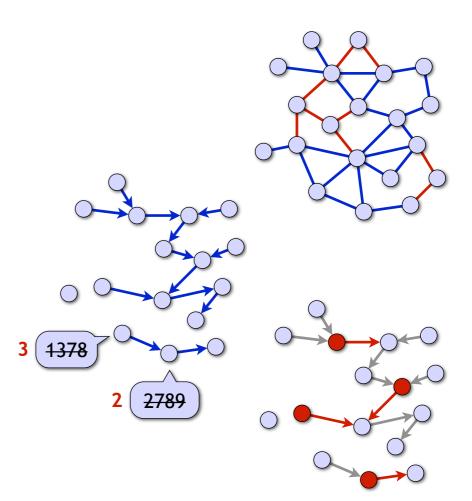
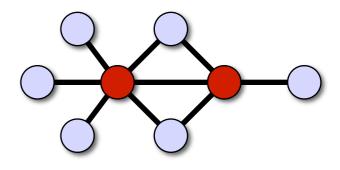
DDA 2010, lecture 7: Local news

- Some recent work in our research group
 - algorithm for vertex covers
 - application of Cole-Vishkin technique in port-numbering model

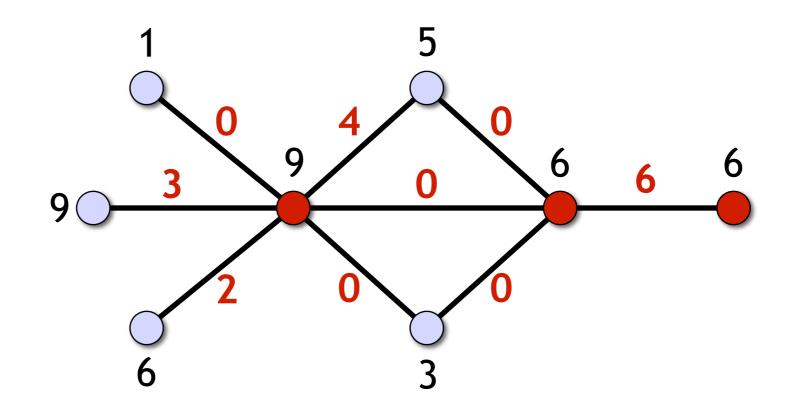


Research problem

- Goal: finding a 2-approximation of minimum vertex cover
 - fast: time independent of n
 - port-numbering model
- From lecture 4:
 - even if we had unique identifiers, it's not possible to find (2ϵ) -approximation in constant time
 - hence approximation factor 2 is the best possible



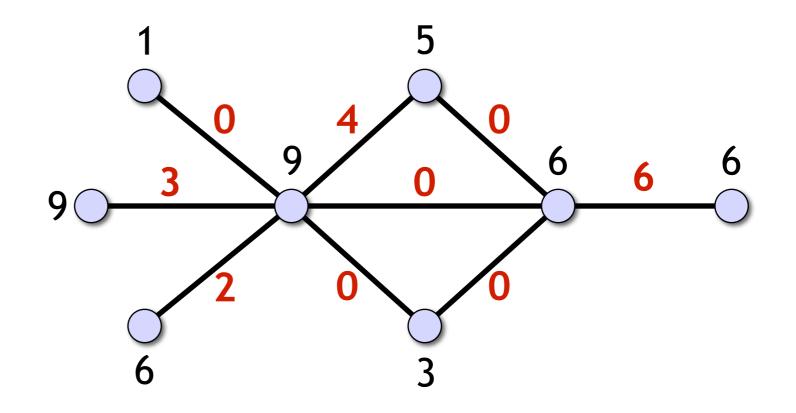
DDA 2010, lecture 7a: Vertex covers and edge packings



