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Foreword

This course is a brief introduction to the theory of distributed algorithms,
more specifically, deterministic, synchronous network algorithms. The
topics covered in this course include algorithmic techniques that can be
used to solve graph problems efficiently in extremely large networks,
as well as fundamental impossibility results that put limitations on
distributed computing.

No prior knowledge of distributed systems is needed. A basic know-
ledge of discrete mathematics and graph theory is assumed, as well as
familiarity with the basic concepts from undergraduate-level courses on
models on computation, computational complexity, and algorithms and
data structures.

Acknowledgements. Many thanks to Mika Göös, Juho Hirvonen, Tee-
mu Kuusisto, Tuomo Lempiäinen, and Jussi Väisänen for comments,
and to Juho Hirvonen, Joel Kaasinen, and Joel Rybicki for helping me
with the arrangements of this course. This work was supported by the
Academy of Finland, Grant 252018. For updates and additional material,
see

http://www.cs.helsinki.fi/jukka.suomela/dda

License. This work is licensed under the Creative Commons Attribution–
ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/

iv

http://www.cs.helsinki.fi/jukka.suomela/dda
http://creativecommons.org/licenses/by-sa/3.0/


Chapter 1

Introduction and Preliminaries

1.1 Scope

This course focuses on the theoretical foundations of distributed systems.
Our approach is similar to typical courses on models of computation,
computational complexity, and design and analysis of algorithms. The
main difference is in the models of computation that we study: instead
of traditional models, such as finite state machines, Turing machines,
RAM machines, or Boolean circuits, our model of choice is a distributed
system.

1.1.1 Distributed Systems as a Model of Computation

A distributed system consists of multiple machines that are connected to
each other through communication links. We usually view a distributed
system as a (simple, undirected) graph G = (V, E): each node v ∈ V rep-
resents a machine and an edge {u, v} ∈ E represents a communication
link between machines u and v.

To understand the key difference between distributed systems and
more familiar models of computation, let us consider an illustrative
example: the problem of finding a maximal independent set.

An independent set for a graph G = (V, E) is a set I ⊆ V such that for
each edge {u, v} ∈ E at most one of u and v is in I . An independent set
I is maximal if it cannot be extended, i.e., it is not a proper subset of
another independent set.
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Now given any model of computation X we can pose the familiar
question:

• Computability: is it possible to find a maximal independent set in
model X?

• Computational complexity: can we find a maximal independent set
efficiently in model X?

We are familiar with such questions in the context of Turing machines,
but it is not immediately obvious what these questions mean in the
context of distributed systems. The following informal comparison
illustrates the key differences.

Input. The input is a graph G.

Turing machines: We assume that the structure of G is encoded as
a string and given to the Turing machine on the input tape.

Distributed systems: We assume that the structure of the input
graph G is the same as the structure of the distributed system.
Initially, each machine v ∈ V only knows some local information
related to v (for example, the degree of v and the unique identifier
of v). To acquire more information about G, the nodes need to
exchange messages.

Output. The output is an independent set I ⊆ V .

Turing machines: We require that the machine prints an encoding
of I on the output tape.

Distributed systems: We require that each node v ∈ V produces
one bit of output: if v ∈ I , node v has to output 1, and if v /∈ I ,
node v has to output 0.

Algorithm. We say that an algorithm solves the problem if it produces
a valid output for any valid input.
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Turing machines: The algorithm designer chooses the state trans-
itions of the Turing machine.

Distributed systems: The algorithm designer writes one program.
The same program is installed in each v ∈ V .

Complexity measures. There are many possible complexity measures,
but perhaps the most commonly used is the time complexity.

Turing machines: Time = number of elementary steps. In each
time unit, (1) the machine moves the tape heads, (2) performs
a state transition that depends on the contents of the tapes, and
(3) possibly halts.

Distributed systems: Time = number of synchronous communic-
ation rounds. In each time unit, all machines in parallel (1) ex-
change messages with their neighbours, (2) perform state trans-
itions that depend on the messages that they received, and (3) pos-
sibly halt.

To oversimplify a bit, distributed computation is not really about compu-
tation — it is all about communication. Throughout this course, we will
see striking examples of the implications of this change of perspective.

1.1.2 Outside the Scope

The term “distributed computing” is overloaded, and it means very
different things to different people.

For the general public, distributed computing often refers to large-
scale high-performance computing in a computer network; this includes
scientific computing on grids and clusters, and volunteer computing
projects such as SETI@Home and Folding@Home. However, this is
not the definition that we use, and our course is in no way related to
large-scale number crunching.

In general, our focus is on theory, not practice. For our purposes, a
communication network is an idealised abstraction. We are not inter-
ested in any implementation details or engineering aspects. For example,
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the following topics are not covered on this course: physical properties
of wired or wireless media, modulation techniques, communication
protocols, standards, software architectures, programming languages,
software libraries, privacy, and security.

Within the field of the theory of distributed computing, there are
also numerous topics that we are not going to cover. We will conclude
this course with a brief overview of other research areas within the field
in Section 7.1.

1.2 Graphs

As we already saw in Section 1.1.1, the study of distributed algorithms
is closely related to graphs: we will interpret a computer network as a
graph, and we will study computational problems related to this graph.
In this section we will give a summary of graph-theoretic concepts that
we will use.

1.2.1 Terminology

A simple undirected graph is a pair G = (V, E), where V is the set of
nodes (vertices) and E is the set of edges. Each edge e ∈ E is a 2-subset
of nodes, that is, e = {u, v} where u ∈ V , v ∈ V , and u 6= v. Unless
otherwise mentioned, we assume that V is a non-empty finite set; it
follows that E is a finite set. Usually, we will draw graphs using circles
and lines — each circle represents a node, and a line that connects two
nodes represents an edge.

Adjacency. If e = {u, v} ∈ E, we say that node u is adjacent to v, nodes
u and v are neighbours, node u is incident to e, and edge e is also incident
to u. If e1, e2 ∈ E, e1 6= e2, and e1 ∩ e2 6= ∅ (i.e., e1 and e2 are distinct
edges that share an endpoint), we say that e1 is adjacent to e2.

The degree of a node v ∈ V in graph G is

degG(v) =
�

�

�

u ∈ V : {u, v} ∈ E
	

�

�.

4



vu e e1
e2

Figure 1.1: Node u is adjacent to node v. Nodes u and v are incident to
edge e. Edge e1 is adjacent to edge e2.

That is, v has degG(v) neighbours; it is adjacent to degG(v) nodes and
incident to degG(v) edges. A node v ∈ V is isolated if degG(v) = 0.
Graph G is k-regular if degG(v) = k for each v ∈ V .

Subgraphs. Let G = (V, E) and H = (V2, E2) be two graphs. If V2 ⊆ V
and E2 ⊆ E, we say that H is a subgraph of G. If V2 = V , we say that H
is a spanning subgraph of G.

If V2 ⊆ V and E2 = { {u, v} ∈ E : u ∈ V2, v ∈ V2 }, we say that
H = (V2, E2) is an induced subgraph; more specifically, H is the subgraph
of G induced by nodes V2.

If E2 ⊆ E and V2 =
⋃

E2, we say that H is an edge-induced subgraph;
more specifically, H is the subgraph of G induced by edges E2.

Walks. A walk of length ` from node v0 to node v` is an alternating
sequence w = (v0, e1, v1, e2, v2, . . . , e`, v`) where vi ∈ V , ei ∈ E, and
ei = {vi−1, vi} for all i; see Figure 1.2. The walk is empty if ` = 0.
We say that walk w visits the nodes v0, v1, . . . , v`, and it traverses the
edges e1, e2, . . . , e`. In general, a walk may visit the same node more
than once and it may traverse the same edge more than once. A non-
backtracking walk does not traverse the same edge twice consecutively,
that is, ei−1 6= ei for all i. A path is a walk that visits each node at
most once, that is, vi 6= v j for all 0 ≤ i < j ≤ `. A walk is closed if
v0 = v`. A cycle is a non-empty closed walk with vi 6= v j and ei 6= e j for
all 1≤ i < j ≤ `; it follows that the length of a cycle is at least 3.
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s

t

(a)

(b)

(c)

(d)

Figure 1.2: (a) A walk of length 5 from s to t. (b) A non-backtracking
walk. (c) A path of length 4. (d) A path of length 2; this is a shortest path
and hence distG(s, t) = 2.
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(a)

(b)

Figure 1.3: (a) A cycle of length 6. (b) A cycle of length 3; this is a
shortest cycle and hence the girth of the graph is 3.

Connectivity and Distances. For each graph G = (V, E), we can define
a relation  on V as follows: u  v if there is a walk from u to v. Clearly
  is an equivalence relation. Let C ⊆ V be an equivalence class; the
subgraph induced by C is called a connected component of G.

If u and v are in the same connected component, there is at least
one shortest path from u to v, that is, a path from u to v of the smallest
possible length. Let ` be the length of a shortest path from u to v; we
define that the distance between u and v in G is distG(u, v) = `. If u and
v are not in the same connected component, we define distG(u, v) =∞.
Note that distG(u, u) = 0 for any node u.

For each node v and for a non-negative integer r, we define the
radius-r neighbourhood of v as follows:

ballG(v, r) = {u ∈ V : distG(u, v)≤ r }.

A graph is connected if it consists of one connected component. The
diameter of graph G, in notation diam(G), is the length of a longest
shortest path, that is, the maximum of distG(u, v) over all u, v ∈ V ; we
have diam(G) =∞ if the graph is not connected.
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ballG(v, 0):
v

v

v

ballG(v, 1):

ballG(v, 2):

Figure 1.4: Neighbourhoods.

8



The girth of graph G is the length of a shortest cycle in G. If the
graph does not have any cycles, we define that the girth is∞; in that
case we say that G is acyclic.

A tree is a connected, acyclic graph. If T = (V, E) is a tree and
u, v ∈ V , then there exists precisely one path from u to v. An acyclic
graph is also known as a forest — in a forest each connected component
is a tree. A pseudotree has at most one cycle, and in a pseudoforest each
connected component is a pseudotree.

A path graph is a graph that consists of one path, and a cycle graph
is a graph that consists of one cycle. Put otherwise, a path graph is
a tree in which all nodes have degree at most 2, and a cycle graph is
a 2-regular pseudotree. Note that any graph of maximum degree 2
consists of disjoint paths and cycles, and any 2-regular graph consists of
disjoint cycles.

Isomorphism. An isomorphism from graph G1 = (V1, E1) to graph
G2 = (V2, E2) is a bijection f : V1→ V2 that preserves adjacency: {u, v} ∈
E1 if and only if { f (u), f (v)} ∈ E2. If an isomorphism from G1 to G2
exists, we say that G1 and G2 are isomorphic.

If G1 and G2 are isomorphic, they have the same structure; informally,
G2 can be constructed by renaming the nodes of G1 and vice versa.

1.2.2 Packing and Covering

A subset of nodes X ⊆ V is

(a) an independent set if each edge has at most one endpoint in X ,
that is, |e ∩ X | ≤ 1 for all e ∈ E,

(b) a vertex cover if each edge has at least one endpoint in X , that is,
e ∩ X 6=∅ for all e ∈ E,

(c) a dominating set if each node v /∈ X has at least one neighbour in
X , that is, ballG(v, 1)∩ X 6=∅ for all v ∈ V .

A subset of edges X ⊆ E is

9



(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.5: Packing and covering problems; see Section 1.2.2.

(d) a matching if each node has at most one incident edge in X , that
is, {t, u} ∈ X and {t, v} ∈ X implies u= v,

(e) an edge cover if each node has at least one incident edge in X , that
is,
⋃

X = V ,

(f) an edge dominating set if each edge e /∈ X has at least one neigh-
bour in X , that is, e ∩

�
⋃

X
�

6=∅ for all e ∈ E.

See Figure 1.5 for illustrations.
Independent sets and matchings are examples of packing problems

— intuitively, we have to “pack” elements into set X while avoiding
conflicts. Packing problems are maximisation problems. Typically, it is
trivial to find a feasible solution (for example, an empty set), but it is
more challenging to find a large solution.

Vertex covers, edge covers, dominating sets, and edge dominating
sets are examples of covering problems — intuitively, we have to find a set
X that “covers” the relevant parts of the graph. Covering problems are
minimisation problems. Typically, it is trivial to find a feasible solution if
it exists (for example, the set of all nodes or all edges), but it is more
challenging to find a small solution.
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The following terms are commonly used in the context of maximisa-
tion problems; it is important not to confuse them:

(a) maximal: a maximal solution is not a proper subset of another
feasible solution,

(b) maximum: a maximum solution is a solution of the largest possible
cardinality.

Similarly, in the context of minimisation problems, analogous terms are
used:

(a) minimal: a minimal solution is not a proper superset of another
feasible solution,

(b) minimum: a minimum solution is a solution of the smallest pos-
sible cardinality.

Using this convention, we can define the terms maximal independent
set, maximum independent set, maximal matching, maximum matching,
minimal vertex cover, minimum vertex cover, etc.

For example, Figure 1.5a shows a maximal independent set: it is not
possible to greedily extend the set by adding another element. However,
it is not a maximum independent set: there exists an independent set of
size 3. Figure 1.5d shows a matching, but it is not a maximal matching,
and therefore it is not a maximum matching either.

Typically, maximal and minimal solutions are easy to find — you can
apply a greedy algorithm. However, maximum and minimum solutions
can be very difficult to find — many of these problems are NP-hard
optimisation problems.

A minimum maximal matching is precisely what the name suggests: it
is a maximal matching of the smallest possible cardinality. We can define
a minimum maximal independent set, etc., in an analogous manner.

1.2.3 Labellings and Partitions

We will often encounter functions of the form

f : V → {1, 2, . . . , k}.

11



There are two interpretations that are often helpful:

(i) Function f assigns a label f (v) to each node v ∈ V . Depending
on the context, the labels can be interpreted as colours, time slots,
etc.

(ii) Function f is a partition of V . More specifically, f defines a
partition V = V1 ∪ V2 ∪ · · · ∪ Vk where Vi = f −1(i) = { v ∈ V :
f (v) = i }.

Similarly, we can study a function of the form

f : E→ {1, 2, . . . , k}

and interpret it either as a labelling of edges or as a partition of E.
Many graph problems are related to such functions. We say that a

function f : V → {1,2, . . . , k} is

(a) a proper vertex colouring if f −1(i) is an independent set for each i,

(b) a weak colouring if each non-isolated node u has a neighbour v
with f (u) 6= f (v),

(c) a domatic partition if f −1(i) is a dominating set for each i.

A function f : E→ {1, 2, . . . , k} is

(d) a proper edge colouring if f −1(i) is a matching for each i,

(e) an edge domatic partition if f −1(i) is an edge dominating set for
each i.

See Figure 1.6 for illustrations.
Usually, the term colouring refers to a proper vertex colouring, and

the term edge colouring refers to a proper edge colouring. The value of
k is the size of the colouring or the number of colours. We will use the
term k-colouring to refer to a proper vertex colouring with k colours;
the term k-edge colouring is defined in an analogous manner.
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Figure 1.6: Partition problems; see Section 1.2.3.
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A graph that admits a 2-colouring is a bipartite graph. Equivalently,
a bipartite graph is a graph that does not have an odd cycle.

Graph colouring is typically interpreted as a minimisation problem.
It is easy to find a proper vertex colouring or a proper edge colouring if
we can use arbitrarily many colours; however, it is difficult to find an
optimal colouring that uses the smallest possible number of colours.

On the other hand, domatic partitions are a maximisation problem.
It is trivial to find a domatic partition of size 1; however, it is difficult to
find an optimal domatic partition with the largest possible number of
disjoint dominating sets.

1.2.4 Factors and Factorisations

Let G = (V, E) be a graph, let X ⊆ E be a set of edges, and let H = (U , X )
be the subgraph of G induced by X . We say that X is a d-factor of G if
U = V and degH(v) = d for each v ∈ V .

Equivalently, X is a d-factor if X induces a spanning d-regular sub-
graph of G. Put otherwise, X is a d-factor if each node v ∈ V is incident
to exactly d edges of X .

A function f : E→ {1, 2, . . . , k} is a d-factorisation of G if f −1(i) is a
d-factor for each i. See Figure 1.7 for examples.

We make the following observations:

(a) A 1-factor is a maximum matching. If a 1-factor exists, a maximum
matching is a 1-factor.

(b) A 1-factorisation is an edge colouring.

(c) The subgraph induced by a 2-factor consists of disjoint cycles.

A 1-factor is also known as a perfect matching.

1.2.5 Approximations

So far we have encountered a number of maximisation problems and
minimisation problems. More formally, the definition of a maximisation
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Figure 1.7: (a) A 1-factorisation of a 3-regular graph. (b) A 2-factorisation
of a 4-regular graph.
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problem consists of two parts: a set of feasible solutions S and an
objective function g : S → R. In a maximisation problem, the goal is to
find a feasible solution X ∈ S that maximises g(X ). A minimisation
problem is analogous: the goal is to find a feasible solution X ∈ S that
minimises g(X ).

For example, the problem of finding a maximum matching for a
graph G is of this form. The set of feasible solutions S consists of all
matchings in G, and we simply define g(M) = |M | for each matching
M ∈ S .

As another example, the problem of finding an optimal colouring is
a minimisation problem. The set of feasible solutions S consists of all
proper vertex colourings, and g( f ) is the number of colours in f ∈ S .

Often, it is infeasible or impossible to find an optimal solution; hence
we resort to approximations. Given a maximisation problem (S , g),
we say that a solution X is an α-approximation if X ∈ S , and we have
αg(X ) ≥ g(Y ) for all Y ∈ S . That is, X is a feasible solution, and the
size of X is within factor α of the optimum.

Similarly, if (S , g) is a minimisation problem, we say that a solution
X is an α-approximation if X ∈ S , and we have g(X ) ≤ αg(Y ) for all
Y ∈ S . That is, X is a feasible solution, and the size of X is within factor
α of the optimum.

Note that we follow the convention that the approximation ratio α
is always at least 1, both in the case of minimisation problems and max-
imisation problems. Other conventions are also used in the literature.

1.2.6 Directed Graphs and Orientations

Unless otherwise mentioned, all graphs in this course are undirected.
However, we will occasionally need to refer to so-called orientations,
and hence we need to introduce some terminology related to directed
graphs.

A directed graph is a pair G = (V, E), where V is the set of nodes and
E is the set of directed edges. Each edge e ∈ E is a pair of nodes, that is,
e = (u, v) where u, v ∈ V . Put otherwise, E ⊆ V × V .
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Intuitively, an edge (u, v) is an “arrow” that points from node u to
node v; it is an outgoing edge for u and an incoming edge for v. The
outdegree of a node v ∈ V , in notation outdegreeG(v), is the number
of outgoing edges, and the indegree of the node, indegreeG(v), is the
number of incoming edges.

Now let G = (V, E) be a graph and let H = (V, E′) be a directed
graph with the same set of nodes. We say that H is an orientation of G if
the following holds:

(a) For each {u, v} ∈ E we have either (u, v) ∈ E′ or (v, u) ∈ E′, but
not both.

(b) For each (u, v) ∈ E′ we have {u, v} ∈ E.

Put otherwise, in an orientation of G we have simply chosen an arbitrary
direction for each undirected edge of G. It follows that

indegreeH(v) + outdegreeH(v) = degG(v)

for all v ∈ V .

