Unique Identifiers

DDA Course week 5

Unique Identifiers

- Networks with globally unique identifiers
 - IPv4 address, IPv6 address, MAC address, IMEI number, ...
- "Everything" can be discovered
 - in a connected graph *G*, all nodes can discover full information about *G* in time *O*(diam(*G*))

round 1:
$$\{2,3\}$$
 $\{2,3\}$ $\{2,7\}$ $\{6,7\}$ $\{5,8\}$ $\{5,8\}$ $\{4,9\}$ $\{4,9\}$ $\{2,7\}$ $\{6,7\}$ $\{6,8\}$ $\{6,8\}$ $\{6,9\}$ $\{6,9\}$ $\{2,7\}$ $\{2,7\}$ $\{2,7\}$ $\{2,7\}$ $\{4,9\}$ $\{6,7\}$ $\{6,8\}$ $\{6,8\}$ $\{6,7\}$ $\{6,9\}$ $\{6,7\}$ $\{6,7\}$ $\{5,8\}$ $\{6,8\}$ $\{6,8\}$ $\{6,7\}$ $\{6,9\}$ $\{6,$

Unique Identifiers

- "Everything" can be discovered
 - in a connected graph *G*, all nodes can discover full information about *G* in time *O*(diam(*G*))
- "Everything" can be solved
 - once all nodes know *G*, solving a graph problem is just a local state transition
- Key question: what can be solved *fast*?

Graph Colouring

- Given unique identifiers, can we find a graph colouring fast?
 - unique identifiers from {1, 2, ..., x} can be interpreted as a graph colouring with x colours
 - problem: huge number of colours
 - we only need to solve a *colour reduction* problem: given an *x*-colouring, find a *y*-colouring for a small y < x

Greedy Graph Colouring

- All nodes of colour *x* pick the smallest free colour in their neighbourhood
 - there is always a free colour in the set $\{1, 2, ..., \Delta + 1\}$
 - reduces the number of colours from x to x-1, assuming that $x > \Delta + 1$
- Very slow...

- Let's first study a special case...
- Directed pseudoforest
 - edges oriented
 - outdegree ≤ 1

- Idea: colour = *binary string*
- Reduce colours:
 - $k \text{ bits} \rightarrow$ $1 + \log_2 k \text{ bits}$
 - 2^k colours \rightarrow 2k colours

 Compare bit string with the successor, find the first bit that differs

Correct, no matter what the successor does

- Correct, no matter what the successor does
- For each directed edge (u, v):
 - the new colour of node u is different from the new colour of its successor v
- Proper graph colouring

No successor?
Pretend that there is one...

- Very fast colour reduction:
 - 2^{128} colours $\rightarrow 2 \cdot 128 = 2^{8}$ colours
 - 2^8 colours $\rightarrow 2 \cdot 8 = 2^4$ colours
 - 2^4 colours $\rightarrow 2 \cdot 4 = 2^3$ colours
 - 2^3 colours $\rightarrow 2 \cdot 3 = 6$ colours
- But now we are stuck how to get below 6?

• Directed pseudotree with 6 colours: how to reduce the number of colours?

• Shift colours "down": all predecessors have the same colour

• Now greedy works very well: there is always a free colour in set {1, 2, 3}

- Colour reduction in directed pseudotrees
 - bit comparisons: very quickly from *x* to 6 colours

•
$$2^{128} \rightarrow 2^8 \rightarrow 16 \rightarrow 8 \rightarrow 6$$

- shift + greedy: slowly from 6 to 3 colours
- $6 \rightarrow 5 \rightarrow 4 \rightarrow 3$

• So far:

• colour reduction in directed pseudoforests

• Next:

• colour reduction in general graphs of maximum degree Δ

Input:

Input:

Colours → orientation:

Input:

Colours \rightarrow orientation:

Port numbers \rightarrow partition in Δ directed pseudoforests

Find a 3-colouring for each pseudoforest

Computed in parallel, simulate Δ instances of the algorithm

Each node has Δ colours, one for each forest

 G_0 : (Δ +1)-coloured – trivial, no edges

union of edges, combination of colours

$$a + b \rightarrow (a, b)$$

 G_0 : (Δ +1)-coloured

 G_1 : 3-coloured

 G_1 : $3(\Delta+1)$ -coloured

 G_0 : (Δ +1)-coloured

 G_1 : 3-coloured

 G_1 : 3(Δ +1)-coloured,

reduce to Δ +1 greedily

 G_1 : (Δ +1)-coloured

$$G_1$$
: (Δ +1)-coloured

 G_2 : 3-coloured

 G_2 : 3(Δ +1)-coloured

 G_1 : (Δ +1)-coloured

 G_2 : 3-coloured

 G_2 : 3(Δ +1)-coloured,

reduce to Δ +1 greedily

$$G_2$$
: (Δ +1)-coloured

 $(\Delta+1)$ -colouring of the original graph

- Colour reduction from x to Δ +1
 - orientation: 1 round
 - partition: o rounds
 - 3-colouring: $O(\log^* x)$ rounds see Exercise 5.4
 - Δ phases:
 - merge & reduce $3(\Delta+1) \rightarrow \Delta+1$: $2(\Delta+1)$ rounds
 - total: $O(\Delta^2 + \log^* x)$ rounds

- Colour reduction from x to Δ +1
 - $O(\Delta^2 + \log^* x)$ rounds
- Plenty of applications see exercises
- Similar techniques can be used to solve other problems

- Colour reduction from x to Δ +1
 - $O(\Delta^2 + \log^* x)$ rounds
- Fast, but running time depends on *x*
- Next week:
 - dependence on *x* is necessary
 - even if Δ = 2, we cannot reduce the number of colours from x to 3 in constant time, independently of x