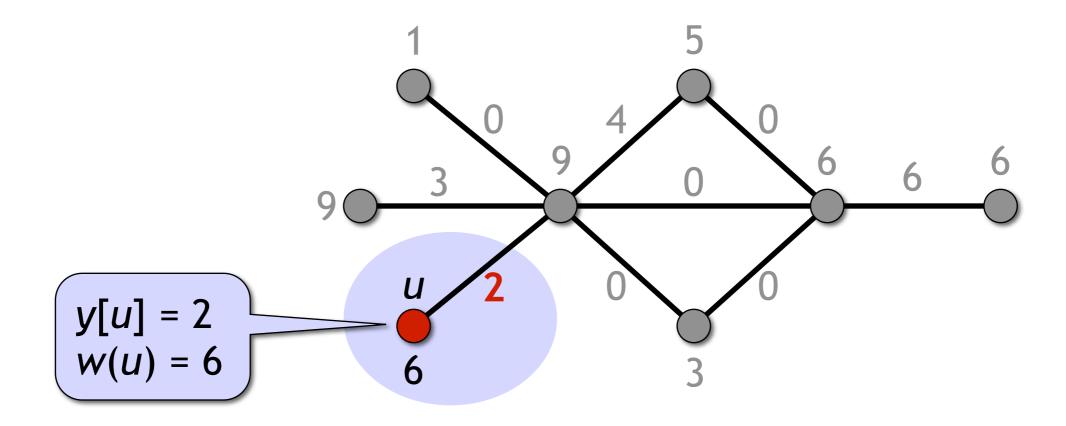
Vertex cover in the port-numbering model

- Convenient to study a more general problem: minimum-weight vertex cover
- More general problems are sometimes easier to solve? Notation: w(v) = weight of vvw(v) = weight of vvw(v) = weight of vvw(v) = weight of v

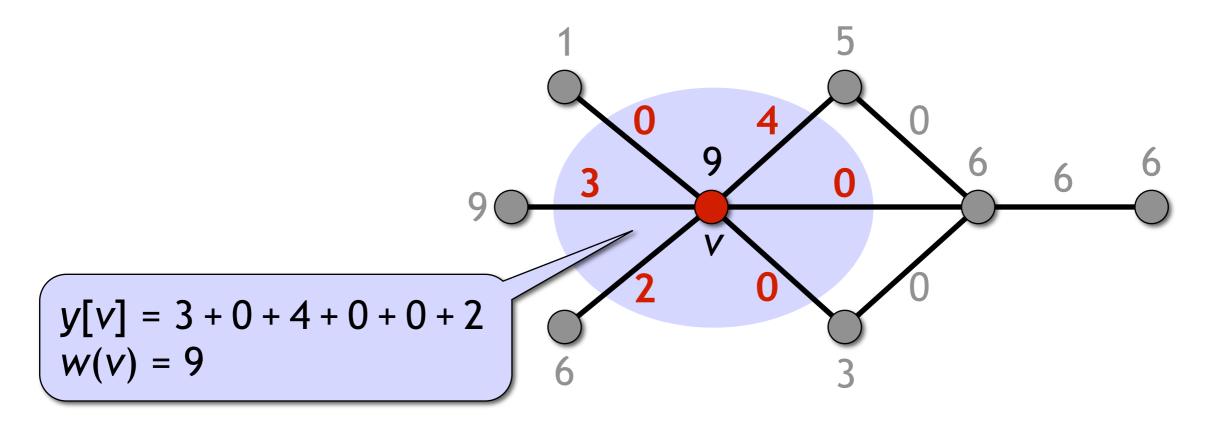
- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: y[v] ≤ w(v) for each node v, where y[v] = total weight of edges incident to v



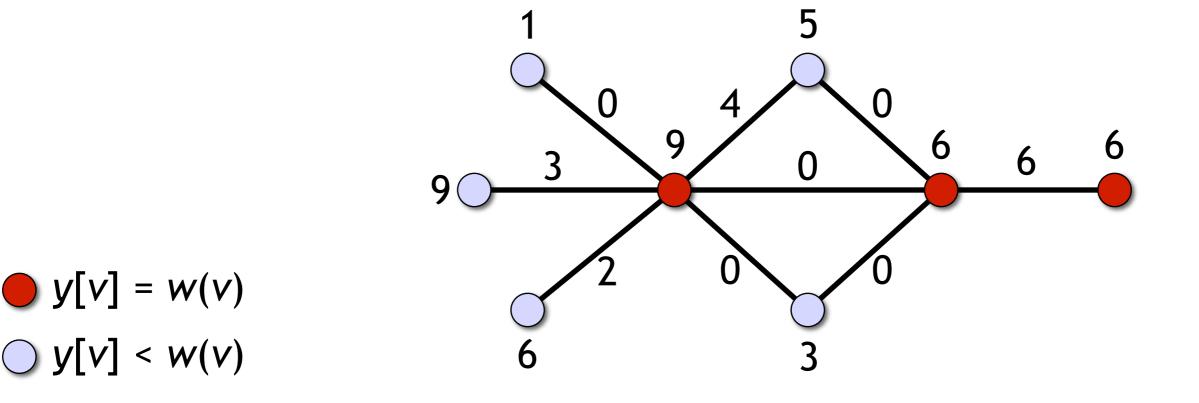
- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: $y[v] \le w(v)$ for each node v, where y[v] = total weight of edges incident to v