1.3 Exercises

Exercise 1.1 (independence and vertex covers). Let I ⊆ V and define
C = V \ I . Show that

(a) if I is an independent set then C is a vertex cover and vice versa,

(b) if I is a maximal independent set then C is a minimal vertex cover
and vice versa,

(c) if I is a maximum independent set then C is a minimum vertex
cover and vice versa,

(d) it is possible that C is a 2-approximation of minimum vertex cover
but I is not a 2-approximation of maximum independent set,

(e) it is possible that I is a 2-approximation of maximum independent
set but C is not a 2-approximation of minimum vertex cover.
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Exercise 1.2 (matchings). Show that

(a) any maximal matching is a 2-approximation of a maximum match-
ing,

(b) any maximal matching is a 2-approximation of a minimum max-
imal matching,

(c) a maximal independent set is not necessarily a 2-approximation
of maximum independent set,

(d) a maximal independent set is not necessarily a 2-approximation
of minimum maximal independent set.

Exercise 1.3 (matchings and vertex covers). Let M be a maximal match-
ing, and let C =

⋃

M , i.e., C consists of all endpoints of matched edges.
Show that

(a) C is a 2-approximation of a minimum vertex cover,

(b) C is not necessarily a 1.999-approximation of a minimum vertex
cover.

Would you be able to improve the approximation ratio if M was a
minimum maximal matching?

Exercise 1.4 (independence and domination). Show that

(a) a maximal independent set is a minimal dominating set,

(b) a minimal dominating set is not necessarily a maximal independ-
ent set,

(c) a minimum maximal independent set is not necessarily a minimum
dominating set.

Exercise 1.5 (matchings and edge domination). Show that

(a) a maximal matching is a minimal edge dominating set,

(b) a minimal edge dominating set is not necessarily a maximal match-
ing,
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(c) a minimum maximal matching is a minimum edge dominating
set,

(d) any maximal matching is a 2-approximation of a minimum edge
dominating set.

Hint: Assume that D is an edge dominating set; show that you can
construct a maximal matching M with |M | ≤ |D|.

Exercise 1.6 (graph colourings and partitions). Show that

(a) a weak 2-colouring always exists,

(b) a domatic partition of size 2 does not necessarily exist,

(c) if a domatic partition of size 2 exists, then a weak 2-colouring is a
domatic partition of size 2,

(d) a weak 2-colouring is not necessarily a domatic partition of size 2.

Show that there are 2-regular graphs with the following properties:

(e) any 3-colouring is a domatic partition of size 3,

(f) no 3-colouring is a domatic partition of size 3.

Assume that G is a graph of maximum degree ∆; show that

(g) there exists a (∆+ 1)-colouring,

(h) a ∆-colouring does not necessarily exist.

Exercise 1.7 (line graphs). Look up the definition of a line graph.
Whenever possible, use line graphs to explain

(a) the connection between matchings and independent sets,

(b) the connection between dominating sets and edge dominating
sets,

(c) the connection between node colourings and edge colourings.
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Exercise 1.8 (isomorphism). Construct non-empty 3-regular connected
graphs G and H such that G and H have the same number of nodes and
G and H are not isomorphic.

Exercise 1.9 (Petersen 1891). Show that any 2d-regular graph has a
2-factorisation.

Exercise 1.10 (orientations). Using the result of Exercise 1.9, show that
any 2d-regular graph G = (V, E) has an orientation H = (V, E′) such that
indegreeH(v) = outdegreeH(v) = d for all v ∈ V .

20



Chapter 2

Port-Numbering Model

2.1 Introduction

Now that we have introduced the essential graph-theoretic concepts, we
are ready to define what a “distributed algorithm” is. In this chapter,
we will study one variant of the theme: distributed algorithm in the
“port-numbering model”. The basic idea is best explained through an
example. Suppose that I claim the following:

• A is a deterministic distributed algorithm that finds a 2-approxim-
ation of a minimum vertex cover in the port-numbering model.

Informally, this entails the following:

(a) We can take any simple undirected graph G = (V, E).

(b) We can then put together a computer network N with the same
structure as G. A node v ∈ V corresponds to a computer in N , and
an edge {u, v} ∈ E corresponds to a communication link between
the computers u and v.

(c) More precisely, a node of degree d corresponds to a computer with
d communication ports that are labelled with numbers 1, 2, . . . , d.
Each port is connected to precisely one neighbour.

(d) Each computer runs a copy of the same deterministic algorithm A.
All nodes are identical; initially they know only their own degree
(i.e., the number of communication ports).

(e) All computers are started simultaneously, and they follow al-
gorithm A synchronously in parallel. In each synchronous commu-
nication round, all computers in parallel
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(1) send a message to each of their ports,

(2) wait while the messages are propagated along the commu-
nication channels,

(3) receive a message from each of their ports, and

(4) update their own state.

(f) After each round, a computer can stop and announce its local
output: in this case the local output is either 0 or 1.

(g) We require that all nodes eventually stop — the running time of
the algorithm is the number of communication rounds it takes
until all nodes have stopped.

(h) We require that

C = { v ∈ V : computer v produced output 1 }

is a feasible vertex cover for graph G, and its size is at most 2
times the size of a minimum vertex cover.

Sections 2.2 and 2.3 below go through the effort of formalising this idea.
While at it, we also address the following issues:

(a) It is easy to encode a subset of nodes using local outputs — but
how should we encode, for example, a subset of edges?

(b) Often it is useful to have not only local outputs but also a local
input for each computer. Then we could compose algorithms: first,
algorithm A1 solves a problem Π1; then algorithm A2 uses the
solution of Π1 to solve a problem Π2.

(c) Often we will focus our attention to certain families of graphs —
it is too much to expect that an algorithm could solve a problem
in any undirected graph G.
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a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 2.1: A port-numbered network N = (V, P, p). There are four nodes,
V = {a, b, c, d}; the degree of node a is 3, the degrees of nodes b and
c are 2, and the degree of node d is 1. The connection function p is
illustrated with arrows — for example, p(a, 3) = (d, 1) and conversely
p(d, 1) = (a, 3). This network is simple.

c, 3
c, 2
c, 1

a, 1
a, 2

b, 1
b, 2

d, 4
d, 3

d, 1
d, 2

Figure 2.2: A port-numbered network N = (V, P, p). There is a loop at
node a, as p(a, 1) = (a, 1), and another loop at node d, as p(d, 3) = (d, 4).
There are also multiple connections between c and d. Hence the network
is not simple.

2.2 Port-Numbered Network

A port-numbered network is a triple N = (V, P, p), where V is the set of
nodes, P is the set of ports, and p : P → P is a function that specifies the
connections between the ports. We make the following assumptions:

(a) Each port is a pair (v, i) where v ∈ V and i ∈ {1, 2, . . . }.

(b) The connection function p is an involution, that is, for any port
x ∈ P we have p(p(x)) = x .

See Figures 2.1 and 2.2 for illustrations.
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2.2.1 Terminology

If (v, i) ∈ P, we say that (v, i) is the port number i in node v. The
degree degN (v) of a node v ∈ V is the number of ports in v, that is,
degN (v) = |{ i ∈ N : (v, i) ∈ P }|.

Unless otherwise mentioned, we assume that the port numbers are
consecutive: for each v ∈ V there are ports (v, 1), (v, 2), . . . , (v, degN (v))
in P.

If (v, i) ∈ P, we use the shorthand notation p(v, i) for p((v, i)). If
p(u, i) = (v, j), we say that port (u, i) is connected to port (v, j); we also
say that port (u, i) is connected to node v, and that node u is connected
to node v.

If p(v, i) = (v, j) for some j, we say that there is a loop at v — note
that we may have i = j or i 6= j. If p(u, i1) = (v, j1) and p(u, i2) = (v, j2)
for some u 6= v, i1 6= i2, and j1 6= j2, we say that there are multiple
connections between u and v. A port-numbered network N = (V, P, p) is
simple if there are no loops or multiple connections.

2.2.2 Intuition

The intuitive idea behind the definition is that a simple port-numbered
network N is a model of a physical, real-world communication network:

(a) each node v ∈ V is a physical device (e.g., a computer or a router),

(b) node v has degN (v) communication ports, labelled with integers
1, 2, . . . , degN (v),

(c) p(u, i) = (v, j) indicates that there is a cable that connects the port
number i in device u with the port number j in device v.

2.2.3 Underlying Graph

For a simple port-numbered network N = (V, P, p) we define the underly-
ing graph G = (V, E) as follows: {u, v} ∈ E if and only if u is connected
to v in network N . Observe that degG(v) = degN (v) for all v ∈ V . See
Figure 2.3 for an illustration.
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(a) (b)

Figure 2.3: (a) An alternative drawing of the simple port-numbered
network N from Figure 2.1. (b) The underlying graph G of N .

1
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2 1
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1 13

(a) (b)

00

10

010 0

Figure 2.4: (a) A graph G = (V, E) and a matching M ⊆ E. (b) A port-
numbered network N ; graph G is the underlying graph of N . The node
labelling f : V → {0,1}∗ is an encoding of matching M .

2.2.4 Encoding Input and Output

In a distributed system, nodes are the active elements: they can read
input and produce output. Hence we will heavily rely on node labellings:
we can directly associate information with each node v ∈ V .

Assume that N = (V, P, p) is a simple port-numbered network, and
G = (V, E) is the underlying graph of N . We show that a node la-
belling f : V → Y can be used to represent the following graph-theoretic
structures; see Figure 2.4 for an illustration.

Node labelling g : V → X . Trivial: we can choose Y = X and f = g.

Subset of nodes X ⊆ V . We can interpret a subset of nodes as a node
labelling g : V → {0,1}, where g is the indicator function of the
set X . That is, g(v) = 1 iff v ∈ X .
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Edge labelling g : E→ X . For each node v, its label f (v) encodes the
values g(e) for all edges e incident to v, in the order of increasing
port numbers. More precisely, if v is a node of degree d, its label is
a vector f (v) ∈ X d . If (v, j) ∈ P and p(v, j) = (u, i), then element
j of vector f (v) is g({u, v}).

Subset of edges X ⊆ E. We can interpret a subset of edges as an edge
labelling g : E→ {0,1}.

Orientation H = (V, E′). For each node v, its label f (v) indicates which
of the edges incident to v are outgoing edges, in the order of
increasing port numbers.

It is trivial to compose the labellings. For example, we can easily
construct a node labelling that encodes both a subset of nodes and a
subset of edges.

Note that the above encoding is natural from the perspective of
distributed systems. For example, assume that we have used a node
labelling f : V → Y to encode a matching M ⊆ E. Now the label f (v) of
a node v ∈ V effectively describes M in the immediate neighbourhood
of v. In particular, f (v) indicates whether v is matched, i.e., whether
there is a node u such that {u, v} ∈ M , and if this is the case, which of
the ports is connected to u.

2.2.5 Distributed Graph Problems

A distributed graph problem Π associates a set of solutions Π(N) with
each simple port-numbered network N = (V, P, p). A solution f ∈ Π(N)
is a node labelling f : V → Y for some set Y of local outputs.

Using the encodings of Section 2.2.4, we can interpret all of the
following as distributed graph problems: independent sets, vertex cov-
ers, dominating sets, matchings, edge covers, edge dominating sets,
colourings, edge colourings, domatic partitions, edge domatic partitions,
factors, factorisations, orientations, and any combinations of these.

To make the idea more clear, we will give some more detailed
examples.
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(a) Vertex cover: f ∈ Π(N) if f encodes a vertex cover of the underly-
ing graph of N .

(b) Minimal vertex cover: f ∈ Π(N) if f encodes a minimal vertex
cover of the underlying graph of N .

(c) Minimum vertex cover: f ∈ Π(N) if f encodes a minimum vertex
cover of the underlying graph of N .

(d) 2-approximation of minimum vertex cover: f ∈ Π(N) if f encodes
a vertex cover C of the underlying graph of N ; moreover, the size
of C is at most two times the size of a minimum vertex cover.

(e) Orientation: f ∈ Π(N) if f encodes an orientation of the underly-
ing graph of N .

(f) 2-colouring: f ∈ Π(N) if f encodes a 2-colouring of the underlying
graph of N . Note that we will have Π(N) = ∅ if the underlying
graph of N is not bipartite.

2.3 Distributed Algorithms in the Port-Numbering
Model

We proceed to give a formal definition of a distributed algorithm in the
port-numbering model. In essence, a distributed algorithm is a state
machine. To run the algorithm on a certain port-numbered network, we
put a copy of the same state machine at each node of the network.

It should be noted that the formal definition of a distributed al-
gorithm plays a similar role as the definition of a Turing machine in the
study of non-distributed algorithms. A formally rigorous foundation is
necessary to study questions such as computability and computational
complexity. However, we do not usually present algorithms as Turing
machines, and the same is the case here. Once we become more famil-
iar with distributed algorithms, we will use a higher-level pseudocode
to define algorithms and omit the tedious details of translating the
high-level description into a state machine.
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2.3.1 State Machine

A distributed algorithm A is a state machine that consists of the following
components:

(i) InputA is the set of local inputs,

(ii) StatesA is the set of states,

(iii) OutputA ⊆ StatesA is the set of stopping states (local outputs), and

(iv) MsgA is the set of possible messages.

Moreover, for each possible degree d ∈ N we have the following func-
tions:

(v) initA,d : InputA→ StatesA initialises the state machine,

(vi) sendA,d : StatesA→Msgd
A constructs outgoing messages, and

(vii) receiveA,d : StatesA×Msgd
A → StatesA processes incoming mes-

sages.

We require that receiveA,d(x , y) = x whenever x ∈ OutputA. The idea
is that a node that has already stopped and printed its local output no
longer changes its state.

2.3.2 Execution

Let A be a distributed algorithm, let N = (V, P, p) be a port-numbered
network, and let f : V → InputA be a labelling of the nodes.

A state vector is a function x : V → StatesA. The execution of A on
(N , f ) is a sequence of state vectors x0, x1, . . . defined recursively as
follows.

The initial state vector x0 is defined by

x0(u) = initA,d( f (u)),

where u ∈ V and d = degN (u).
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Now assume that we have defined state vector x t−1. Define mt : P →
MsgA as follows. Assume that (u, i) ∈ P, (v, j) = p(u, i), and degN (v) = `.
Let mt(u, i) be component j of the vector sendA,`(x t−1(v)).

Intuitively, mt(u, i) is the message received by node u from port
number i on round t. Equivalently, it is the message sent by node v
to port number j on round t — recall that ports (u, i) and (v, j) are
connected.

For each node u ∈ V with d = degN (u), we define the message
vector

mt(u) =
�

mt(u, 1), mt(u, 2), . . . , mt(u, d)
�

.

Finally, we define the new state vector x t by

x t(u) = receiveA,d
�

x t−1(u), mt(u)
�

.

We say that algorithm A stops in time T if xT (u) ∈ OutputA for each
u ∈ V . We say that A stops if A stops in time T for some finite T . If A
stops in time T , we say that g = xT is the output of A, and xT (u) is the
local output of node u.

2.3.3 Solving Graph Problems

Now we will define precisely what it means if we say that a distributed
algorithm A solves a certain graph problem.

Let F be a family of simple undirected graphs. Let Π and Π′ be
distributed graph problems (see Section 2.2.5). We say that distributed
algorithm A solves problem Π on graph family F given Π′ if the following
holds: assuming that

(a) N = (V, P, p) is a simple port-numbered network,
(b) the underlying graph of N is in F , and
(c) the input f is in Π′(N),

the execution of algorithm A on (N , f ) stops and produces an output
g ∈ Π(N). If A stops in time T (|V |) for some function T : N→ N, we say
that A solves the problem in time T .
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Obviously, a minimum requirement is that A is compatible with the
encodings of Π and Π′. That is, each f ∈ Π′(N) has to be a function of
the form f : V → InputA, and each g ∈ Π(N) has to be a function of the
form g : V → OutputA.

Problem Π′ is often omitted. If A does not need the input f , we
simply say that A solves problem Π on graph family F . More precisely, in
this case we provide a trivial input f (v) = 0 for each v ∈ V .

In practice, we will often specify F , Π, Π′, and T implicitly. Here
are some examples of common parlance:

(a) Algorithm A finds a maximum matching in any path graph: here F
consists of all path graphs; Π′ is omitted; and Π is the problem of
finding a maximum matching.

(b) Algorithm A finds a maximal independent set in k-coloured graphs
in time k: here F consists of all graphs that admit a k-colouring;
Π′ is the problem of finding a k-colouring; Π is the problem of
finding a maximal independent set; and T is the constant function
T : n 7→ k.

2.4 Examples

In this section, we will give two examples of distributed algorithms that
solve distributed graph problems. We will give an informal presentation
of the algorithms — formalising the algorithms as state machines is left
as an exercise.

2.4.1 Maximal Matching in Two-Coloured Graphs

In this section we present a distributed algorithm BMM that finds a
maximal matching in a 2-coloured graph. That is, F is the family of
bipartite graphs, we are given a 2-colouring f : V → {1,2}, and the
algorithm will output an encoding of a maximal matching M ⊆ E.

In what follows, we say that a node v ∈ V is white if f (v) = 1, and it
is black if f (v) = 2. During the execution of the algorithm, each node is
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in one of the states

{UR, MR(i), US, MS(i) },

which stand for “unmatched and running”, “matched and running”,
“unmatched and stopped”, and “matched and stopped”, respectively. As
the names suggest, US and MS(i) are stopping states. If the state of a
node v is MS(i) then v is matched with the neighbour that is connected
to port i.

Initially, all nodes are in state UR. Each black node v maintains
variables M(v) and X (v), which are initialised

M(v)←∅, X (v)← {1,2, . . . , deg(v)}.

The algorithm is presented in Table 2.1; see Figure 2.5 for an illustration.
The following invariant is useful in order to analyse the algorithm.

Lemma 2.1. Assume that u is a white node, v is a black node, and
(u, i) = p(v, j). Then at least one of the following holds:

(a) element j is removed from X (v) before round 2i,
(b) at least one element is added to M(v) before round 2i.

Proof. Assume that we still have M(v) = ∅ and j ∈ X (v) after round
2i−2. This implies that v is still in state UR, and u has not sent ‘matched’
to v. In particular, u is in state UR or MR(i) after round 2i − 2. In the
former case, u sends ‘proposal’ to v on round 2i − 1, and j is added to
M(v) on round 2i−1. In the latter case, u sends ‘matched’ to v on round
2i− 1, and j is removed from X (v) on round 2i− 1.

Now it is easy to verify that the algorithm actually makes some
progress and eventually halts.

Lemma 2.2. Algorithm BMM stops in time 2∆ + 1, where ∆ is the
maximum degree of N.
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Figure 2.5: Algorithm BMM; the illustration shows the algorithm both
from the perspective of the port-numbered network N and from the per-
spective of the underlying graph G. Arrows pointing right are proposals,
and arrows pointing left are acceptances. Wide grey edges have been
added to matching M .
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Round 2k− 1, white nodes:

• State UR, k ≤ degN (v): Send ‘proposal’ to port (v, k).

• State UR, k > degN (v): Switch to state US.

• State MR(i): Send ‘matched’ to all ports.
Switch to state MS(i).

Round 2k− 1, black nodes:

• State UR: Read incoming messages.
If we receive ‘matched’ from port i, remove i from X (v).
If we receive ‘proposal’ from port i, add i to M(v).

Round 2k, black nodes:

• State UR, M(v) 6=∅: Let i =min M(v).
Send ‘accept’ to port (v, i). Switch to state MS(i).

