Unique
Identifiers

DDA Course

week 5



Unique Identifiers

» Networks with globally unique identifiers

e IPv4 address, IPv6 address, MAC address,
IMEI number, ...

 “Everything” can be discovered

e in a connected graph G, all nodes can discover
full information about G in time O(diam(G))



round 1:

round 2:

round 5:
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Unique Identifiers

 “Everything” can be discovered

e in a connected graph G, all nodes can discover
full information about G in time O(diam(G))

 “Everything” can be solved

» once all nodes know G, solving a graph problem
is just a local state transition

» Key question: what can be solved fast?



Graph Colouring

 Glven unique identifiers,
can we find a graph colouring fast?

 unique identifiers from {1, 2, ..., x} can be interpreted
as a graph colouring with x colours

 problem: huge number of colours

« we only need to solve a colour reduction problem:
given an x-colouring, find a y-colouring
for a small y < x



Greedy Graph Colouring

o All nodes of colour x pick the smallest
free colour in their neighbourhood

o there is always a free colour
in the set {1, 2, ..., A + 1}

» reduces the number of colours from x to x — 1,
assuming that x> A + 1

 Very slow...



Fast Graph Colouring
o

o Let’s first study @ /Q
a special case... ‘"*’
e Directed 5@ ?D
pseudoforest & @/?
. edges oriented GO~
68
e outdegree < 1



Fast Graph Colouring

o Idea: colour = binary string

« Reduce colours:

. |

« k bits — (0001110101000011)
1 + log> k bits T

e ok colours — (0000110001000011) ~ —> &

2k colours T
(0011110101000011) 10001

16 bits T 1+ 4 bits T




Fast Graph Colouring

« Compare bit string with the successor,
find the first bit that differs

|
(0000110001000011)
/4 A A

(oo11110101000011)  bit 8, value1 —— 10001 (10001 )
/N /N

k bits 1+ log k bits



Fast Graph Colouring

» Correct, no matter what the successor does

| bit 6, value 1

(0000110001000011)  bit 7, value 0
A 5 . ;

/ 01t 8, value O

(oo11110101000011)  bit 8, value 1

/N
k bits

01101
01110
10000

10001

-

(10001 )

/ N\
1+ log k bits




Fast Graph Colouring

» Correct, no matter what the successor does

» For each directed edge (u, v):

e the new colour of node u i1s different from
the new colour of its successor v

» Proper graph colouring



Fast Graph Colouring

e NO successor?
Pretend that there i1s one...

(0000000000000000) C )
A

A

(oo11110101000011) —  (0011110101000011)  — (00001 )

/N /N / N\
k bits 1+ log k bits




Fast Graph Colouring

 Very fast colour reduction:
« 2128 colours — 2 - 128 = 28 colours
23 colours — 2 - 8 = 24 colours
e 24 colours — 2 - 4 = 23 colours

e 23 colours — 2 - 3 = 6 colours

» But now we are stuck — how to get below 6?



Fast Graph Colouring

 Directed pseudotree with 6 colours:
how to reduce the number of colours?
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Fast Graph Colouring

o Shift colours “down”:
all predecessors have the same colour

@ O—

make up something
é) if no successor

:
A e
506 b4



Fast Graph Colouring

» Now greedy works very well:
there is always a free colour in set {1, 2, 3}
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Fast Graph Colouring

 Colour reduction in
directed pseudotrees
 bit comparisons: very quickly gb
from x to 6 colours
e 2128 508 516 -8 -6 G @/ ?
O
o shift + greedy: slowly

.

from 6 to 3 colours (14)



Fast Graph Colouring

® S &
e So far: ‘\ ? /‘ Q
e colour reduction in %’

directed pseudoforests gb\‘ ?D
» Next: @ @/

e colour reduction in @*
general graphs of ‘
(14)

maximum degree A






Colours — orientation:
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Colours — orientation:

OGP0
00
Lo

Port numbers — partition
in A directed pseudoforests




Find a 3-colouring
for each pseudoforest

Computed in parallel,
simulate A instances of
the algorithm

Each node has A colours,

one for each forest
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G,: (A+1)-coloured
— trivial, no edges
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G;: (A+1)-coloured









G.: (A+1)-coloured



G.: (A+1)-coloured
G,: 3-coloured
G.: 3(A+1)-coloured
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(A+1)-colouring of
the original graph



Fast Graph Colouring

 Colour reduction from x to A+1
e orientation: 1 round
e partition: 0 rounds
e 3-colouring: O(log* x) rounds — see Exercise 5.4
» A phases:

« merge & reduce 3(A+1) — A+1: 2(A+1) rounds

 total: O(A? + log* x) rounds



Fast Graph Colouring

e Colour reduction from x to A+1

e O(A2 + log* x) rounds
 Plenty of applications — see exercises

 Similar techniques can be used
to solve other problems



Fast Graph Colouring

e Colour reduction from x to A+1

e O(A2 + log* x) rounds
 Fast, but running time depends on x

e Next week:

« dependence on x is necessary

» even if A = 2, we cannot reduce the number of colours
from x to 3 in constant time, independently of x