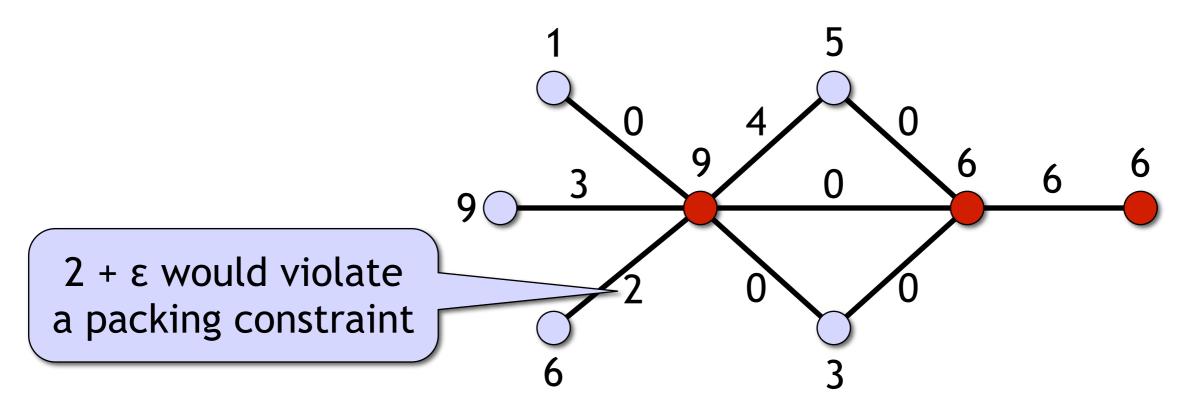
- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: $y[v] \le w(v)$ for each node v, where y[v] = total weight of edges incident to v



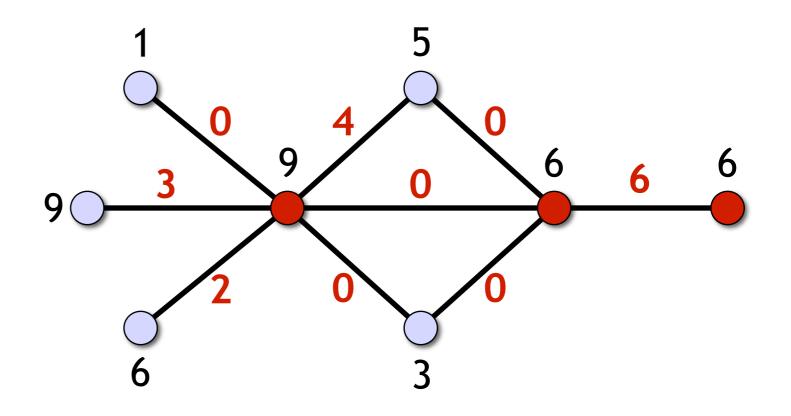
- Node v is **saturated** if y[v] = w(v)
 - Total weight of edges incident to v is *equal* to w(v),
 i.e., the packing constraint holds with equality



- Edge *e* is saturated if at least one endpoint of *e* is saturated
 - Equivalently: edge weight y(e) can't be increased



Maximal edge packing: all edges saturated
 ⇔ none of the edge weights y(e) can be increased
 ⇔ saturated nodes form a vertex cover!



- Minimum-weight vertex cover C* difficult to find:
 - Centralised setting: NP-hard
 - Distributed setting: integer problem (choose 0 or 1), symmetry-breaking issues
- Maximal edge packing y easy to find:
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)

- Minimum-weight vertex cover C* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes C(y) in y: 2-approximation of C*
 - Textbook proof: LP-duality, relaxed complementary slackness
 - Minimum-weight fractional vertex cover and maximum-weight edge packing are *dual problems*
 - But there's a simple and more elementary proof...