• State UR, X (v) =∅: Switch to state US.

Round 2k, white nodes:

• State UR: Process incoming messages.
If we receive ‘accept’ from port i, switch to state MR(i).

Table 2.1: Algorithm BMM; here k = 1,2, . . . .
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Proof. A white node of degree d stops before or during round 2d + 1≤
2∆+ 1.

Now let us consider a black node v. Assume that we still have
j ∈ X (v) on round 2∆. Let (u, i) = p(v, j); note that i ≤ ∆. By
Lemma 2.1, at least one element has been added to M(v) before round
2∆. In particular, v stops before or during round 2∆.

Moreover, the output is correct.

Lemma 2.3. Algorithm BMM finds a maximal matching in any two-
coloured graph.

Proof. Let us first verify that the output correctly encodes a matching.
In particular, assume that u is a white node, v is a black node, and
p(u, i) = (v, j). We have to prove that u stops in state MS(i) if and only
if v stops in state MS( j). If u stops in state MS(i), it has received an
‘accept’ from v, and v stops in state MS( j). Conversely, if v stops in state
MS( j), it has received a ‘proposal’ from u and it sends an ‘accept’ to u,
after which u stops in state MS(i).

Let us then verify that M is indeed maximal. If this was not the
case, there would be an unmatched white node u that is connected to
an unmatched black node v. However, Lemma 2.1 implies that at least
one of them becomes matched before or during round 2∆.

2.4.2 Vertex Covers

We will now give a distributed algorithm VC3 that finds a 3-approxima-
tion of a minimum vertex cover; we will use algorithm BMM from the
previous section as a building block.

Let N = (V, P, p) be a port-numbered network. We will construct an-
other port-numbered network N ′ = (V ′, P ′, p′) as follows; see Figure 2.6
for an illustration. First, we double the number of nodes — for each
node v ∈ V we have two nodes v1 and v2 in V ′:

V ′ = { v1, v2 : v ∈ V },
P ′ = { (v1, i), (v2, i) : (v, i) ∈ P }.
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Figure 2.6: Construction of the virtual network N ′ in algorithm VC3.
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Then we define the connections. If p(u, i) = (v, j), we set

p′(u1, i) = (v2, j),

p′(u2, i) = (v1, j).

With these definitions we have constructed a network N ′ such that the
underlying graph G′ = (V ′, E′) is bipartite. We can define a 2-colouring
f ′ : V ′→ {1,2} as follows:

f ′(v1) = 1 and f (v2) = 2 for each v ∈ V.

Nodes of colour 1 are called white and nodes of colour 2 are called black.
Now N is our physical communication network, and N ′ is merely a

mathematical construction. However, the key observation is that we can
use the physical network N to efficiently simulate the execution of any
distributed algorithm A on (N ′, f ′). Each physical node v ∈ V simulates
nodes v1 and v2 in N ′:

(a) If v1 sends a message m1 to port (v1, i) and v2 sends a message
m2 to port (v2, i) in the simulation, then v sends the pair (m1, m2)
to port (v, i) in the physical network.

(b) If v receives a pair (m1, m2) from port (v, i) in the physical net-
work, then v1 receives message m2 from port (v1, i) in the simula-
tion, and v2 receives message m1 from port (v2, i) in the simula-
tion.

Note that we have here reversed the messages: what came from a
white node is received by a black node and vice versa.

In particular, we can take algorithm BMM of Section 2.4.1 and use
the network N to simulate it on (N ′, f ′). Note that network N is not
necessarily bipartite and we do not have any colouring of N ; hence we
would not be able to apply algorithm BMM on N .

Now we are ready to present algorithm VC3 that finds a vertex
cover:
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(a) Simulate algorithm BMM in the virtual network N ′. Each node v
waits until both of its copies, v1 and v2, have stopped.

(b) Node v outputs 1 if at least one of its copies v1 or v2 becomes
matched.

Clearly algorithm VC3 stops, as algorithm BMM stops. Moreover,
the running time is 2∆+ 1 rounds, where ∆ is the maximum degree
of N .

Let us now prove that the output is correct. To this end, let G = (V, E)
be the underlying graph of N , and let G′ = (V ′, E′) be the underlying
graph of N ′. Algorithm BMM outputs a maximal matching M ′ ⊆ E′ for
G′. Define the edge set M ⊆ E as follows:

M =
�

{u, v} ∈ E : {u1, v2} ∈ M ′ or {u2, v1} ∈ M ′
	

. (2.1)

See Figure 2.7 for an illustration. Furthermore, let C ′ ⊆ V ′ be the set of
nodes that are incident to an edge of M ′ in G′, and let C ⊆ V be the set
of nodes that are incident to an edge of M in G; equivalently, C is the
set of nodes that output 1. We make the following observations.

(a) Each node of C ′ is incident to precisely one edge of M ′.
(b) Each node of C is incident to one or two edges of M .
(c) Each edge of E′ is incident to at least one node of C ′.
(d) Each edge of E is incident to at least one node of C .

We are now ready to prove the main result of this section.

Lemma 2.4. Set C is a 3-approximation of a minimum vertex cover of G.

Proof. First, observation (d) above already shows that C is a vertex
cover of G.

To analyse the approximation ratio, let C∗ ⊆ V be a vertex cover of
G. By definition each edge of E is incident to at least one node of C∗; in
particular, each edge of M is incident to a node of C∗. Therefore C∗ ∩ C
is a vertex cover of the subgraph H = (C , M).

By observation (b) above, graph H has maximum degree at most 2.
Set C consists of all nodes in H. We will then argue that any vertex cover
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Figure 2.7: Set M ⊆ E (left) and matching M ′ ⊆ E′ (right).
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(b)(a)
Figure 2.8: (a) In a cycle with n nodes, any vertex cover contains at least
n/2 nodes. (b) In a path with n nodes, any vertex cover contains at least
n/3 nodes.

C∗ contains at least a fraction 1/3 of the nodes in H; see Figure 2.8
for an example. Then it follows that C is at most 3 times as large as a
minimum vertex cover.

To this end, let Hi = (Ci , Mi), i = 1,2, . . . , k, be the connected
components of H; each component is either a path or a cycle. Now
C∗i = C∗ ∩ Ci is a vertex cover of Hi .

A node of C∗i is incident to at most two edges of Mi . Therefore

|C∗i | ≥ |Mi|/2.

If Hi is a cycle, we have |Ci|= |Mi| and

|C∗i | ≥ |Ci|/2.

If Hi is a path, we have |Mi|= |Ci| − 1. If |Ci| ≥ 3, it follows that

|C∗i | ≥ |Ci|/3.
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The only remaining case is a path with two nodes, in which case trivially
|C∗i | ≥ |Ci|/2.

In conclusion, we have |C∗i | ≥ |Ci|/3 for each component Hi. It
follows that

|C∗| ≥ |C∗ ∩ C |=
k
∑

i=1

|C∗i | ≥
k
∑

i=1

|Ci|/3= |C |/3.

In summary, VC3 finds a 3-approximation of a minimum vertex cover
in any graph G. Moreover, if the maximum degree of G is small, the
algorithm is fast: we only need O(∆) rounds in a network of maximum
degree ∆.

2.5 Exercises

Exercise 2.1 (stopped nodes). In the formalism of this section, a node
that stops will repeatedly send messages to its neighbours. Show that
this detail is irrelevant, and we can always re-write algorithms so that
such messages are ignored. Put otherwise, a node that stops can also
stop sending messages.

More precisely, assume that A is a distributed algorithm that solves
problem Π on family F given Π′ in time T . Show that there is another
algorithm A′ such that (i) A′ solves problem Π on family F given Π′ in
time T +O(1), and (ii) in A′ the state transitions never depend on the
messages that are sent by nodes that have stopped.

Exercise 2.2 (formalising BMM). Present algorithm BMM from Sec-
tion 2.4.1 in a formally precise manner, using the definitions of Sections
2.2 and 2.3. Try to make MsgA as small as possible.

Exercise 2.3 (formalising VC3). Present algorithm VC3 from Section
2.4.2 in a formally precise manner, using the definitions of Sections 2.2
and 2.3. Try to make both MsgA and StatesA as small as possible.

Hint: For the purposes of algorithm VC3, it is sufficient to know
which nodes are matched in BMM — we do not need to know with
whom they are matched.
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Exercise 2.4 (more than two colours). Design a distributed algorithm
that finds a maximal matching in k-coloured graphs. You can assume
that k is a known constant.

Exercise 2.5 (analysis of VC3). Is the analysis of VC3 tight? That is,
is it possible to construct a network N such that VC3 outputs a vertex
cover that is exactly 3 times as large as the minimum vertex cover of the
underlying graph of N?

Exercise 2.6 (implementation). Using your favourite programming
language, implement a simulator that lets you play with distributed
algorithms in the port-numbering model. Implement BMM and VC3
and try them out in the simulator.

Exercise 2.7 (composition). Assume that algorithm A1 solves problem
Π1 on family F given Π0 in time T1, and algorithm A2 solves problem
Π2 on family F given Π1 in time T2.

Is it always possible to design an algorithm A that solves problem Π2
on family F given Π0 in time O(T1+ T2)?

Hint: This exercise is not trivial. If T1 was a constant function
T1(n) = c, we could simply run A1, and then start A2 at time c, using the
output of A1 as the input of A2. However, if T1 is an arbitrary function
of |V |, this strategy is not possible — we do not know in advance when
A1 will stop.
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Chapter 3

Impossibility Results

3.1 Introduction

In the previous chapter, we have seen examples of problems that can
be solved with a distributed algorithm in the port-numbering model.
However, there are many problems that cannot be solved.

As a very simple example, let N = (V, P, p) be a port-numbered
network with two nodes, u and v, that are connected to each other:

u, 1 v, 1

Assume that we are given a labelling f (u) = f (v) = 0. Now let A be
any distributed algorithm, and consider the execution of A on (N , f ).
As the local inputs of u and v are identical, we will have x0(u) = x0(v)
after the initialisation, that is, nodes u and v have identical states before
round 1. It follows that the message sent by u to v in round 1 is the
same as the message sent by v to u in round 1. Therefore we will have
x1(u) = x1(v), that is, nodes u and v have identical states after round 1.
By induction, we have x t(u) = x t(v) for any round t. In particular, if A
stops in time T , we will have xT (u) = xT (v), i.e., both u and v produce
the same local output.

This reasoning already shows that A cannot produce a proper colour-
ing, a maximal independent set, a minimum vertex cover, etc. — in each
of these cases nodes u and v would have to produce distinct outputs.
We generalise this observation in Section 3.2, when we introduce a very
useful graph-theoretic tool, covering maps.

There are also many problems that can be solved with a distributed
algorithm, but it requires a lot of time. Techniques that are useful in
proving time lower bounds will be introduced in Section 3.3.
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3.2 Covering Maps

A covering map is a topological concept that finds applications in many
areas of mathematics, including graph theory. We will focus on one
special case: covering maps between port-numbered networks.

3.2.1 Definition

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be port-numbered networks, and
let φ : V → V ′. We say that φ is a covering map from N to N ′ if the
following holds:

(a) φ is a surjection: φ(V ) = V ′.

(b) φ preserves degrees: degN (v) = degN ′(φ(v)) for all v ∈ V .

(c) φ preserves connections and port numbers: p(u, i) = (v, j)
implies p′(φ(u), i) = (φ(v), j).

See Figures 3.1–3.3 for examples.
We can also consider labelled networks, for example, networks with

local inputs. Let f : V → X and f ′ : V ′→ X . We say that φ is a covering
map from (N , f ) to (N ′, f ′) if φ is a covering map from N to N ′ and the
following holds:

(d) φ preserves labels: f (v) = f ′(φ(v)) for all v ∈ V .

3.2.2 Covers and Executions

Now we will study covering maps from the perspective of distributed
algorithms. The basic idea is that a covering map φ from N to N ′ fools
any distributed algorithm A: a node v in N is indistinguishable from the
node φ(v) in N ′.

Without further ado, we state the main result and prove it — many
applications and examples will follow.

Theorem 3.1. Assume that
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N:

N’:

a1, 3
a1, 2
a1, 1

b1, 1
b1, 2

c1, 1
c1, 2

d1, 1

a2, 3
a2, 2
a2, 1

b2, 1
b2, 2

c2, 1
c2, 2

d2, 1

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 3.1: There is a covering map φ from N to N ′ that maps ai 7→ a,
bi 7→ b, ci 7→ c, and di 7→ d for each i ∈ {1, 2}.
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N:

N’:

v1, 1
v1, 2

v3, 1
v3, 2

v2, 1
v2, 2

v, 1
v, 2

Figure 3.2: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2,3}. Here N is a simple port-numbered network but N ′ is
not.

N:

N’: v, 1

v1, 1 v2, 1

Figure 3.3: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2}. Again, N is a simple port-numbered network but N ′ is
not.
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(a) A is a distributed algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are port-numbered networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions, and

(d) φ : V → V ′ is a covering map from (N , f ) to (N ′, f ′).

Let

(e) x0, x1, . . . be the execution of A on (N , f ), and

(f) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . and each v ∈ V we have x t(v) = x ′t(φ(v)).

Proof. We will use the notation of Section 2.3.2; the symbols with a
prime refer to the execution of A on (N ′, f ′). In particular, m′t(u

′, i) is
the message received by u′ ∈ V ′ from port i in round t in the execution
of A on (N ′, f ′), and m′t(u

′) is the vector of messages received by u′.
The proof is by induction on t. To prove the base case t = 0, let

v ∈ V , d = degN (v), and v′ = φ(v); we have

x ′0(v
′) = initA,d( f

′(v′)) = initA,d( f (v)) = x0(v).

For the inductive step, let (u, i) ∈ P, (v, j) = p(u, i), d = degN (u),
` = degN (v), u′ = φ(u), and v′ = φ(v). Let us first consider the
messages sent by v and v′; by the inductive assumption, these are equal:

sendA,`(x
′
t−1(v

′)) = sendA,`(x t−1(v)).

A covering map φ preserves connections and port numbers: (u, i) =
p(v, j) implies (u′, i) = p′(v′, j). Hence mt(u, i) is component j of
sendA,`(x t−1(v)), and m′t(u

′, i) is component j of sendA,`(x ′t−1(v
′)). It

follows that mt(u, i) = m′t(u
′, i) and mt(u) = m′t(u

′). Therefore

x ′t(u
′) = receiveA,d

�

x ′t−1(u
′), m′t(u

′)
�

= receiveA,d
�

x t−1(u), mt(u)
�

= x t(u).

In particular, if the execution of A on (N , f ) stops in time T , the exe-
cution of A on (N ′, f ′) stops in time T as well, and vice versa. Moreover,
φ preserves the local outputs: xT (v) = x ′T (φ(v)) for all v ∈ V .
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3.2.3 Examples

We will give representative examples of negative results that we can
easily derive from Theorem 3.1. First, we will observe that a distributed
algorithm cannot break symmetry in a cycle — unless we provide some
symmetry-breaking information in local inputs.

Lemma 3.2. Let G = (V, E) be a cycle graph, let A be a distributed
algorithm, and let f be a constant function f : V → {0}. Then there is a
simple port-numbered network N = (V, P, p) such that

(a) the underlying graph of N is G, and

(b) if A stops on (N , f ), the output is a constant function g : V → {c}
for some c.

Proof. Label the nodes V = { v1, v2, . . . , vn } along the cycle so that the
edges are

E =
�

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
	

.

Choose the port numbering p as follows:

p : (v1, 1) 7→ (v2, 2), (v2, 1) 7→ (v3, 2), . . . ,

(vn−1, 1) 7→ (vn, 2), (vn, 1) 7→ (v1, 2).

See Figure 3.2 for an illustration in the case n= 3.
Define another port-numbered network N ′ = (V ′, P ′, p′) with V ′ =

{v}, P ′ = {(v, 1), (v, 2)}, and p(v, 1) = (v, 2). Let f ′ : V ′→ {0}. Define a
function φ : V → V ′ by setting φ(vi) = v for each i.

Now we can verify that φ is a covering map from (N , f ) to (N ′, f ′).
Assume that A stops on (N , f ) and produces an output g. By The-
orem 3.1, A also stops on (N ′, f ′) and produces an output g ′. Let
c = g ′(v). Now

g(vi) = g ′(φ(vi)) = g ′(v) = c

for all i.
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In the above proof, we never assumed that the execution of A on
N ′ makes any sense — after all, N ′ is not even a simple port-numbered
network, and there is no underlying graph. Algorithm A was never
designed to be applied to such a strange network with only one node.
Nevertheless, the execution of A on N ′ is formally well-defined, and
Theorem 3.1 holds. We do not really care what A outputs on N ′, but the
existence of a covering map can be used to prove that the output of A
on N has certain properties. It may be best to interpret the execution
of A on N ′ as a thought experiment, not as something that we would
actually try to do in practice.

Lemma 3.2 has many immediate corollaries.

Corollary 3.3. Let F be the family of cycle graphs. Then there is no
distributed algorithm that solves any of the following problems on F :

(a) maximal independent set,
(b) 1.999-approximation of a minimum vertex cover,
(c) 2.999-approximation of a minimum dominating set,
(d) maximal matching,
(e) vertex colouring,
(f) weak colouring,
(g) edge colouring.

Proof. In each of these cases, there is a graph G ∈ F such that a constant
function is not a feasible solution in the network N that we constructed
in Lemma 3.2.

For example, consider the case of dominating sets; other cases
are similar. Assume that G = (V, E) is a cycle with 3k nodes. Then
a minimum dominating set consists of k nodes — it is sufficient to
take every third node. Hence a 2.999-approximation of a minimum
dominating set consists of at most 2.999k < 3k nodes. A solution D = V
violates the approximation guarantee, as D has too many nodes, while
D =∅ is not a dominating set. Hence if A outputs a constant function,
it cannot produce a 2.999-approximation of a minimum dominating
set.
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Lemma 3.4. There is no algorithm that finds a weak colouring for any
3-regular graph.

Proof. Again, we are going to apply the standard technique: pick a
suitable 3-regular graph G, find a port-numbered network N that has G
as its underlying graph, find a smaller network N ′ such that we have a
covering map φ from N to N ′, and apply Theorem 3.1.

However, it is not immediately obvious which 3-regular graph would
be appropriate; hence we try the simplest possible case first. Let G =
(V, E) be the complete graph on four nodes: V = { s, t, u, v }, and we
have an edge between any pair of nodes; see Figure 3.4. The graph is
certainly 3-regular: each node is adjacent to the other three nodes.

Now it is easy to verify that the edges of G can be partitioned into
a 2-factor X and a 1-factor Y . The 2-factor consists of a cycle and a
1-factor consists of disjoint edges. We can use the factors to guide the
selection of port numbers in N .

In the cycle induced by X , we can choose symmetric port numbers
using the same idea as what we had in the proof of Lemma 3.2; one end
of each edge is connected to port 1 while the other end is connected to
port 2. For the edges of the 1-factor Y , we can assign port number 3 at
each end. We have constructed the port-numbered network N that is
illustrated in Figure 3.4.

Now we can verify that there is a covering map φ from N to N ′,
where N ′ is the network with one node illustrated in Figure 3.4. There-
fore in any algorithm A, if we do not have any local inputs, all nodes of
N will produce the same output. However, a constant output is not a
weak colouring of G.

