not possible 
• Linial (1992) 

• o(Δ) + O(log* n): unknown



Example: Bipartite 
maximal matching
• O(Δ): trivial 

• Hańćkowiak et al. (1998) 

• o(Δ): unknown



Example: 
Semi-matching
• O(Δ5): possible 

• Czygrinow et al. (2012) 

• o(Δ5): unknown



Example: 
Semi-matching
• O(Δ5): possible 

• Czygrinow et al. (2012) 

• o(Δ5): unknown 

• o(Δ): unknown



Example: 
Weak colouring
• O(log* Δ): possible (in odd-degree graphs) 

• Naor & Stockmeyer (1995) 

• o(log* Δ): unknown
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Orthogonal challenges?
• n: “symmetry breaking” 

• fairly well understood 
• Cole & Vishkin (1986), Linial (1992), 

Ramsey theory … 

• Δ: “local coordination” 
• poorly understood



“symmetry 
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Orthogonal challenges
• Example: maximal matching, O(Δ + log* n) 

• Restricted versions: 
• pure symmetry breaking, O(log* n) 
• pure local coordination, O(Δ)



Orthogonal challenges
• Example: maximal matching, O(Δ + log* n) 

• Pure symmetry breaking: 
• input = cycle 
• no need for local coordination 
• O(log* n) is possible and tight



Orthogonal challenges
• Example: maximal matching, O(Δ + log* n) 

• Pure local coordination: 
• input = 2-coloured graph 
• no need for symmetry breaking 
• O(Δ) is possible — is it tight?



Maximal matching 
in 2-coloured graphs
• Trivial algorithm: 

• black nodes send proposals 
to their neighbours, one by one 

• white nodes accept the first 
proposal that they get 

• “Coordination” ≈ one by one traversal



Maximal matching 
in 2-coloured graphs
• Trivial algorithm: 

• black nodes send proposals 
to their neighbours, one by one 

• white nodes accept the first 
proposal that they get 

• Clearly O(Δ), but is this tight?



Maximal matching 
in 2-coloured graphs
• General case: 

• upper bound: O(Δ) 
• lower bound: Ω(log Δ)   —   Kuhn et al. 

• Regular graphs: 
• upper bound: O(Δ) 
• lower bound: nothing!



Linear-in-Δ bounds
• Many combinatorial problems seem to 

require “local coordination”, takes O(Δ) time? 

• Lacking: linear-in-Δ lower bounds 
• known for restricted algorithm classes 

(Kuhn & Wattenhofer 2006) 
• not previously known for the LOCAL model



Recent progress
• Maximal fractional matching 

• O(Δ): possible 
• SPAA 2010 

• o(Δ): not possible 
• PODC 2014



• Edges labelled with integers {0, 1} 

• Sum of incident edges at most 1 

• Maximal matching: 
cannot increase the value of any label

Matching 10

0 0



• Edges labelled with real numbers [0, 1] 

• Sum of incident edges at most 1 

• Maximal fractional matching: 
cannot increase the value of any label

Fractional 
matching 0.40.6

0.3
0.3



• Possible in time O(Δ) 
• does not require symmetry breaking 
• d-regular graph: label all edges with 1/d 

• Nontrivial part: graphs that are not regular…

Maximal 
fractional matching



• Not possible in time o(Δ), independently of n 
• note: we do not say anything about e.g. 

possibility of solving in time o(Δ) + O(log* n) 

• Key ingredient of the proof: 
analyse many different models of  
distributed computing

Maximal 
fractional matching



ID: unique identifiers
Nodes have unique identifiers, 
output may depend on them
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OI: order invariant
Output does not change if we change  
identifiers but keep their relative order
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PO: ports & orientation
No identifiers 

Node v labels 
incident edges 
with 1, …, deg(v) 

Edges oriented
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EC: edge colouring
No identifiers 

No orientations 

Edges coloured 
with O(Δ) colours
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1 1
3
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Simulation argument
• Trivial: ID → OI → PO 

• for any problem 

• We show: EC → PO → OI → ID 
• for maximal fractional matching 

in “loopy graphs”



Proof overview
• EC model is very limited 

• maximal fractional matching requires  
Ω(Δ) time in EC, even for “loopy graphs” 

• Simulation argument: EC → PO → OI → ID 
• maximal fractional matching requires  
Ω(Δ) time in ID, at least for “loopy graphs”



EC
• Recursively construct a degree-i graph  

where this algorithm takes time i 

• Focus on “loopy graphs” 
• highly symmetric 
• forces algorithm to produce “tight” outputs 

(all nodes saturated, “perfect matching”)
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EC → PO
“Unhelpful” port numbering & orientation
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PO → OI
“Unhelpful” 
total order 

can be easily  
constructed given 
a port numbering 
and orientation
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OI → ID
“Unhelpful” unique identifiers 

Ramsey-like argument: 
for any algorithm we can find unique identifiers  
that do not help in comparison with total order



EC → PO → OI → ID
• In general: stronger models help 

• In our case: we can always come up 
with situations in which ID model  
is not any better than EC model



What about 
other problems?
• Now we have a linear-in-Δ lower bound 

for maximal fractional matching 

• Can we use the same techniques to prove 
lower bounds for other problems? 

• e.g., maximal matching?



General recipe
1. Find a suitable “simple model” 

2. Prove a lower bound for the simple model 
• keep input “symmetric” 
• keep output “tight” and “fragile” 
• local changes have non-local consequences



General recipe
1. Find a suitable “simple model” 

2. Prove a lower bound for the simple model 

3. Amplify the lower bound 
• simple model → OI  (some thinking required) 
• OI → ID  (standard techniques)



What about 
maximal matchings?
• Could we use the same techniques to show 

that o(Δ) + O(log* n) is not sufficient  
for maximal matching? 

• Two obstacles…



What about 
maximal matchings?
• Obstacle 1 — final step: 

• final step OI → ID based on  
a Ramsey argument 

• works great for t independent of n 

• fails if t ≈ log* n



What about 
maximal matchings?
• Obstacle 2 — starting point: 

• O(log* n) time enough to find 
e.g. graph colouring 

• cannot assume “symmetric” input 

• difficult to force “tight” and “fragile” output



What about 
maximal matchings?
• Two hard, interlinked obstacles 

• How to proceed: 

• get rid of obstacle 1  —  log* n 

• focus on obstacle 2  —  asymmetry 

• Start with bipartite maximal matchings



Maximal matching 
in 2-coloured graphs
• Can be solved in time O(Δ) independently of n 

• Can focus on just one obstacle: asymmetry 

• Most of the other machinery already exists! 

• we just need tight bounds for simple models 

• should be easy to generalise to LOCAL model



Maximal matching 
in 2-coloured graphs
• Until we have lower bounds: 

reductions, conditional lower bounds 

• many other problems are at least 
as hard as bipartite maximal matching 

• locally optimal semi-matching in time T  
→ bipartite maximal matching in time T



Summary
• Distributed time complexity, LOCAL model 

• O(log* n): “symmetry breaking”, OK 

• O(Δ): “local coordination”, poorly understood 

• Maximal fractional matching solved, 
next step: bipartite maximal matching