In the above proof, we could have also partitioned the edges of G
into three 1-factors, and we could have used the 1-factorisation to guide
the selection of port numbers. However, the above technique is more
general: there are 3-regular graphs that do not admit a 1-factorisation
but that can be partitioned into a 1-factor and a 2-factor.
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X
Y

Y
X

X
s

X

t

uv

N:

N’:

s, 3
s, 2
s, 1

v, 3
v, 2
v, 1

u, 3
u, 2
u, 1

t, 3
t, 2
t, 1

G:

x, 3
x, 2
x, 1

Figure 3.4: Graph G is the complete graph on four nodes. The edges of G
can be partitioned into a 2-factor X and a 1-factor Y . Network N has G
as its underlying graph, and there is a covering map φ from N to N ′
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N’:

N3: N4:

φ3 φ4

Figure 3.5: The structure of the proof of Lemma 3.5.

So far we have used only one covering map in our proofs; the
following lemma gives an example of the use of more than one covering
map.

Lemma 3.5. Let F = {G3, G4 }, where G3 is the cycle graph with 3 nodes,
and G4 is the cycle graph with 4 nodes. There is no distributed algorithm
that solves the following problem Π on F : in Π(G3) all nodes output 3
and in Π(G4) all nodes output 4.

Proof. We again apply the construction of Lemma 3.2; for each i ∈ {3, 4},
let Ni be the symmetric port-numbered network that has Gi as the
underlying graph.

Now it would be convenient if we could construct a covering map
from N4 to N3; however, this is not possible (see the exercises). Therefore
we proceed as follows. Construct a one-node network N ′ as in the proof
of Lemma 3.2, construct the covering map φ3 from N3 to N ′, and
construct the covering map φ4 from N4 to N ′; see Figure 3.5. The local
inputs are assumed to be all zeroes.

Let A be a distributed algorithm, and let c be the output of the only
node of N ′. If we apply Theorem 3.1 to φ3, we conclude that all nodes
of N3 output c; if A solves Π on G3, we must have c = 3. However, if
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we apply Theorem 3.1 to φ4, we learn that all nodes of N4 also output
c = 3, and hence A cannot solve Π on F .

We have learned that a distributed algorithm cannot determine the
length of a cycle. In particular, a distributed algorithm cannot determine
if a graph is bipartite.

3.3 Local Neighbourhoods

Covering maps can be used to argue that a problem cannot be solved
at all. Now we will study a technique that can be used to argue that a
problem cannot be solved fast.

Some problems can be solved very quickly with a distributed al-
gorithm. For example, algorithm VC3 from Section 2.4.2 runs in time
O(∆), where ∆ is the maximum degree of the graph. If we focus on a
family of bounded-degree graphs, i.e., ∆= O(1), this is a constant-time
algorithm — the running time of the algorithm is independent of the
size of the graph.

3.3.1 An Introductory Example

However, some problems cannot be solved quickly with any distributed
algorithm. As an introductory example, let F consist of all path graphs,
and let Π be the problem of finding a 2-edge colouring.

1 21212

1 1212

With a little thought, we can design a distributed algorithm A that
solves Π on F . Informally, algorithm A proceeds as follows. First, we
find the midpoint of the graph. This is possible if nodes of degree 1
generate a token that is forwarded by nodes of degree 2. Eventually, the
two tokens meet at the midpoint of the graph. There are two cases:
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1 2 1 2 1 2 1 2 1 2 1 2
uv

1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 1

v1 v2v–2 v–1

u1 u2u–2 u–1

v0

u0

Figure 3.6: Nodes u and v have isomorphic radius-r neighbourhoods in a
path of length 2r + 3; in this illustration, r = 2.

(a) The midpoint is a node v, i.e., we have an even path. Then we can
use the port numbers of v to break symmetry: the edge connected
to port i is labelled with colour i. Then we can assign alternating
colours to all other edges, starting from v.

(b) The midpoint is an edge {u, v}, i.e., we have an odd path. Then
we can assign colour 1 to {u, v} and alternating colours to all other
edges, starting from both u and v.

The algorithm certainly finds a correct solution — in any path graph,
the edges will be properly coloured with colours 1 and 2. However, the
running time of the algorithm is Θ(n), where n is the number of nodes.

We will now argue that no algorithm can find a 2-edge colouring in
time o(n). To this end, assume that G is a path of length 2r + 3, and
let N be a simple port-numbered network that has G as the underlying
graph; choose the port numbers as shown in Figure 3.6.

Now let u and v be the two nodes that are incident to the midpoint
of the path. Let us label the nodes in the radius-r neighbourhoods of u
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and v as we have shown in Figure 3.6:

ballG(u, r) = {u−r , u−r+1, . . . , ur },
ballG(v, r) = { v−r , v−r+1, . . . , vr }.

In particular, v = v0 and u= u0.
Now assume that we have a distributed algorithm A, and we apply it

to N . Initially, we have

x0(ui) = x0(vi) for all −r ≤ i ≤ r.

It follows that the messages sent by ui and vi on round 1 are identical
for all −r ≤ i ≤ r. Therefore the messages received by ui and vi on
round 1 are identical for all −r+1≤ i ≤ r−1 (note that ur and vr may
receive different messages). It follows that after round 1 we have

x1(ui) = x1(vi) for all −r + 1≤ i ≤ r − 1.

By induction, after round t ≤ r we have

x t(ui) = x t(vi) for all −r + t ≤ i ≤ r − t.

In particular,
xr(u) = xr(u0) = xr(v0) = xr(v).

Hence if A stops in time r, both u and v produce the same output.
However, this contradicts with the definition of problem Π. Therefore
the running time of A has to be larger than r in a graph with 2r + 4
nodes.

In what follows, we will formalise and generalise the ideas that we
used in this example.

3.3.2 Definitions

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be simple port-numbered networks,
with the underlying graphs G = (V, E) and G′ = (V ′, E′). Fix the local
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u v

Figure 3.7: Nodes u and v have isomorphic radius-2 neighbourhoods,
provided that we choose the port numbers appropriately. Therefore in
any algorithm A the state of u equals the state of v at time t = 0,1,2.
However, at time t = 3, 4, . . . this does not necessarily hold.

inputs f : V → Y and f ′ : V ′ → Y , a pair of nodes v ∈ V and v′ ∈ V ′,
and a radius r ∈ N. Define the radius-r neighbourhoods

U = ballG(v, r), U ′ = ballG′(v
′, r).

We say that (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r neighbour-
hoods if there is a bijection ψ: U → U ′ with ψ(v) = v′ such that

(a) ψ preserves degrees: degN (v) = degN ′(ψ(v)) for all v ∈ U .

(b) ψ preserves connections and port numbers: p(u, i) = (v, j) if and
only if p′(ψ(u), i) = (ψ(v), j) for all u, v ∈ U .

(c) ψ preserves local inputs: f (v) = f ′(ψ(v)) for all v ∈ U .

The function ψ is called an r-neighbourhood isomorphism from (N , f , v)
to (N ′, f ′, v′). See Figure 3.7 for an example.

3.3.3 Local Neighbourhoods and Executions

Theorem 3.6. Assume that

(a) A is a distributed algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are simple port-numbered
networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions,
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(d) v ∈ V and v′ ∈ V ′,

(e) (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r neighbourhoods.

Let

(f) x0, x1, . . . be the execution of A on (N , f ), and

(g) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . , r we have x t(v) = x ′t(v
′).

Proof. Let G and G′ be the underlying graphs of N and N ′, respectively.
We will prove the following stronger claim by induction: for each t =
0,1, . . . , r, we have x t(u) = x ′t(ψ(u)) for all u ∈ ballG(v, r − t).

To prove the base case t = 0, let u ∈ ballG(v, r), d = degN (u), and
u′ =ψ(u); we have

x ′0(u
′) = initA,d( f

′(u′)) = initA,d( f (u)) = x0(u).

For the inductive step, assume that t ≥ 1 and

u ∈ ballG(v, r − t).

Let u′ =ψ(u). By inductive assumption, we have

x ′t−1(u
′) = x t−1(u).

Now consider a port (u, i) ∈ P. Let (s, j) = p(u, i). We have {s, u} ∈ E,
and therefore

distG(s, v)≤ distG(s, u) + distG(u, v)≤ 1+ r − t.

Define s′ =ψ(s). By inductive assumption we have

x ′t−1(s
′) = x t−1(s).

The neighbourhood isomorphismψ preserves the port numbers: (s′, j) =
p′(u′, i). Hence all of the following are equal:
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(a) the message sent by s to port j on round t,
(b) the message sent by s′ to port j on round t,
(c) the message received by u from port i on round t,
(d) the message received by u′ from port i on round t.

As the same holds for any port of u, we conclude that

x ′t(u
′) = x t(u).

We will often consider the case that N = N ′ but v 6= v′ when we apply
Theorem 3.6; we have already seen an example of this in Section 3.3.1.

3.4 Exercises

We use the following definition in the exercises. A graph G is homogen-
eous if there are port-numbered networks N and N ′ and a covering map
φ from N to N ′ such that N is simple, the underlying graph of N is G,
and N ′ has only one node. For example, Lemma 3.2 shows that all cycle
graphs are homogeneous.

Exercise 3.1 (finding port numbers). Consider the graph G and network
N ′ illustrated in Figure 3.8. Find a simple port-numbered network N
such that N has G as the underlying graph and there is a covering map
from N to N ′.

Exercise 3.2 (homogeneity). Assume that G is homogeneous and it
contains a node with degree at least two. Give several examples of
graph problems that cannot be solved with any distributed algorithm in
any family of graphs that contains G.

Exercise 3.3 (4-regular and homogeneous). Show that the graph illus-
trated in Figure 3.9 is homogeneous.

Hint: Apply the result of Exercise 1.9.

Exercise 3.4 (3-regular and homogeneous). Show that the graph illus-
trated in Figure 3.8 is homogeneous.

Hint: Find a 1-factor.
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Figure 3.8: Graph G and network N ′ for Exercises 3.1 and 3.4.

Figure 3.9: Graph for Exercise 3.3.
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Exercise 3.5 (even degrees). Show that any 2k-regular graph is homo-
geneous, for any positive integer k.

Exercise 3.6 (complete graphs). Show that any complete graph is ho-
mogeneous.

Hint: Show that if we have a complete graph with an even number
of nodes, there is a 1-factorisation.

Exercise 3.7 (path graphs). In this exercise, the graph familyF consists
of path graphs.

(a) Show that it is possible to find a maximum matching in time
3n+O(1).

(b) Show that it is not possible to find a maximum matching in time
n/3+O(1).

(c) Show that it is not possible to find a 2-colouring.

(d) Show that it is not possible to find a weak 2-colouring.

(e) Is it possible to find a minimum vertex cover? If yes, how fast?

(f) Is it possible to find a minimum dominating set? If yes, how fast?

(g) Is it possible to find a minimum edge dominating set? If yes, how
fast?

(h) How fast is it possible to find a 2-approximation of a minimum
vertex cover?

(i) How fast is it possible to find a 2-approximation of a minimum
dominating set?

Exercise 3.8 (path graphs with auxiliary information). In this exercise,
the graph family F consists of path graphs.

(a) Assume that we are given a 4-colouring. Show that it is possible
to find a 3-colouring in time 1.

(b) Assume that we are given a 4-colouring. Show that it is not
possible to find a 3-colouring in time 0.
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v1 v2

G1 G2

Figure 3.10: Graphs for Exercise 3.9.

(c) Assume that we are given a 4-colouring. Show that it is possible
to find a 2-colouring in time 3n+O(1).

(d) Assume that we are given a 4-colouring. Show that it is not
possible to find a 2-colouring in time n/3+O(1).

(e) Assume that we are given a 4-colouring. How fast is it possible to
find a weak 2-colouring?

(f) Assume that we are given an orientation. Show that it is possible
to find a 2-colouring in time 3n+O(1).

(g) Assume that we are given an orientation. Show that it is not
possible to find a 2-colouring in time n/3+O(1).

Exercise 3.9 (combining techniques). Consider the graphs G1 and G2
illustrated in Figure 3.10. Show that there are simple port-numbered
networks N1 and N2 such that Ni has Gi as the underlying graph, and
in any distributed algorithm with running time 2 the output of v1 in N1
equals the output of v2 in N2.

Hint: We need to combine the results of Theorems 3.1 and 3.6.
For i = 1,2, construct a network N ′i and a covering map φi from N ′i
to Ni. Let v′i ∈ φ

−1
i (vi). Show that v′1 and v′2 have isomorphic radius-

2 neighbourhoods; hence v′1 and v′2 produce the same output. Then
use the covering maps to argue that v1 and v2 also produce the same
outputs. In the construction of N ′1, you will need to eliminate the 3-cycle;
otherwise v′1 and v′2 cannot have isomorphic neighbourhoods.
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Figure 3.11: Graph G for Exercise 3.10.

Exercise 3.10 (3-regular and not homogeneous). Consider the graph G
illustrated in Figure 3.11.

(a) Show that G is not homogeneous.

(b) Present a distributed algorithm A with the following property: if
N is a simple port-numbered network that has G as the underlying
graph, and we execute A on N , then A stops and produces an
output where at least one node outputs 0 and at least one node
outputs 1.

(c) Find a simple port-numbered network N that has G as the under-
lying graph, a port-numbered network N ′, and a covering map φ
from N to N ′ such that N ′ has the smallest possible number of
nodes.

Hint: Show that if a 3-regular graph is homogeneous, then it has a
1-factor. Show that G does not have any 1-factor.

Exercise 3.11 (covers with covers). What is the connection between
covering maps and algorithm VC3 of Section 2.4.2?

Exercise 3.12 (covers and connectivity). Assume that N = (V, P, p) and
N ′ = (V ′, P ′, p′) are simple port-numbered networks such that there is a
covering map φ from N to N ′. Let G be the underlying graph of network
N , and let G′ be the underlying graph of network N ′.

(a) Is it possible that G is connected and G′ is not connected?

(b) Is it possible that G is not connected and G′ is connected?
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Exercise 3.13 (k-fold covers). Assume that N = (V, P, p) and N ′ =
(V ′, P ′, p′) are simple port-numbered networks, assume that the underly-
ing graphs of N and N ′ are connected, and assume that φ : V → V ′ is a
covering map from N to N ′.

Prove that there exists a positive integer k such that the following
holds: |V |= k|V ′| and for each node v′ ∈ V ′ we have |φ−1(v′)|= k.

Show that the claim does not necessarily hold if the underlying
graphs are not connected.

Exercise 3.14 (isomorphisms). Construct port-numbered networks N1
= (V1, P1, p1) and N2 = (V2, P2, p2) such that |V1| = |V2|, both N1 and
N2 are simple, the underlying graphs of N1 and N2 are connected, the
underlying graphs of N1 and N2 are not isomorphic, and the following
holds:

(a) There is a port-numbered network N , a covering map φ1 from N1
to N , and a covering map φ2 from N2 to N .

(b) There is a port-numbered network N ′, a covering map φ′1 from N ′

to N1, and a covering map φ′2 from N ′ to N2.

Exercise 3.15 (3-regular graphs). Is it possible to construct connected
3-regular graphs G = (V, E) and G′ = (V ′, E′) with |V | = |V ′| such that
the following holds: if N and N ′ are simple port-numbered networks
that have G and G′ as their underlying graphs, then there is no covering
map from N to N ′?
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Chapter 4

Combinatorial Optimisation

4.1 Introduction

In this section, we will have a closer look at two optimisation problems:
vertex covers and edge dominating sets.

In Section 2.4.2 we have already seen that it is possible to find a 3-
approximation of a minimum vertex cover with a distributed algorithm.
In Section 4.2, we will present a better algorithm that achieves the
approximation factor of 2. Recall that this is optimal: Corollary 3.3
shows that it is not possible to find a 1.999-approximation with any
distributed algorithm.

Once we have presented the vertex cover algorithm, we will turn
our attention to the edge dominating set problem. This is the focus of
the exercises in Section 4.3. Among others, we will design an algorithm
that finds a 4-approximation of a minimum edge dominating set.

Throughout this chapter, we will design algorithms for bounded-
degree graphs: we show that for each value of ∆, we can design an
algorithm A∆ that solves the problem in any graph of maximum degree
at most ∆. The general case is left as an exercise.

4.2 Vertex Cover

In Exercise 1.3 we saw that if we are given a maximal matching, it is easy
to find a 2-approximation of a minimum vertex cover. Unfortunately,
Corollary 3.3 shows that we cannot find a maximal matching with a
distributed algorithm.

In this section we will study so-called maximal edge packings. Max-
imal edge packings are closely related to maximal matchings — in
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particular, given a maximal edge packing, it is easy to find a 2-approx-
imation of a minimum vertex cover. However, there is one crucial
difference: while it is impossible to find maximal matchings with dis-
tributed algorithms, there is a distributed algorithm MEP that is able to
find maximal edge packings.

To design algorithm MEP, we first introduce the concept of a half-
saturating edge packing in Section 4.2.4. We design a distributed al-
gorithm HSEP that finds a half-saturating edge packing. Then we use
HSEP as a subroutine in algorithm MEP. Finally, algorithm VC2 uses
algorithm MEP as a subroutine to find a 2-approximation of a minimum
vertex cover.

4.2.1 Edge Packings

Let G = (V, E) be a graph and let f : E → [0,1] be a function that
assigns a real number f (e) to each edge e ∈ E. We define the shorthand
notation

f [v] =
∑

e∈E: v∈e

f (e).

That is, f [v] is the sum of values f (e) over all edges e that are incident
to v.

We say that f is an edge packing if f [v] ≤ 1 for all v ∈ V . A node
v ∈ V is saturated if f [v] = 1, and an edge e = {u, v} ∈ E is saturated
if at least one of the nodes u and v is saturated. An edge packing f
is maximal if all edges are saturated — see Figures 4.1 and 4.2 for
examples.

4.2.2 Properties

The following facts are easy to verify:

(a) The constant function f : e 7→ 0 is an edge packing. However, it is
not a maximal edge packing unless E =∅.
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Figure 4.1: Maximal edge packings. Saturated nodes have been high-
lighted.
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Figure 4.2: Maximal edge packings. Saturated nodes have been high-
lighted.
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(b) If G is a d-regular graph, then the constant function f : e 7→ 1/d
is a maximal edge packing. We will have f [v] = 1 for all nodes,
that is, all nodes are saturated.

(c) Let M ⊆ E be a subset of edges and let f : E → {0,1} be the
indicator function of M , that is, f (e) = 1 if and only if e ∈ M . Now
f is an edge packing if and only if M is a matching. Moreover, f
is a maximal edge packing if and only if M is a maximal matching.
A node v is saturated if and only if it is incident to an edge of M .

(d) Assume that f is an edge packing and f is not maximal. Then
there is an edge e0 = {u, v} ∈ E such that neither u nor v is
saturated. Let

ε=min
�

1− f [u], 1− f [v]
	

.

We have ε > 0. Define the function

g(e) =

(

f (e) + ε if e = e0,

f (e) otherwise.

Now g is also an edge packing, and edge e0 is saturated in g.

We will need the following technical lemma shortly.

Lemma 4.1. Let G = (V, E) be a graph, let f : E → [0,1] be an edge
packing, and let X ⊆ V be a subset of nodes. Then

∑

v∈X

f [v] =
∑

e∈E

f (e) |e ∩ X |.

Proof. By definition, we have
∑

v∈X

f [v] =
∑

v∈X

∑

e∈E: v∈e

f (e).

Now it is easy to verify that in the double sum, each edge e ∈ E is
counted precisely |e ∩ X | times.
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4.2.3 Edge Packings and Vertex Covers

Let G = (V, E) be a graph, and let f be a maximal edge packing in G.
Let C ⊆ V consist of all saturated nodes.

Lemma 4.2. Set C is a vertex cover.

Proof. Let e ∈ E. By assumption, f is maximal, and therefore e is
saturated, i.e., at least one endpoint of e is in C .

Lemma 4.3. Set C is a 2-approximation of a minimum vertex cover.

Proof. Let C∗ be a minimum vertex cover; we will prove that |C | ≤ 2|C∗|.
By definition, we have f [v] = 1 for all v ∈ C . Therefore

|C |=
∑

v∈C

f [v].

By Lemma 4.1, we have
∑

v∈C

f [v] =
∑

e∈E

f (e) |e ∩ C |.

As C contains at most two endpoints of each edge and C∗ contains at
least one endpoint of each edge, we have

∑

e∈E

f (e) |e ∩ C | ≤ 2
∑

e∈E

f (e) |e ∩ C∗|.

Now we can apply Lemma 4.1 again to obtain

2
∑

e∈E

f (e) |e ∩ C∗|= 2
∑

v∈C∗
f [v].

Finally, as f is an edge packing, we have f [v]≤ 1, which implies

2
∑

v∈C∗
f [v]≤ 2|C∗|.
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Informally, we have shown that maximal edge packings are as useful
as maximal matching from the perspective of the vertex cover problem:
both yield a 2-approximation of a minimum vertex cover.

Moreover, it also appears that maximal edge packings could be easier
to find in a distributed setting. After all, we know that we cannot find a
maximal matching in a cycle, while it is trivial to find a maximal edge
packing in a cycle — set f (e) = 1/2 for each edge e.

In the following sections, we show that this is indeed the case: there
is a distributed algorithm that finds a maximal edge packing in any
graph. One such algorithm is a recursive scheme that is based on what
we call half-saturating edge packings.

4.2.4 Half-Saturating Edge Packings

Let G = (V, E) be a graph and let f : E→ [0, 1] be an edge packing. We
say that f is half-saturating if all of the following hold:

(a) f (e) ∈ {0, 1/2, 1} for each e ∈ E,

(b) f [v] = 0 implies that f [u] = 1 for all neighbours u of v,

(c) f [v] = 1/2 implies that f [u] = 1 for at least one neighbour u
of v.

Note that in a half-saturating edge packing we have f [v] ∈ {0, 1/2, 1}
for each node v ∈ V ; see Figure 4.3 for an example.

The definition of a half-saturating edge packing may sound artificial
and pointless. However, we will soon see that (i) it is easy to find half-
saturating edge packings, and (ii) if we have an algorithm A that finds a
half-saturating edge packing, we can find a maximal edge packing by a
recursive application of A.

Half-saturating edge packings are not necessarily maximal edge
packings. However, unsaturated edges have very specific properties.

Lemma 4.4. If f : E → [0,1] is a half-saturating edge packing, and an
edge e = {u, v} ∈ E is not saturated, then we have f [u] = f [v] = 1/2.

69



0.5

0.00.5

0.0
0.0

1.0

0.0
0.0

0.0
0.0

0.0
0.0

0.5

0.5

0.0

f[v] = 0
f[v] = 1/2
f[v] = 1

Figure 4.3: Graph G and a half-saturating edge packing f .

70



Proof. If we had f [u] = 1 or f [v] = 1, edge e would be saturated.
If we had f [u] = 0, the definition of a half-saturated edge packing
would imply f [v] = 1 and vice versa. Hence the only remaining case is
f [u] = f [v] = 1/2.

Motivated by the above lemma, let us focus on the subgraph G f
induced by the unsaturated edges. More formally, define

G f = (Vf , E f ),

E f =
�

{u, v} ∈ E : f [u] = f [v] = 1/2
	

,

Vf =
⋃

E f .

Now E f is the set of unsaturated edges and G f is the subgraph of G
induced by E f ; see Figure 4.4 for an illustration.

We will now make two observations: (i) the maximum degree of G f
is strictly smaller than the maximum degree of G, and (ii) if we can find
a maximal edge packing for the subgraph G f , we can easily construct a
maximal edge packing for the original graph G.

Lemma 4.5. If E f is non-empty, the maximum degree of G f is strictly
smaller than the maximum degree of G.

Proof. Let u ∈ Vf . Then we have f [u] = 1/2. By the definition of
a half-saturating edge packing, there is an edge e = {u, v} ∈ E with
f [v] = 1. That is, e /∈ E f . Hence the degree of u in G f is strictly smaller
than the degree of u in G. In particular, if the maximum degree of G is
at most ∆, the maximum degree of G f is at most ∆− 1.

Lemma 4.6. Assume that g : E f → [0,1] is a maximal edge packing for
G f . Define the function h: E→ [0,1] by

h(e) =

(

f (e) + g(e)/2 if e ∈ E f ,

f (e) otherwise.

Now h is a maximal edge packing for G.
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Figure 4.4: Subgraph G f induced by the unsaturated edges; cf. Figure 4.3.

72



Proof. Let us first show that h is indeed an edge packing. Consider a
node v ∈ V . If v /∈ Vf , then v is not incident to any edge of E f , and we
have

h[v] = f [v]≤ 1.

Otherwise v ∈ Vf , in which case f [v] = 1/2. We have

h[v] = f [v] + g[v]/2= 1/2+ g[v]/2≤ 1/2+ 1/2= 1.

Now let us prove that h is maximal. To this end, let e ∈ E. There are
two cases:

(a) If e /∈ E f , then e is saturated by f in G. That is, there is an endpoint
v ∈ e with f [v] = 1, which implies v /∈ Vf and h[v] = f [v] = 1.
Hence e is saturated by h in G.

(b) If e ∈ E f , then e is saturated by g in G f . That is, there is an
endpoint v ∈ e with g[v] = 1. Moreover, v ∈ Vf , which implies
f [v] = 1/2. We have h[v] = f [v] + g[v]/2 = 1/2+ 1/2 = 1.
Hence e is saturated by h in G.

In conclusion, h is a maximal edge packing for G.

4.2.5 Finding Half-Saturating Edge Packings

Now we present algorithm HSEP that finds a half-saturating edge pack-
ing in any graph. It turns out that we are already familiar with all the
key ingredients — in essence, algorithm HSEP uses the same idea as
algorithm VC3 from Section 2.4.2.

Let N = (V, P, p) be a port-numbered network. We construct a virtual
port-numbered network N ′ = (V ′, P ′, p′) and a 2-colouring precisely as
we did in Section 2.4.2. Let G = (V, E) be the underlying graph of N ,
and let G′ = (V ′, E′) be the underlying graph of N ′. Recall that we used
the symbols v1 ∈ V ′ and v2 ∈ V ′ to refer to the two virtual copies of a
node v ∈ V .

Algorithm HSEP first simulates the execution of BMM on N ′ in
order to find a maximal matching M ′ for G′. Given a maximal matching
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Figure 4.5: Algorithm HSEP. Note that f is a half-saturating edge packing
for G, but it is not a maximal edge packing.

M ′, we construct a maximal edge packing f ′ : E′ → [0,1] for G′: we
set f ′(e′) = 1 if e′ ∈ M ′ and f ′(e′) = 0 otherwise. Finally, we use the
maximal edge packing f ′ to construct an edge packing f : E→ [0, 1] for
G as follows:

f ({u, v}) =
f ′({u1, v2}) + f ′({u2, v1})

2
.

Algorithm HSEP outputs f and stops. See Figure 4.5 for an illustration.
Let us now prove that the output f is a half-saturating edge packing

for G. It is straightforward to verify that

2 f [u] =
∑

v: {u,v}∈E

f ′({u1, v2}) +
∑

v: {u,v}∈E

f ′({u2, v1})

= f ′[u1] + f ′[u2].

Now we can make the following observations; recall that f ′ is a maximal
edge packing for G′.

(a) For each node v ∈ V , we have f ′[v1] + f ′[v2] ≤ 1 + 1 which
implies f [v]≤ 1.
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(b) By construction, we have f (e) ∈ {0, 1/2, 1}.

(c) Assume that f [v] = 0, and let u be a neighbour of v in G. Then
f ′[v1] = f ′[v2] = 0, i.e., neither v1 nor v2 are saturated. In
graph G′, node u2 is a neighbour of v1 and u1 is a neighbour of
v2. As f ′ is maximal, both u2 and u1 have to be saturated. That is,
f ′[u2] = f ′[u1] = 1, which implies f [u] = 1.

(d) Assume that f [v] = 1/2. Then one of the virtual copies of v is
saturated; both cases are symmetric, so w.l.o.g. we will assume
that f ′[v1] = 1 and f ′[v2] = 0. It follows that there is a neighbour
u of v in G such that

f ′({u1, v2}) = 0,

f ′({u2, v1}) = 1.

By definition, we have f ′[u2] = 1. By the maximality of f ′,
node u1 has to be saturated, as v2 is not saturated. In summary,
f ′[u2] = f ′[u1] = 1, which implies f [u] = 1.

We conclude that f is a half-saturating edge packing for G. Hence
algorithm HSEP works correctly. By Lemma 2.2 the running time of the
algorithm is at most 2∆+ 1 rounds in a graph of maximum degree at
most ∆.

4.2.6 Finding Maximal Edge Packings

Now we are ready to present algorithm MEP∆ that finds a maximal
edge packing h for any graph G = (V, E) of maximum degree at most ∆.
The algorithm has a recursive structure, and its running time is

T (∆) =
∆
∑

i=1

2(i+ 1) = ∆(∆+ 3)

communication rounds.
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Let us first assume that ∆≤ 1. The case of ∆= 0 is trivial, as there
are no edges in the graph. For the case of ∆ = 1, algorithm MEP1
returns the maximal edge packing

h: e 7→ 1.

Clearly this can be done in T (1) rounds.
Now assume that ∆> 1, and assume that we have already defined

MEP∆−1. Algorithm MEP∆ proceeds as follows.

(a) We use 2∆+ 1 rounds to find a half-saturating edge packing f
with algorithm HSEP. Now each node v ∈ V knows f (e) for each
edge e incident to v; in particular, v knows the value f [v].

(b) We use 1 round to exchange the values f [v]. Now each node v
knows the value f [u] for each neighbour u. In particular, node v
knows which of its incident edges are saturated — put otherwise,
v knows which of its incident edges are in the subgraph G f =
(Vf , E f ).

(c) Next we have the recursive step. By Lemma 4.5, the maximum
degree of G f is at most∆−1. Hence we can simulate the execution
of MEP∆−1 in the subgraph G f = (Vf , E f ). After T (∆−1) rounds,
algorithm MEP∆−1 outputs a maximal edge packing g for G f .

(d) Now f is a half-saturating edge packing for G, and g is a maximal
edge packing for the subgraph G f . Each node knows the values of
f and g for each incident edge. We use Lemma 4.6 to construct a
maximal edge packing h= f + g/2 for G; this only requires local
computation.

In summary, the algorithm takes 2∆+ 1+ 1+ T (∆− 1) = T (∆) rounds;
the correctness of the algorithm follows from Lemmas 4.5 and 4.6.

Now it is easy to design algorithm VC2∆ that finds a 2-approximation
of a minimum vertex cover in any graph of maximum degree at most ∆:
we first run MEP∆, and then each node outputs 1 if it is saturated. The
correctness of the algorithm follows from Lemma 4.3.
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4.3 Exercises

Exercise 4.1 (dominating sets). Let ∆ ∈ {2,3, . . . }, let ε > 0, and let
F consist of all graphs of maximum degree at most ∆. Show that it
is possible to find a (∆+ 1)-approximation of a minimum dominating
set in constant time in family F . Show that it is not possible to find a
(∆+ 1− ε)-approximation.

Hint: For the lower bound, use the result of Exercise 3.6.

Exercise 4.2 (implementation). In Exercise 2.6, we implemented a
simulator and some simple distributed algorithms, including algorithm
VC3. Now implement algorithm VC2 from Section 4.2, and compare its
performance with VC3. Try out both algorithms with the instance from
Exercise 2.5.

Exercise 4.3 (general case). Design a distributed algorithm that finds
a 2-approximation of a minimum vertex cover in any graph. In partic-
ular, you cannot assume that there is a known upper bound ∆ on the
maximum degree of the graph.

Hint: The edge packing algorithm of Section 4.2.6 has the following
high-level structure: run algorithm HSEP, remove saturated edges, and
repeat. A node can stop as soon as all incident edges become saturated.
In essence, we have a situation that we already studied in Exercise 2.7:
our algorithm consist of several phases, and the output of phase i is
needed as the input of phase i+ 1.

Exercise 4.4 (centralised algorithms). In this chapter, we have seen
an efficient distributed algorithm that finds a 2-approximation of a
minimum-size vertex cover. What is known about efficient centralised
approximation algorithms for the vertex cover problem?

∗ ∗ ∗

In the following exercises, we will study distributed approximation
algorithms for the edge dominating set problem. We will first show that
the problem is easy to approximate within factor 4 in general graphs.
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Then we will have a look at some special cases, and derive tight upper
and lower bounds for the approximation ratio. We use the abbreviation
MEDS for a minimum edge dominating set.

Exercise 4.5 (general case). Design a distributed algorithm that finds a
4-approximation of MEDS.

Hint: Use the idea of Section 2.4.2. Show that the edge set M ⊆ E
defined in (2.1) is a 4-approximation of MEDS. To this end, consider
an optimal solution D∗ and show that each edge of D∗ is adjacent to at
most 4 edges of M .

Exercise 4.6 (2-regular). Show that it is possible to find a 3-approxima-
tion of MEDS in 2-regular graphs, in constant time. Show that it is not
possible to find a 2.999-approximation of MEDS in 2-regular graphs.

Exercise 4.7 (4-regular, upper bound). Show that it is possible to find
a 3.5-approximation of MEDS in 4-regular graphs, in constant time.

Hint: Consider an algorithm that selects all edges that have port
number 1 in at least one end. Derive an upper bound on the size of
the solution and a lower bound on the size of an optimal solution, as a
function of |V |.

Exercise 4.8 (4-regular, lower bound). Show that it is not possible to
find a 3.499-approximation of MEDS in 4-regular graphs.

Hint: Use the construction of Exercise 3.3.

Exercise 4.9 (3-regular, lower bound). Show that it is not possible to
find a 2.499-approximation of MEDS in 3-regular graphs.

Hint: Use the construction of Exercise 3.1.

Exercise 4.10 (3-regular, upper bound). Show that it is possible to find
a 2.5-approximation of MEDS in 3-regular graphs, in constant time.

Hint: Let G = (V, E) be a 3-regular graph. We say that a set D ⊆ E is
good if it satisfies the following properties:

(a) D is an edge cover for G,

(b) the subgraph induced by D does not contain a path of length 3.
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Put otherwise, D induces a spanning subgraph that consists of node-
disjoint stars. Prove that

(a) any good set D is a 2.5-approximation of MEDS,

(b) there is a distributed algorithm that finds a good set D.

The distributed algorithm has to exploit the port numbers of the edges.
One possible approach is this: First, use the port numbers to find nine
matchings, M1, M2, . . . , M9, such that each node is incident to an edge
in at least one of the sets Mi; do not worry if some edges are present in
more than one matching. Then construct an edge cover D by greedily
adding edges from the sets Mi; in step i = 1,2, . . . , 9 you can consider
all edges of Mi in parallel. Finally, eliminate paths of length three by
removing redundant edges in order to make D a good set; again, in step
i = 1,2, . . . , 9 you can consider all edges of Mi in parallel.
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Chapter 5

Unique Identifiers

5.1 Introduction

So far we have studied deterministic distributed algorithms in port-
numbered networks. Now we will introduce another model of distrib-
uted computing: deterministic distributed algorithms in networks with
unique identifiers.

In the model of unique identifiers, we assume that we are given a
node labelling id: V → N such that each node v has a unique label id(v);
see Figure 5.1 for an example. We will assume that the labels are
reasonably small — in an n-node network, the labels are O(log n)-bit
integers.

As such, the model does not seem to be a major deviation from what
we have studied so far. We have already encountered various extensions
of the port-numbering model — for example, we have studied distributed
algorithms that assume that we are given a colouring of the nodes or an
orientation of the edges.

However, once we have unique identifiers, we can no longer apply
techniques based on covering graphs (see Section 3.2) to prove im-
possibility results. It turns out that any computable graph problem on
connected graphs can be solved if we are given unique identifiers. Hence
we are no longer interested in what can be solved; the key question is
what can be solved fast.

5.2 Networks with Unique Identifiers

There are plenty of examples of real-world networks with globally unique
identifiers: public IPv4 and IPv6 addresses are globally unique identifiers
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Figure 5.1: A network with unique identifiers.
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of Internet hosts, devices connected to an Ethernet network have globally
unique MAC addresses, mobile phones have their IMEI numbers, etc.

The common theme is that the identifiers are (supposed to be)
globally unique, and the numbers can be interpreted as natural numbers.
Moreover, the numbers are relatively small but not as small as possible:
in a network with millions of devices we may have allocated a space of
billions of possible identifiers. In particular, there is no guarantee that a
device with identifier “1” exists in the network at any given time.

We will now give the formal definition that aims at capturing these
properties of real-world networks.

5.2.1 Definitions

Throughout this chapter, fix a constant c > 1. Unique identifiers for a
port-numbered network N = (V, P, p) is an injection

id: V → {1,2, . . . , |V |c}.

That is, each node v ∈ V is labelled with a unique integer, and the labels
are assumed to be relatively small (in comparison with the number of
nodes in network N).

Formally, unique identifiers can be interpreted as a graph problem Π′,
where each solution id ∈ Π′(N) is an assignment of unique identifiers
for network N . If a distributed algorithm A solves a problem Π on a
family F given Π′, we say that A solves Π on F given unique identifiers,
or equivalently, A solves Π on F in the model of unique identifiers.

5.2.2 Nodes and Their Names

For the sake of convenience, when we discuss networks with unique
identifiers, we will assume that

v = id(v) for all v ∈ V.

Put otherwise, we assume that the set V is a subset of natural numbers,
and max V ≤ |V |c .
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5.2.3 Gathering Everything

In the model of unique identifiers, if the underlying graph G = (V, E) is
connected, all nodes can learn everything about G in time O(diam(G)).
In this section, we will present algorithm Gather that accomplishes this.

In algorithm Gather, each node v ∈ V will construct sets V (v, r) and
E(v, r), where r = 1,2, . . . . For all v ∈ V and r ≥ 1, these sets will
satisfy

V (v, r) = ballG(v, r), (5.1)

E(v, r) =
�

{s, t} : s ∈ ballG(v, r), t ∈ ballG(v, r−1)
	

. (5.2)

Now define the graph

G(v, r) = (V (v, r), E(v, r)). (5.3)

See Figure 5.2 for an illustration.
The following properties are straightforward corollaries of (5.1)–

(5.3).

(a) Graph G(v, r) is a subgraph of G(v, r + 1), which is a subgraph of
G.

(b) If G is a connected graph, and r ≥ diam(G)+1, we have G(v, r) =
G.

(c) More generally, if Gv is the connected component of G that con-
tains v, and r ≥ diam(Gv) + 1, we have G(v, r) = Gv .

(d) For a sufficiently large r, we have G(v, r) = G(v, r + 1).

(e) If G(v, r) = G(v, r+1), we will also have G(v, r+1) = G(v, r+2).

(f) Graph G(v, r) for r > 1 can be constructed recursively as follows:

V (v, r) =
⋃

u∈V (v,1)

V (u, r − 1), (5.4)

E(v, r) =
⋃

u∈V (v,1)

E(u, r − 1). (5.5)
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Figure 5.2: Subgraph G(v, r) defined in (5.3), for v = 14 and r = 2.
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Algorithm Gather maintains the following invariant: after round
r ≥ 1, each node v ∈ V has constructed graph G(v, r). The execution of
Gather proceeds as follows:

(a) In round 1, each node u ∈ V sends its identity u to each of its ports.
Hence after round 1, each node v ∈ V knows its own identity and
the identities of its neighbours. Put otherwise, v knows precisely
G(v, 1).

(b) In round r > 1, each node u ∈ V sends G(u, r − 1) to each of its
ports. Hence after round r, each node v ∈ V knows G(u, r − 1)
for all u ∈ V (v, 1). Now v can reconstruct G(v, r) using (5.4) and
(5.5).

(c) A node v ∈ V can stop once it detects that the graph G(v, r) no
longer changes.

It is straightforward to extend Gather so that we can discover not
only the underlying graph G = (V, E) but also the original port-numbered
network N = (V, P, p).

5.2.4 Solving Everything

Let F be a family of connected graphs, and let Π be a distributed
graph problem. Assume that there is a deterministic centralised (non-
distributed) algorithm A′ that solves Π on F . For example, A′ can be
a simple brute-force algorithm — we are not interested in the running
time of algorithm A′.

Now there is a simple distributed algorithm A that solves Π on F in
the model of unique identifiers. Let N = (V, P, p) be a port-numbered
network with the underlying graph G ∈ F . Algorithm A proceeds as
follows.

(a) All nodes discover N using algorithm Gather from Section 5.2.3.

(b) All nodes use the centralised algorithm A′ to find a solution f ∈
Π(N). From the perspective of algorithm A, this is merely a state
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transition; it is a local step that requires no communication at all,
and hence takes 0 communication rounds.

(c) Finally, each node v ∈ V switches to state f (v) and stops.

Clearly, the running time of the algorithm is O(diam(G)).
It is essential that all nodes have the same canonical representation

of network N (for example, V , P, and p are represented as lists that are
ordered lexicographically by node identifiers and port numbers), and
that all nodes use the same deterministic algorithm A′ to solve Π. This
way we are guaranteed that all nodes have locally computed the same
solution f , and hence the outputs f (v) are globally consistent.

5.2.5 Focus on Complexity

The above discussion highlights the striking difference between the port-
numbering model and the model of unique identifiers. While we saw in
Section 3.2 plenty of examples of seemingly simple graph problems that
cannot be solved at all in the port-numbering model, we have learned
that with the help of unique identifiers all computable graph problems
become solvable.

Hence our focus shifts from computability to computational com-
plexity. While it is trivial to determine if a problem can be solved in the
model of unique identifiers, we would like to know which problems can
be solved quickly. In particular, we would like to learn which problems
can be solved in time that is much smaller than diam(G). One such
problem is graph colouring.

5.3 Graph Colouring

Let G = (V, E) be a graph with unique identifiers. We will use the
shorthand notation χ = |V |c , that is, the unique identifiers are integers
from {1, 2, . . . ,χ}.

The unique identifiers form a proper vertex colouring with χ colours:
certainly adjacent nodes have distinct identifiers if the identifiers are
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globally unique. Hence, in a sense, we have already solved the graph
colouring problem — however, the number of colours χ is far too large
for our purposes.

Our focus is therefore on colour reduction: given a graph colouring
f : V → {1,2, . . . , x} with a large number x of colours, the goal is to
find a new graph colouring g : V → {1, 2, . . . , y} with a smaller number
y < x of colours.

5.3.1 Greedy Colour Reduction

Let x ∈ N. There is a simple algorithm Greedy that reduces the number
of colours from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph. The running time of the
algorithm is one communication round.

The algorithm proceeds as follows; here f is the x-colouring that we
are given as input and g is the y-colouring that we produce as output.
See Figure 5.3 for an illustration.

(a) In the first communication round, each node v ∈ V sends its colour
f (v) to each of its neighbours.

(b) Now each node v ∈ V knows the set

C(v) = {i : there is a neighbour u of v with f (u) = i}.

We say that a node is active if f (v) > max C(v); otherwise it is
passive. That is, the colours of the active nodes are local maxima.
Let

C̄(v) = {1, 2, . . . } \ C(v)

be the set of free colours in the neighbourhood of v.

(c) A node v ∈ V outputs

g(v) =

(

f (v) if v is passive,

min C̄(v) if v is active.
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Figure 5.3: Greedy colour reduction. The active nodes have been high-
lighted. In this example, each active node can choose 1 as its new colour.
Note that in the original colouring f , the largest colour was 99, while
in the new colouring, the largest colour is strictly smaller than 99 — we
successfully reduced the number of colours in the graph.

Informally, a node whose colour is a local maximum re-colours itself
with the first available free colour.

Lemma 5.1. Algorithm Greedy reduces the number of colours from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph.

Proof. Let us first prove that g(v) ∈ {1,2, . . . , y} for all v ∈ V . As f is
a proper colouring, we cannot have f (v) =max C(v). Hence there are
only two possibilities.
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(a) f (v)<max C(v). Now v is passive, and it is adjacent to a node u
such that f (v)< f (u). We have

g(v) = f (v)≤ f (u)− 1≤ x − 1≤ y.

(b) f (v)>max C(v). Now v is active, and we have

g(v) =min C̄(v).

There is at least one value i ∈ {1, 2, . . . , |C(v)|+ 1} with i /∈ C(v);
hence

min C̄(v)≤ |C(v)|+ 1≤ degG(v) + 1≤∆+ 1≤ y.

Next we will show that g is a proper vertex colouring of G. Let
{u, v} ∈ E. If both u and v are passive, we have

g(u) = f (u) 6= f (v) = g(v).

Otherwise, w.l.o.g., assume that u is active. Then we must have f (u)>
f (v). It follows that f (u) ∈ C(v) and f (v) ≤ max C(v); therefore
v is passive. Now g(u) /∈ C(u) while g(v) = f (v) ∈ C(u); we have
g(u) 6= g(v).

A key observation in understanding the algorithm is that the set of
active nodes forms an independent set. Therefore all active nodes can
pick their new colours simultaneously in parallel, without any risk of
choosing colours that might conflict with each other.

Note that algorithm Greedy does not need to know the number of
colours x or the maximum degree ∆; we only used them in the analysis.
We can simply take any graph, blindly apply algorithm Greedy, and we
are guaranteed to reduce the number of colours by one — provided that
the number of colours was larger than ∆+ 1.

In particular, we can apply algorithm Greedy repeatedly until we
get stuck, at which point we have a (∆+ 1)-colouring of G — we will
formalise and generalise this idea in Exercise 5.3.
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In principle, we could use this strategy in the model of unique
identifiers to find a (∆+ 1)-colouring of any graph. However, such an
algorithm would be extremely slow. In the worst case, we may have a
long path of nodes, with increasing identifiers (colours) along the path,
and in such a graph the running time of the greedy strategy would be
linear in |V |: in each iteration, only one of the nodes is a local maximum.

In the next sections, we will develop an algorithm that is much faster
— at least in low-degree graphs.

5.3.2 Directed Pseudoforests

We will first study fast colour reduction algorithms in a seemingly simple
special case: we are given a pseudoforest with a particular orientation.
Once we have solved the special case, we turn our attention to the more
general case of colouring bounded-degree graphs.

A directed pseudoforest is a directed graph G = (V, E) such that each
node v ∈ V has outdegreeG(v)≤ 1; see Figure 5.4 for an example. We
make the following observations:

(a) Let H be an undirected graph, and let G be an orientation of H. If
G is a directed pseudoforest, then H is a pseudoforest.

(b) Let H be a pseudoforest. There exists an orientation G of H such
that G is a directed pseudoforest.

(c) An orientation of a pseudoforest is not necessarily a directed
pseudoforest.

If (u, v) ∈ E, we say that v is a successor of u and u is a predecessor of
v. By definition, in a directed pseudoforest each node has at most one
successor.

5.3.3 Greedy Colouring in Pseudoforests

We will soon see that we can do colour reduction in directed pseudo-
forests quickly. However, let us first show that we can find a colouring
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Figure 5.4: A directed pseudoforest with a colouring f .
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with a very small number of colours with a modified version of algorithm
Greedy.

Let G = (V, E) be a directed pseudoforest, and let

f : V → {1, 2, . . . , x}

be a proper vertex colouring of G, for some x ≥ 4. We design a distrib-
uted algorithm DPGreedy that reduces the number of colours from x to
x − 1 in two communication rounds.

First, for each node v ∈ V , define s(v) as follows:

(a) If outdegreeG(v) = 1, let u be the successor of v, and let s(v) =
f (u).

(b) Otherwise, if f (v)> 1, let s(v) = 1.

(c) Otherwise s(v) = 2.

By construction, we have s(v) 6= f (v). Note that we can compute the
values s(v) for all nodes v ∈ V with a simple distributed algorithm in
one communication round.

We will now prove that the values s(v) form a proper x-colouring of
G. Moreover, we show that each node is adjacent to only two different
colours in colouring s.

Lemma 5.2. Function s is an x-colouring of G.

Proof. By construction, we have s(v) ∈ {1,2, . . . , x}.
Now let (u, v) ∈ E. We need to show that s(u) 6= s(v). To see this,

observe that v is a successor of u. Hence

s(u) = f (v) 6= s(v).

Lemma 5.3. Define

C(v) = {i : there is a neighbour u of v with s(u) = i}.

We have |C(v)| ≤ 2 for each node v ∈ V .
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Figure 5.5: A directed pseudoforest with colouring s; compare with
Figure 5.4. In colouring s, all predecessors of a node have the same colour;
hence each node is adjacent to nodes of only two different colours.
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Figure 5.6: Algorithm Greedy applied to a directed pseudoforest with
colouring s. The active nodes are highlighted.

Proof. For each predecessor u of v, we have s(u) = f (v). That is, all
predecessors of v have the same colour. Hence C(v) consists of at most
two different values: the common colour of the predecessors of v (if
any), and the colour of the successor of v (if any).

Now we apply algorithm Greedy to colouring s; see Figure 5.6.
Observe that each active node v will choose a colour g(v) =min C̄(v) ∈
{1, 2, 3}, while each passive node v will output its old colour g(v) = s(v).
In particular, if the number of colours in f was x ≥ 4, then the number
of colours in g is at most x − 1.
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Let us summarise the above observations. We have designed al-
gorithm DPGreedy that reduces the number of colours from x ≥ 4 to
x − 1 in directed pseudoforests in 2 communication rounds:

(a) We are given an x-colouring f (Figure 5.4).

(b) In one communication round, given f we construct another x-
colouring s, which has the property that each node is adjacent to
at most two different colour classes (Figure 5.5).

(c) In one communication round, given s we construct an (x − 1)-
colouring g using algorithm Greedy (Figure 5.6).

In particular, we can reduce the number of colours from any number
x ≥ 3 to 3 in 2(x − 3) rounds by iterating the above steps.

Figure 5.7 demonstrates that the additional step of constructing
colouring s is necessary.

5.3.4 Fast Colouring in Pseudoforests

So far we have only seen algorithms that reduce the number of colours
by one in each iteration. This is by far too slow if, for example, we
are given a colouring that is formed by 128-bit IPv6 addresses. In this
section we will present an algorithm that is much faster.

In particular, we present algorithm DPBit that reduces the number
of colours from 2x to 2x in one communication round, in any directed
pseudoforest. We will assume that x ≥ 1 is a known constant.

Before presenting algorithm DPBit, we will give a practical example
of its performance. Assume that the initial colouring is derived from
128-bit unique identifiers, that is, the number of colours is 2128. If
we iterate algorithm DPBit, we can reduce the number of colours as
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Figure 5.7: (a) If we tried to apply algorithm Greedy directly in any given
colouring f , the active nodes would not be able to pick new colours from
the set {1,2,3}. (b) In colouring s, algorithm Greedy will always find a
new colour from the set {1,2, 3}.
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follows:

2128→ 2 · 128= 28,

28→ 2 · 8= 24,

24→ 2 · 4= 23,

23→ 2 · 3= 6.

That is, given a 2128-colouring, in only 4 communication rounds, we
can find a 6-colouring. We cannot reduce the number of colours below
6 with DPBit; however, once we have reached such a low number of
colours, we can resort to DPGreedy, which is able to reduce the number
of colours from 6 to 3 in 6 communication rounds. In summary, we can
reduce the number of colours from 2128 to 3 in only 4+ 6= 10 rounds,
in any directed pseudoforest.

Let us now present algorithm DPBit. We assume that we are given
a proper vertex colouring

f : V → {1, 2, . . . , 2x}

of a directed pseudoforest G = (V, E). We will use the values s(v) defined
in Section 5.3.3 — recall that f (v) 6= s(v) for each node v, and if u is
the successor of v, we have s(v) = f (u).

The key idea is that each node compares the binary encodings of the
values s(v) and f (v). More precisely, if j ∈ {1, 2, . . . , 2x} is a colour, let
us use 〈 j〉 to denote the binary encoding of j− 1; this is always a binary
string of length x . For example, if x = 3, we have

〈1〉= 000, 〈2〉= 001, . . . , 〈8〉= 111.

If i ∈ {0,1, . . . , x − 1}, we use the notation 〈 j〉i to refer to bit i of the
binary string 〈 j〉, counting from the lowest-order bit. For example,
〈2〉0 = 1 and 〈2〉1 = 0.

In algorithm DPBit, each node first finds out the values s(v) and
f (v)— this takes only one communication round — and then compares
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the binary strings 〈s(v)〉 and 〈 f (v)〉. As s(v) 6= f (v), there is at least one
bit in these strings that differs. Let

i(v) =min{i : 〈 f (v)〉i 6= 〈s(v)〉i}

be the index of the first bit that differs, and let

b(v) = 〈 f (v)〉i(v)
be the value of the bit that differs. Note that 0 ≤ i(v) ≤ x − 1 and
0≤ b(v)≤ 1.

The key observation is that the pairs
�

i(v), b(v)
�

form a proper
colouring of G.

Lemma 5.4. Let (u, v) ∈ E. We have i(u) 6= i(v) or b(u) 6= b(v).

Proof. If i(u) 6= i(v), the claim is trivial. Otherwise i(u) = i(v). As v is
the successor of u, we have s(u) = f (v). Hence

b(v) = 〈 f (v)〉i(v) = 〈s(u)〉i(u),

and by the definition of i(u),

b(u) = 〈 f (u)〉i(u) 6= 〈s(u)〉i(u).

In summary, b(u) 6= b(v).

We can now encode the pair
�

i(v), b(v)
�

as a colour

g(v) = 2i(v) + b(v) + 1.

Algorithm DPBit outputs the value g(v).
Note that if we have g(u) = g(v) for two nodes u and v, this implies

b(u) = b(v) and i(u) = i(v). Hence Lemma 5.4 implies that g is a
proper vertex colouring of G. Moreover, we have 1 ≤ g(v) ≤ 2x , and
hence g is a 2x-colouring of G.

In summary, we have designed algorithm DPBit that reduces the
number of colours from 2x to 2x in one communication round — given
a 2x -colouring f , the algorithm outputs a 2x-colouring g. Communic-
ation is only needed in order to discover the value s(v) for each node
v; the derivation of the values i(v), b(v), and g(v) only needs local
computation.
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5.3.5 Fast Colouring in General Graphs

In this section, we will present algorithm Colour that reduces the number
of colours from any number x to ∆+1 in any graph of maximum degree
at most ∆ much faster than an iterated application of algorithm Greedy.
Throughout this section, we will assume that the values of x and ∆ are
known to all nodes.

Let A be an algorithm that reduces the number of colours in a
directed pseudoforest from x to 3 in time T(x). For example, we can
let A be the combination of the iterated DPBit (reduces the number of
colours from any x to 6) followed by the iterated DPGreedy (reduces
the number of colours from 6 to 3). As we will see in Exercise 5.4, the
running time of A is then T (x) = O(log∗ x).

Algorithm Colour uses A as a subroutine, and the running time of
Colour will be O(∆2) + T(x). For example, with the above choice of A,
the running time of Colour is O(∆2+ log∗ x).

Let G = (V, E) be a graph of maximum degree at most ∆, and let
f : V → {1, 2, . . . , x} be an x-colouring of G. Let N be a port-numbered
network with G as the underlying graph. Algorithm Colour constructs a
(∆+ 1)-colouring g of G as follows.

Preliminaries. For each node v and each port number i, node v sends
the pair ( f (v), i) to port i. This way a node u learns the following
information about each node v that is adjacent to u: what is the old
colour of v, which port of u is connected to v, and which port of v is
connected to u. This step requires one communication round.

Orientation. We construct an orientation G′ = (V, E′) of G as follows:
we have (u, v) ∈ E′ if and only if {u, v} ∈ E and f (u) < f (v). That is,
we use the old colours of the nodes to orient the edges from a smaller
colour to a larger colour; see Figure 5.8.

In the distributed algorithm, each node only needs to know the
orientation of its incident edges. This step requires zero communication
rounds.
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Figure 5.8: Orientation G′ derived from the old colours — in this example,
the old colours were unique identifiers.
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Figure 5.9: Subgraph Gi of G′. Each node has outdegree at most one.

Partition in Pseudoforests. For each i = 1,2, . . . ,∆, we construct a
subgraph Gi = (V, Ei) of G′ as follows: we have (u, v) ∈ Ei if and only if
(u, v) ∈ E′ and v is connected to port number i of u in N . See Figure 5.9.

Observe that the sets E1, E2, . . . , E∆ form a partition of E′: for each
directed edge e ∈ E′ there is precisely one i such that e ∈ Ei. Also
note that for each node u ∈ V and for each index i there is at most
one neighbour v such that (u, v) ∈ Ei. It follows that the outdegree of
any node v in Gi = (V, Ei) is at most one, and therefore Gi is a directed
pseudoforest. Function f is an x-colouring of Gi for all i.

In the distributed algorithm, each node only needs to know which
of its incident edges are in which subset Ei. This step requires zero
communication rounds.
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Parallel Colouring of Pseudoforests. For each i, we use algorithm A
to construct a 3-colouring gi of Gi .

In the distributed algorithm, each node v ∈ V needs to know the
value gi(v) for each i. This step takes only T (x) rounds: we can simulate
the execution of A in parallel for all subgraphs Gi. In the simulation,
each node has ∆ different roles, one for each subgraph Gi .

Merging Colourings. For each j = 0,1, . . . ,∆, define

E′j =
j
⋃

i=1

Ei

and G′j = (V, E′j). Note that G′0 is a graph without any edges, each G′j is
a subgraph of G′, and G′∆ = G′.

We will construct a sequence of colourings g ′0, g ′1, . . . , g ′∆ such that
g ′j is a (∆+ 1)-colouring of the subgraph G′j. Then it follows that we
can output g = g ′∆, which is a (∆+ 1)-colouring of G′ and hence also a
(∆+ 1)-colouring of the original graph G.

Our construction is recursive. The base case of j = 0 is trivial:
we can choose g ′0(v) = 1 for all v ∈ V , and this is certainly a proper
(∆+ 1)-colouring of G′0.

Now assume that we have already constructed a (∆+ 1)-colouring
g ′j−1 of G′j−1. Recall that g j is a 3-colouring of G j; see Figure 5.10.
Define a function h j as follows:

h j(v) = (∆+ 1)(g j(v)− 1) + g ′j−1(v).

Observe that h j is a proper 3(∆+1)-colouring of G′j . To see this, consider
an edge (u, v) ∈ E′j . If (u, v) ∈ E j , we have g j(u) 6= g j(v), which implies
h j(u) 6= h j(v). Otherwise (u, v) ∈ E′j−1, and we have g ′j−1(u) 6= g ′j−1(v),
which implies h j(u) 6= h j(v).

Now we use 2(∆+ 1) iterations of Greedy to reduce the number of
colours from 3(∆+ 1) to ∆+ 1. This way we can construct a proper
(∆+ 1)-colouring g ′j of G′j in time O(∆).
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Figure 5.10: Merging a 3-colouring g j of directed pseudotree G j and
a (∆ + 1)-colouring g ′j−1 of subgraph G′j−1. The end result is a proper
3(∆+ 1)-colouring h j of subgraph G′j .
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After ∆ phases, we have eventually constructed colouring g = g ′∆;
the total running time is O(∆2), as each phase takes O(∆) communica-
tion rounds.

5.4 Exercises

Exercise 5.1 (counting). The counting problem Π is defined as follows:
if N = (V, P, p) is a port-numbered network, then g ∈ Π(N) if and only if
g(v) = |V | for all v ∈ V . That is, in the counting problem each node has
to output the value |V |, i.e., it has to indicate how many nodes there are
in the network.

Let F consist of all cycle graphs, and let F ′ consist of all graphs of
maximum degree 2.

(a) Prove that the counting problem cannot be solved on F in the
port-numbering model.

(b) Design an algorithm that solves the counting problem on F in the
model of unique identifiers in time O(|V |). Present the algorithm
in a formally precise manner, using the definitions of Sections 2.2
and 2.3.

(c) Prove that the counting problem cannot be solved in time o(|V |)
on F in the model of unique identifiers.

(d) Prove that the counting problem cannot be solved on F ′ in the
model of unique identifiers.

Exercise 5.2 (leader election). The leader election problem Π is defined
as follows: if N = (V, P, p) is a port-numbered network, then g ∈ Π(N)
if and only if there is precisely one node u ∈ V such that

g(v) =

(

1 if v = u,

0 otherwise.

Let F consist of all connected graphs.
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(a) Prove that the leader election problem cannot be solved on F in
the port-numbering model.

(b) Design an algorithm that solves the leader election problem on F
in the model of unique identifiers.

Exercise 5.3 (iterated greedy). Design a colour reduction algorithm A
with the following properties: given any graph G = (V, E) and any proper
vertex colouring f , algorithm A outputs a proper vertex colouring g such
that for each node v ∈ V we have g(v)≤ degG(v) + 1.

Let ∆ be the maximum degree of G, let n = |V | be the number of
nodes in G, and let x be the number of colours in colouring f . The
running time of A should be at most

min{n, x}+O(1).

Note that the algorithm does not know n, x , or ∆. Also note that we
may have either x ≤ n or x ≥ n.

Hint: Adapt the basic idea of algorithm Greedy — find local maxima
and choose appropriate colours for them — but pay attention to the
stopping conditions and low-degree nodes. One possible strategy is this:
a node becomes active if its current colour is a local maximum among
those neighbours that have not yet stopped; once a node becomes active,
it selects an appropriate colour and stops.

Exercise 5.4 (log-star). The iterated logarithm of x , in notation log∗ x ,
is defined recursively as follows:

log∗(x) =

(

0 if x ≤ 1,

1+ log∗(log2 x) otherwise.

This is a function that grows extremely slowly; for example

log∗ 2= 1, log∗ 16= 3, log∗ 1010 = 5,

log∗ 3= 2, log∗ 17= 4, log∗ 10100 = 5,

log∗ 4= 2, log∗ 65536= 4, log∗ 101000 = 5,

log∗ 5= 3, log∗ 65537= 5, log∗ 1010000 = 5, . . .
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Prove that algorithm DPBit can be used to reduce the number of
colours from x to 6 in log∗ x communication rounds in any directed
pseudoforest, for any x ≥ 6. You can assume that the value of x is
known in advance.

Hint: Consider the following cases separately:

(i) log∗ x ≤ 2,
(ii) log∗ x = 3,

(iii) log∗ x ≥ 4.

In case (iii), prove that after log∗(x)−3 iterations of DPBit, the number
of colours is at most 64.

Exercise 5.5 (numeral systems). Algorithm DPBit is based on the idea
of identifying a digit that differs in the binary encodings of the colours.
Generalise the idea: design an analogous algorithm that finds a digit
that differs in the base-k encodings of the colours, for an arbitrary k,
and analyse the running time of the algorithm (cf. Exercise 5.4). Is the
special case of k = 2 the best possible choice?

Exercise 5.6 (from bits to sets). Algorithm DPBit can reduce the num-
ber of colours from 2x to 2x in one round in any directed pseudoforest,
for any positive integer x . For example, we can reduce the number of
colours as follows:

2128→ 256→ 16→ 8→ 6.

One of the problems is that an iterated application of the algorithm
slows down and eventually “gets stuck” at x = 3, i.e., at six colours.

In this exercise we will design a distributed algorithm DPSet that
reduces the number of colours from

h(x) =
�

2x

x

�

to 2x in one round, for any positive integer x . For example, we can
reduce the number of colours as follows:

184756→ 20→ 6→ 4.
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Here

184756= h(10),

2 · 10= 20= h(3),

2 · 3= 6= h(2).

In particular, algorithm DPSet does not get stuck at six colours; we
can use the same algorithm to reduce the number of colours to four.
Moreover, at least in this case the algorithm seems to be much more
efficient — algorithm DPSet can reduce the number of colours from
184756 to 6 in two rounds, while algorithm DPBit requires at three
rounds to achieve the same reduction.

The basic structure of algorithm DPSet follows algorithm DPBit —
in particular, we use one communication round to compute the values
s(v) for all nodes v ∈ V . However, the technique for choosing the new
colour is different: as the name suggests, we will not interpret colours
as bit strings but as sets.

To this end, let H(x) consist of all subsets

X ⊆ {1,2, . . . , 2x}

with |X |= x . There are precisely h(x) such subsets, and hence we can
find a bijection

L : {1, 2, . . . ,h(x)} → H(x).

We have f (v) 6= s(v). Hence L( f (v)) 6= L(s(v)). As both L( f (v))
and L(s(v)) are subsets of size x , it follows that

L( f (v)) \ L(s(v)) 6=∅.

We choose the new colour g(v) of a node v ∈ V as follows:

g(v) =min
�

L( f (v)) \ L(s(v))
�

.

Prove that DPSet works correctly. In particular, show that g : V →
{1, 2, . . . , 2x} is a proper graph colouring of the directed pseudoforest G.

Analyse the running time of DPSet and compare it with DPBit. Is
DPSet always faster? Can you prove a general result analogous to the
claim of Exercise 5.4?
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Exercise 5.7 (cycles). Let F consist of cycle graphs. Design a fast
distributed algorithm that finds a 1.1-approximation of a minimum
vertex cover on F in the model of unique identifiers.

Hint: Solve small problem instances by brute force and focus on the
case of long cycles. In a long cycle, use a graph colouring algorithm to
find a 3-colouring, and then use the 3-colouring to construct a maximal
independent set. Observe that a maximal independent set partitions the
cycle into short fragments (with 2–3 nodes in each fragment).

Apply the same approach recursively: interpret each fragment as a
“supernode” and partition the cycle that is formed by the supernodes
into short fragments, etc. Eventually, you have partitioned the original
cycle into long fragments, with dozens of nodes in each fragment.

Find an optimal vertex cover within each fragment. Make sure that
the solution is feasible near the boundaries, and prove that you are able
to achieve the required approximation ratio.

Exercise 5.8 (applications). Let ∆ be a known constant, and let F
be the family of graphs of maximum degree at most ∆. Design fast
distributed algorithms that solve the following problems on F in the
model of unique identifiers.

(a) Maximal independent set.

(b) Maximal matching.

(c) Edge colouring with O(∆) colours.

Hint: You can either use algorithm Colour as a subroutine, or you
can modify the basic idea of Colour slightly to solve these problems.

Exercise 5.9 (distance-2 colouring). Let G = (V, E) be a graph. A
distance-2 colouring with k colours is a function f : V → {1,2, . . . , k}
with the following property:

distG(u, v)≤ 2 implies f (u) 6= f (v) for all nodes u 6= v.

Let ∆ be a known constant, and let F be the family of graphs of
maximum degree at most ∆. Design a fast distributed algorithm that
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finds a distance-2 colouring with O(∆2) colours for any graph G ∈ F in
the model of unique identifiers.

Hint: Given a graph G ∈ F , construct a virtual graph G2 = (V, E′)
as follows: {u, v} ∈ E′ if u 6= v and distG(u, v) ≤ 2. Prove that the
maximum degree of G2 is O(∆2). Simulate a fast graph colouring
algorithm on G2.

Exercise 5.10 (dominating set approximation). Let ∆ be a known con-
stant, and let F be the family of graphs of maximum degree at most ∆.
Design an algorithm that finds an O(log∆)-approximation of a minimum
dominating set on F in the model of unique identifiers.

Hint: First, design (or look up) a greedy centralised algorithm
achieves an approximation ratio of O(log∆) on F . The following idea
will work: repeatedly pick a node that dominates as many new nodes as
possible — here a node v ∈ V is said to dominate all nodes in ballG(v, 1).
For more details, see a textbook on approximation algorithms, e.g.,
Vazirani [28].

Second, show that you can simulate the centralised greedy algorithm
in a distributed setting. Use the algorithm of Exercise 5.9 to construct
a distance-2 colouring. Prove that the following strategy is a faithful
simulation of the centralised greedy algorithm:

– For each possible value i =∆+ 1,∆, . . . , 2, 1:

– For each colour j = 1, 2, . . . ,O(∆2):

– Pick all nodes v ∈ V that are of colour j and that domin-
ate i new nodes.

The key observation is that if u, v ∈ V are two distinct nodes of the
same colour, then the set of nodes dominated by u and the set of nodes
dominated by v are disjoint. Hence it does not matter whether the
greedy algorithm picks u before v or v before u, provided that both
of them are equally good from the perspective of the number of new
nodes that they dominate. Indeed, we can equally well pick both u and
v simultaneously in parallel.
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Chapter 6

Ramsey Theory

6.1 Introduction

As a running example in this chapter, we will use the following task:
find a 3-colouring of a directed cycle in the model of unique identifiers.

In a directed cycle, we assume that we are given a graph G = (V, E)
that is an orientation of a cycle graph. In particular, we assume that
each node v ∈ V has

outdegreeG(v) = indegreeG(v) = 1,

that is, there is precisely one incoming edge and one outgoing edge.
Without loss of generality, we will assume that the incoming edge is
connected to port number 1 and the outgoing edge is connected to port
number 2 in each node — if this was not the case, each node could
renumber its ports locally. See Figure 6.1 for an illustration.

Clearly, directed cycles are a special case of directed pseudoforests,
and we already know how to find a 3-colouring of a directed pseudo-
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Figure 6.1: A directed cycle with unique identifiers.
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forest in the model of unique identifiers. Indeed, there are several
possible strategies.

• The greedy algorithm is simple but slow; in the case of directed
cycles, it requires Ω(n) rounds in the worst case.

• Algorithm DPBit is much faster — as we saw in Exercise 5.4,
algorithm DPBit finds a 6-colouring in O(log∗ n) rounds, and we
can then use the greedy algorithm to reduce the number of colours
from 6 to 3 in constant time.

• Algorithm DPBit is in no way unique, and there are many alternat-
ive strategies that we can use to 3-colour a directed pseudoforest.
Exercises 5.5 and 5.6 explore some possible ideas.

Moreover, directed cycles are a simple special case of directed pseudo-
forests, and whenever we have an algorithm that finds a 3-colouring in
any directed pseudoforest, we can construct a slightly faster algorithm
that finds a 3-colouring in directed cycles — for example, we can easily
speed up algorithm DPGreedy by a factor of two in directed cycles, as
the construction of intermediate colouring s becomes unnecessary.

However, no matter what combination of algorithm ideas we use,
it appears that the worst-case running time of the algorithm is always
Ω(log∗ n). That is, the running time slightly increases as the number of
nodes n increases.

In this chapter we will prove that this is indeed necessary. We show
that there is no O(1)-time algorithm that 3-colours any directed cycle
in the model of unique identifiers. Our proof uses Ramsey’s theorem,
which is a fundamental result in combinatorics.

6.2 Ramsey’s Theorem

Let Y be a finite set. We say that X is a k-subset of Y if X ⊆ Y and
|X |= k. We use the notation

Y (k) = {X ⊆ Y : |X |= k}
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f : Y (2)→ {1, 2,3}

{1,2} 7→ 1 {2,4} 7→ 1
{1,3} 7→ 1 {2,5} 7→ 2
{1,4} 7→ 2 {3,4} 7→ 3
{1,5} 7→ 1 {3,5} 7→ 3
{2,3} 7→ 2 {4,5} 7→ 3

Figure 6.2: In this example, Y = {1, 2, 3, 4, 5}. Function f is a 3-labelling
of Y (2). Set {1, 2, 3, 5} is almost monochromatic but not monochromatic
in f . Set {3,4,5} is both almost monochromatic and monochromatic in
f .

for the collection of all k-subsets of Y .

6.2.1 Monochromatic Subsets

A c-labelling of Y (k) is an arbitrary function

f : Y (k)→ {1, 2, . . . , c}.

Fix some Y , k, c, and f , where f is a c-labelling of Y (k). We say that

(a) X ⊆ Y is monochromatic in f if f (A) = f (B) for all A, B ∈ X (k),

(b) X ⊆ Y is almost monochromatic in f if f (A) = f (B) for all A, B ∈
X (k) with min(A) =min(B).

See Figure 6.2 for examples. Monochromatic subsets are a central
concept in Ramsey theory, while almost monochromatic subsets are a
technical definition that we will use in the proof.

6.2.2 Ramsey Numbers

For all positive integers c, n, and k, we define the numbers Rc(n; k) and
R̄c(n; k) as follows.
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(a) Rc(n; k) is the smallest natural number N such that the following
holds: for any set Y with at least N elements, and for any c-
labelling f of Y (k), there is an n-subset of Y that is monochromatic
in f . If no such N exists, Rc(n; k) =∞.

(b) R̄c(n; k) is the smallest natural number N such that the follow-
ing holds: for any set Y with at least N elements, and for any
c-labelling f of Y (k), there is an n-subset of Y that is almost
monochromatic in f . If no such N exists, R̄c(n; k) =∞.

Numbers Rc(n; k) are called Ramsey numbers, and Ramsey’s theorem
shows that they are always finite.

Theorem 6.1 (Ramsey’s theorem). Numbers Rc(n; k) are finite for all
positive integers c, n, and k.

We will prove Theorem 6.1 in Section 6.2.4; let us first have a look
at an application.

6.2.3 An Application

In the case of k = 2, Ramsey’s theorem can be used to derive various
graph-theoretic results. As a simple application, we can use Ramsey’s
theorem to prove that sufficiently large graphs necessarily contain large
cliques or large independent sets.

Let G = (V, E) be a graph. Recall that an independent set is a subset
X ⊆ V such that {u, v} /∈ E for all {u, v} ∈ X (2). A complementary
concept is a clique: it is a subset X ⊆ V such that {u, v} ∈ E for all
{u, v} ∈ X (2).

Lemma 6.2. For any natural number n there is a natural number N such
that the following holds: if G = (V, E) is a graph with at least N nodes,
then G contains a clique with n nodes or an independent set with n nodes.

Proof. Choose an integer N ≥ R2(n; 2); by Theorem 6.1, such an N
exists.
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Now if G = (V, E) is any graph with at least N nodes, we can define
a 2-labelling f of V (2) as follows:

f ({u, v}) =

(

1 if {u, v} ∈ E,

2 if {u, v} /∈ E.

By the definition of Ramsey numbers, if |V | ≥ N , there is an n-subset
X ⊆ V that is monochromatic in f . If X ⊆ V is monochromatic, we have
one of the following cases:

(a) we have f ({u, v}) = 1 for all {u, v} ∈ X (2); therefore X is a clique,

(b) we have f ({u, v}) = 2 for all {u, v} ∈ X (2); therefore X is an
independent set.

6.2.4 Proof

Let us now prove Theorem 6.1. Throughout this section, let c be fixed.
We will show that Rc(n; k) is finite for all n and k. The proof outline is
as follows:

(a) Lemma 6.3: Rc(n; 1) is finite for all n.

(b) Corollary 6.7: if Rc(n; k − 1) is finite for all n, then Rc(n; k) is
finite for all n.

Here we will use the following auxiliary results:

(i) Lemma 6.5 — if Rc(n; k− 1) is finite for all n, then R̄c(n; k)
is finite for all n.

(ii) Lemma 6.6 — if R̄c(n; k) is finite for all n, then Rc(n; k) is
finite for all n.

(c) Now by induction on k, it follows that Rc(n; k) is finite for all n
and k.

The base case of k = 1 is, in essence, equal to the familiar pigeonhole
principle.

114



Lemma 6.3. Ramsey number Rc(n; 1) is finite for all n.

Proof. Let N = c(n− 1) + 1. We can use the pigeonhole principle to
show that Rc(n; 1)≤ N .

Let Y be a set with at least N elements, and let f be a c-labelling
of Y (1). In essence, we have c boxes, labelled with {1,2, . . . , c}, and
function f places each element of Y into one of these boxes. As there
are N elements, there is a box that contains at least

dN/ce= n

elements. These elements form a monochromatic subset.

Let us now study the case of k > 1. We begin with a technical
lemma.

Lemma 6.4. Let n and k be integers, n> k > 1. If M = R̄c(n− 1; k) and
Rc(M ; k− 1) are finite, then R̄c(n; k) is finite.

Proof. Define
N = 1+ Rc(M ; k− 1).

We will prove that R̄c(n; k)≤ N .
Let Y be a set with N elements; w.l.o.g., we can assume that Y =

{1,2, . . . , N}. Let f be any c-labelling of Y (k). We need to show that
there is an almost monochromatic n-subset W ⊆ Y .

To this end, let Y2 = {2,3, . . . , N}, and define a c-labelling f2 of
Y (k−1)

2 as follows; see Figure 6.3 for an illustration:

f2(A) = f ({1} ∪ A) for each A∈ Y (k−1)
2 .

Now f2 is a c-labelling of Y (k−1)
2 , and Y2 contains

N − 1= Rc(M ; k− 1)

elements. Hence, by the definition of Ramsey numbers, there is an
M -subset X2 ⊆ Y2 that is monochromatic in f2.
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…{4,5,7} � 1 {5,6,7} � 1

{2,3,7} � 1

{1,5,6} � 1

{1,2,4} � 1

{2,4,6} � 1

{1,2,5} � 1

{1,4,6} � 2

{2,3,6} � 1

{1,2,6} � 2

{1,6,7} � 2

…
{2,4,5} � 2

{1,4,5} � 1
{1,3,6} � 1{1,3,5} � 1

{1,3,4} � 1
{1,3,7} � 1

{2,3,5} � 1
{1,5,7} � 1

{2,4,7} � 2

{1,4,7} � 1

{2,3,4} � 2

{1,2,3} � 1
{1,2,7} � 1

{4,5,6} � 2

{5,6} � 1

{3,6} � 1 {3,7} � 1
{3,4} � 1{2,6} � 2

{6,7} � 2
{4,6} � 2
{5,7} � 1

{2,5} � 1{2,4} � 1
{2,7} � 1

{4,7} � 1{4,5} � 1

{2,3} � 1

{3,5} � 1

f2 :

f :

X2 = {2,3,4,5,7}, monochromatic in  f2
W2 = {2,4,5,7}, almost monochromatic in  f

W = {1,2,4,5,7}, almost monochromatic in  f

Figure 6.3: The proof of Lemma 6.4, for the case of c = 2, k = 3, and
n= 5, assuming completely fictional values M = 5 and N = 7.
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Function f is a c-labelling of Y (k), and X2 ⊆ Y . Hence by restric-
tion f defines a c-labelling of X (k)2 . Set X2 contains M = R̄c(n− 1; k)
elements. Therefore there is an (n− 1)-subset W2 ⊆ X2 that is almost
monochromatic in f .

To conclude the proof, let W = {1}∪W2. By construction, W contains
n elements. Moreover, W is almost monochromatic in f . To see this,
assume that A, B ⊆ W are k-subsets such that min(A) = min(B). We
need to show that f (A) = f (B). There are two cases:

(a) We have min(A) = min(B) = 1. Let A2 = A \ {1} and B2 =
B \ {1}. Now A2 and B2 are (k − 1)-subsets of X2. Set X2 was
monochromatic in f2, and hence f (A) = f2(A2) = f2(B2) = f (B).

(b) Otherwise 1 /∈ A and 1 /∈ B. Now A and B are k-subsets of W2.
Set W2 was almost monochromatic in f , and we have min(A) =
min(B), which implies f (A) = f (B).

Lemma 6.5. Let k > 1 be an integer. If Rc(n; k−1) is finite for all n, then
R̄c(n; k) is finite for all n.

Proof. The proof is by induction on n.
The base case of n≤ k is trivial: a set with n elements has at most

one subset with k elements, and hence it is almost monochromatic and
monochromatic.

Now let n> k. Inductively assume that R̄c(n− 1; k) is finite. Recall
that in the statement of this lemma, we assumed that Rc(M ; k− 1) is
finite for any M ; in particular, it is finite for M = R̄c(n−1; k). Hence we
can apply Lemma 6.4, which implies that R̄c(n; k) is finite.

Lemma 6.6. Let k > 1 be an integer. If R̄c(n; k) is finite for all n, then
Rc(n; k) is finite for all n.

Proof. Let M = Rc(n; 1). By Lemma 6.3, M is finite. By assumption,
R̄c(M ; k) is also finite. We will show that

Rc(n; k)≤ R̄c(M ; k).
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f g

{1,2} 7→ 1 {1} 7→ 1
{1,3} 7→ 1
{1,4} 7→ 1

{2,3} 7→ 3 {2} 7→ 3
{2,4} 7→ 3

{3,4} 7→ 2 {3} 7→ 2

{4} 7→ 1

Figure 6.4: The proof of Lemma 6.6. In this example, c = 3, k = 2, and
X = {1,2,3,4} is almost monochromatic in f . We define a c-labelling g
of X (1) such that g({min(A)}) = f (A) for all A∈ X (2). Note that the choice
of g(4) is arbitrary.

Let Y be a set with N = R̄c(M ; k) elements, and let f be any c-
labelling of Y (k). We need to show that there is a monochromatic
n-subset W ⊆ Y .

By definition, there is an almost monochromatic M -subset X ⊆ Y .
Hence we can define a c-labelling g of X (1) such that

g({min(A)}) = f (A)

for each k-subset A ⊆ X ; see Figure 6.4. As X is a subset with M =
Rc(n; 1) elements, we can find an n-subset W ⊆ X that is monochromatic
in g.

Now we claim that W is also monochromatic in f . To see this, let
A and B be k-subsets of W . Let x =min(A) and y =min(B). We have
x , y ∈W and

f (A) = g({x}) = g({y}) = f (B).

Lemmas 6.5 and 6.6 have the following corollary.

Corollary 6.7. Let k > 1 be an integer. If Rc(n; k− 1) is finite for all n,
then Rc(n; k) is finite for all n.
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Now Ramsey’s theorem follows by induction on k: the base case is
Lemma 6.3, and the inductive step is Corollary 6.7.

6.3 Speed Limits

We will now use Ramsey’s theorem to prove that directed cycles cannot
be 3-coloured in constant time.

Theorem 6.8. Assume that A is a distributed algorithm for the model of
unique identifiers. Assume that there is a constant T ∈ N such that A
stops in time T in any directed cycle G = (V, E), and outputs a labelling
g : V → {1,2,3}. Then there exists a directed cycle G such that if we
execute A on G, the output of A is not a proper vertex colouring of G.

To prove Theorem 6.8, let n = 2T + 2, k = 2T + 1, and c = 3. By
Ramsey’s theorem, Rc(n; k) is finite. Choose any N ≥ Rc(n; k).

We will construct a directed cycle G = (V, E) with N nodes. In our
construction, the set of nodes is V = {1, 2, . . . , N}. This is also the set of
unique identifiers in our cycle; recall that we follow the convention that
the unique identifier of a node v ∈ V is v.

With the set of nodes fixed, we proceed to define the set of edges.
In essence, we only need to specify in which order the nodes are placed
along the cycle.

6.3.1 Subsets and Cycles

For each subset X ⊆ V , we define a directed cycle GX = (V, EX ) as
follows; see Figure 6.5. Let ` = |X |. Label the nodes by x1, x2, . . . , xN
such that

X = { x1, x2, . . . , x` },
V \ X = { x`+1, x`+1, . . . , xN },

x1 < x2 < · · ·< x`,

x`+1 < x`+1 < · · ·< xN .
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1
4

2

5
6 3

Figure 6.5: Construction of GX . Here N = 6 and X = {2, 4}.

Then choose the edges

EX = { (x i , x i+1) : 1≤ i < N } ∪ { (xN , x1) }.

Informally, GX is constructed as follows: first take all nodes of X , in
the order of increasing identifiers, and then take all other nodes, again
in the order of increasing identifiers.

6.3.2 Labelling

If B ⊆ V is a k-subset, then we define that the internal node i(B) is the
median of the set B. Put otherwise, i(B) is the unique node in B that is
not among the T smallest nodes of B, nor among the T largest nodes of
B.

We will use algorithm A to construct a c-labelling f of V (k) as follows.
For each k-subsets B ⊆ V , we construct the cycle GB, execute A on GB,
and define that f (B) is the output of node i(B) in GB. See Figure 6.6 for
an illustration.

6.3.3 Monochromatic Subsets

We have constructed a certain c-labelling f . As N is sufficiently large,
there exists an n-subset X ⊆ V that is monochromatic in f . Let us label
the nodes of X by

X = {x0, x1, . . . , xk},
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4
21

7
3

5

6
8

9

10

5
42

9
1

7

3
6

8

10

5

4
2

9

1

7
3

6

8

10

GB

GC

GX

f(B)

f(C)

f(B)

f(C)

Figure 6.6: In this example, N = 10 and T = 2. Let B = {1,2,4,5,7 },
C = {2, 4, 5, 7, 9 }, and X = {1, 2, 4, 5, 7, 9 }. The label f (B) is defined as
follows: we construct GB, execute algorithm A, and take the output of the
internal node i(B) = 4. Similarly, the label f (C) is the output of node
i(C) = 5 in GC . As the local neighbourhoods are identical, the output of
node 4 in GX is also f (B), and the output of node 5 in GX is also f (C). If
X is monochromatic in f , we have f (B) = f (C).
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where x0 < x1 < · · ·< xk. Let

B = {x0, x1, . . . , xk−1},
C = {x1, x2, . . . , xk}.

See Figure 6.6 for an illustration.
Sets B and C are k-subsets of X , and their internal nodes are i(B) =

xT and i(C) = xT+1. As X is monochromatic, we have f (B) = f (C).
Therefore we know that the output of xT in GB equals the output of
xT+1 in GC .

Moreover, node xT has isomorphic radius-T neighbourhoods in GB
and GX ; in both graphs, the radius-T neighbourhood of node xT is a
directed path, along which we have the nodes x0, x1, . . . , xk−1 in this
order. Hence by Theorem 3.6, the output of xT in GB equals the output
of xT in GX .

A similar argument shows that the output of xT+1 in GC equals the
output of xT+1 in GX . In summary, the output of xT in GX equals f (B),
which equals f (C), which equals the output of xT+1 in GX .

We have shown that in the directed cycle GX , there are two adjacent
nodes, xT and xT+1, that produce the same output. Hence A does not
output a proper vertex colouring in GX .

6.4 Exercises

Exercise 6.1. Prove that Rc(n; 1) = c(n− 1) + 1.
Hint: The proof of Lemma 6.3 shows that

Rc(n; 1)≤ c(n− 1) + 1.

You need to show that

Rc(n; 1)> c(n− 1).

Exercise 6.2. Prove that R2(3; 2) = 6.
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Exercise 6.3. Prove that it is not possible to find a proper vertex colour-
ing with at most 100 colours in any directed cycle in constant time.

Hint: You can modify the proof of Theorem 6.8. Alternatively, you
can show that if you could find a 100-colouring in constant time, you
could also find a 3-colouring in constant time.

Exercise 6.4. Prove that it is not possible to find a maximal independent
set in any directed cycle in constant time.

Hint: Assume that algorithm A finds an independent set in time T in
any directed cycle. Follow the basic idea of the proof of Theorem 6.8.
Choose n = 2T + 3, k = 2T + 1, and c = 2. Show that you can construct
a cycle in which a node and both of its neighbours produce the same
output. Argue that if the output is a valid independent set, it cannot be
a maximal independent set.

Exercise 6.5. Prove that it is not possible to find a maximal matching
in any directed cycle in constant time.

Exercise 6.6. Prove that it is not possible to find a 100-approximation
of a maximum independent set in any directed cycle in constant time.

Hint: You will need several applications of Ramsey’s theorem. First,
choose a (very large) space of unique identifiers. Then apply Ramsey’s
theorem to find a large monochromatic subset, remove the set, and
repeat. This way you have partitioned almost all identifiers into mono-
chromatic subsets. Each monochromatic subset is used to construct a
fragment of the cycle.
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Chapter 7

What Next?

7.1 Other Stuff Exists

Distributed computing is a vast topic. We conclude this course by
mentioning perspectives that we have not covered; we also provide
pointers to more in-depth information.

7.1.1 Models of Computing

Many models of distributed computing can be seen as extensions of the
models that we have studied. The following extensions are familiar from
the context of classical computational complexity and Turing machines.

Randomised algorithms. Each node has access to a stream of random
bits. A good example is Luby’s [17] randomised algorithm for
finding a maximal independent set — the algorithm uses the
random bits for symmetry breaking.

Nondeterministic algorithms. It is sufficient that there exists a proof
that can be verified efficiently in a distributed setting; we do
not need to construct the proof. This research direction was
introduced by Korman et al. [15].

7.1.2 Variants

There are many variants of the model that we described.

Asynchronous systems. Computers do not necessarily operate in a
synchronous manner. In particular, the propagation delays of the
messages may vary.
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Message passing vs. shared memory. Our model of computing can
be seen as a message-passing system: nodes send messages (data
packets) to each other. A commonly studied alternative is a system
with shared memory: each node has a shared register, and the
nodes can communicate with each other by reading and writing
the shared registers.

The above aspects were irrelevant for our purposes, as we were only
interested in the number of communication rounds; for example, asyn-
chronous systems can be “synchronised” efficiently [5]. However, if
we consider other complexity measures or fault tolerance, such details
become important.

Our model of computing is primarily intended to capture the spe-
cifics of wired networks — communication links can be seen as cables
that connect the computers. There are also numerous models that are
designed with wireless networks in mind. A simple graph is no longer an
appropriate model: a single radio transmission can be received by mul-
tiple nodes, and multiple simultaneous radio transmissions can interfere
with each other. Radio propagation is closely connected with physical
distances; hence in the context of wireless networks one often makes
assumptions about physical locations of the nodes.

7.1.3 Complexity Measures

For us, the main complexity measure has been the number of synchron-
ous communication rounds. Naturally, other possibilities exist.

Space. How many bits of memory do we need per node?

Number of messages. How many messages do we need to send in
total?

Message size. We did not limit the size of a message. However, it is
common to assume that the size of each message is O(log n) bits;
how many communication rounds do we need in that case?
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7.1.4 Fault Tolerance and Dynamics

Fault tolerance in general is an important topic in any large-scale dis-
tributed system. In the theory of distributed computing, fault tolerance
has been studied from many different and complementary perspectives,
of which we mention three representative examples.

Dynamic networks. Nodes can join and leave; edges can be removed
and added. The system is expected to correct the output quickly
after each change.

Byzantine failures. A fraction of nodes can be malicious and they may
try to actively disturb the algorithm. Nevertheless, non-malicious
nodes must be able to produce a correct output.

Self-stabilising systems. The initial state of each node can be arbitrary
— an adversary may have corrupted the memory of each node.
Nevertheless, the system must eventually recover and produce a
correct output. Note that a self-stabilising system can never stop;
all nodes have to keep communicating with each other indefinitely.
See Dolev’s [11] textbook for more information.

7.1.5 Problems

In this course we have studied input/output problems: we are given an
input, we expect the system to do some computation, and eventually
the system has to produce a correct output.

We assumed that the input is equal to the structure of the commu-
nication graph. This is not the only possibility: in general, one can solve
arbitrary input/output problems in a distributed manner.

However, there are also many problems that are not input/output
problems. In the context of distributed algorithms, there are also prob-
lems that are related to controlling an autonomous entity. Often we
will use the metaphor of robot navigation: the graph is a map of an
environment, and we need to control “robots” that navigate in the graph
— however, instead of a physical robot, we can equally well study a

126



logical entity such as a data packet or a token that is routed through-
out a network. Some examples of robot navigation tasks include the
following.

Graph exploration. A robot needs to visit all nodes of a graph.

Rendezvous. There are two robots who need to meet each other at a
single node.

7.2 Further Reading

Nancy Lynch’s textbook [18] provides an excellent overview of the
field of distributed algorithms. Diestel’s book [10] is a good source for
graph-theoretic background, and Vazirani’s book [28] provides further
information on approximation algorithms from the perspective of non-
distributed computing.

For more online material on distributed algorithms, see the following
web page:

Principles of Distributed Computing,
Distributed Computing Group, ETH Zurich

http://dcg.ethz.ch/lectures/podc_allstars/

7.3 Bibliographic Notes

Many parts of this course have been directly influenced by numerous
papers and textbooks; here is a brief summary of the key references.

Graph-theoretic Foundations. The connection between minimum
maximal matchings and minimum edge dominating sets (Exercise 1.5)
is due to Allan and Laskar [1] and Yannakakis and Gavril [30], and
the connection between maximal edge packings and approximations
of vertex covers (Lemma 4.3) was identified by Bar-Yehuda and Even
[6]. The connection between maximal matchings and approximations
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of vertex covers (Exercise 1.3) is commonly attributed to Gavril and
Yannakakis (see, e.g., Papadimitriou and Steiglitz [22]). Exercise 1.9
is a 120-year-old result due to Petersen [23]. The definition of a weak
colouring is from Naor and Stockmeyer [19]. Ramsey’s theorem dates
back to 1930s [26]; our proof follows Nešeťril [20], and the notation is
from Radziszowski [25].

Model of Computing. The model of computing that we use through-
out this course — running time equals the number of synchronous
communication rounds — is from Linial’s [16] seminal paper, while the
concept of a port numbering is from Angluin’s [2] work.

Algorithms. Algorithm DPBit is based on the idea originally intro-
duced by Cole and Vishkin [8] and further refined by Goldberg et
al. [13]. The idea of algorithm DPSet is from Naor and Stockmeyer [19].
Algorithm Colour is from Goldberg et al. [13] and Panconesi and
Rizzi [21]. Algorithm BMM is due to Hańćkowiak et al. [14]. Algorithm
of Exercise 5.10 is from Friedman and Kogan [12].

Lower Bounds. The use of covering maps in the context of distributed
algorithm was introduced by Angluin [2], and local neighbourhoods
were studied by, among others, by Linial [16]. The general idea of
Exercise 3.10 can be traced back to Yamashita and Kameda [29], while
the specific construction in Figure 3.11 is from Bondy and Murty’s
textbook [7, Figure 5.10]. Lower bounds on graph colouring in the
model of unique identifiers are from Linial’s seminal work [16]; our
presentation in Section 6.3 uses an alternative proof based on Ramsey’s
theorem, following, e.g., Naor and Stockmeyer [19] and Czygrinow
et al. [9]. In particular, the idea of Exercise 6.6 is from Czygrinow et
al. [9].

Local Work. Recent work by our research group is represented in
algorithms VC3 [24] and VC2 [3]. Many exercises are also inspired
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by our work, including Exercises 3.1 and 3.3 [27], Exercise 3.6 [4],
Exercise 4.1 [4], and Exercises 4.5–4.10 [27].
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Index

Notation

|X | the number of elements in set X

f −1(y) preimage of y , i.e., f −1(y) = { x : f (x) = y }

degG(v) degree of node v in graph G

distG(u, v) distance between nodes u and v in G

ballG(v, r) nodes that are within distance r from v in G

diam(G) diameter of graph G

N the set of natural numbers, {0, 1,2, . . . }

R the set of real numbers

[a, b] set {x ∈ R : a ≤ x ≤ b}

Y (k) the collection of all k-subsets of Y

Rc(n; k) Ramsey numbers

Symbols

These conventions are usually followed in the choice of symbols.

α approximation factor

φ covering map, φ : V → V ′

ψ local isomorphism, ψ: ballG(v, r)→ ballH(u, r)

∆ maximum degree; an upper bound of the maximum
degree

Π graph problem
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F graph family

S set of feasible solutions

id unique identifiers

A distributed algorithm

C vertex cover C ⊆ V , edge cover C ⊆ E

D dominating set D ⊆ V , edge dominating set D ⊆ E

E set of edges

G, H graphs, G = (V, E)

I independent set I ⊆ V

M matching M ⊆ E

N port-numbered network, N = (V, P, p)

P set of ports

T running time (number of rounds)

U subset of nodes

V set of nodes

c, d natural numbers

e edges, elements of E

f , g, h functions

i, j, k,` natural numbers

mt message

n number of nodes, n= |V |
p connection function, involution p : P → P

r natural numbers

s, t, u, v nodes, elements of V

t time step (round), t = 0,1, . . . , T

w walk

x t state
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Algorithms

BMM maximal matching in 2-coloured graphs, Section 2.4.1.

Colour fast colour reduction in bounded-degree graphs,
Section 5.3.5.

DPBit fast colour reduction in directed pseudoforests,
Section 5.3.4.

DPGreedy greedy colour reduction in directed pseudoforests,
Section 5.3.3.

DPSet fast colour reduction in directed pseudoforests,
Exercise 5.6.

Gather gathering information in port-numbered graphs,
Section 5.2.3.

Greedy greedy colour reduction, Section 5.3.1.

HSEP half-saturating edge packings, Section 4.2.5.

MEP maximal edge packings, Section 4.2.6.

VC2 2-approximation of minimum vertex cover, Section 4.2.6.

VC3 3-approximation of minimum vertex cover, Section 2.4.2.
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