- $\sum_{v \in C(y)} w(v)$ Total weight of saturated nodes
- = $\sum_{v \in C(y)} y[v]$ Saturated nodes have y[v] = w(v)
- $= \sum_{e \in E} y(e) | e \cap C(y) |$
- $\leq 2 \sum_{e \in E} y(e) | e \cap C^* |$
- $= 2 \sum_{v \in C^*} y[v]$

 $\leq 2 \sum_{v \in C^*} w(v)$

- Interchange the order of summation Each edge is covered at least **once**
- by C* and at most *twice* by C(y)
- Interchange the order of summation
- All nodes have $y[v] \leq w(v)$

 $\sum_{v \in C(y)} w(v)$ $\sum_{v \in C(y)} \sum_{e \in E: v \in e} y(e)$ ted nodes $\sum_{v \in C(y)} y[v]$ $\sum_{e \in E} \sum_{v \in C(y): v \in e} y(e)$ y[v] = w(v)

- = $\sum_{e \in E} y(e) |e \cap C(y)|$ Interchange the order of summation
- $\leq 2 \sum_{e \in E} y(e) | e \cap C^* |$
- Each edge is covered at least *once* by *C** and at most *twice* by *C*(*y*)

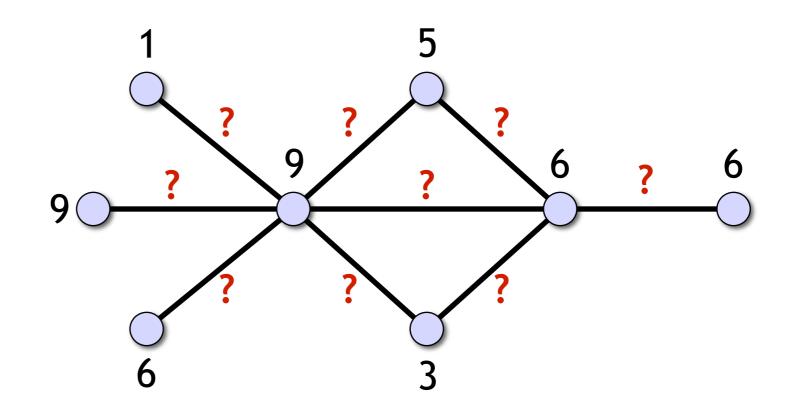
 $= 2 \sum_{v \in C^*} y[v]$

- Interchange the order of summation
- $\leq 2 \sum_{v \in C^*} w(v)$ All nodes have $y[v] \leq w(v)$

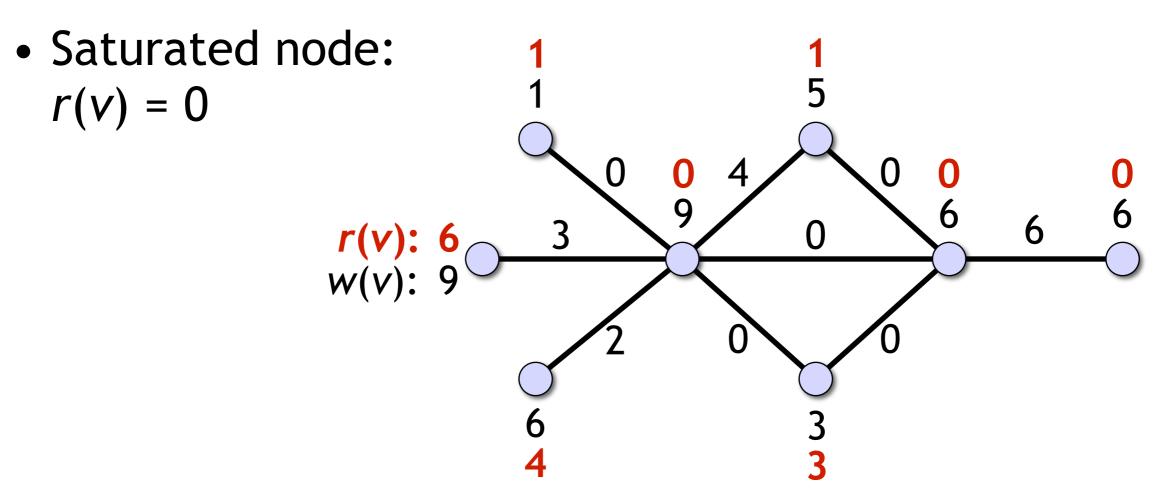
Summary

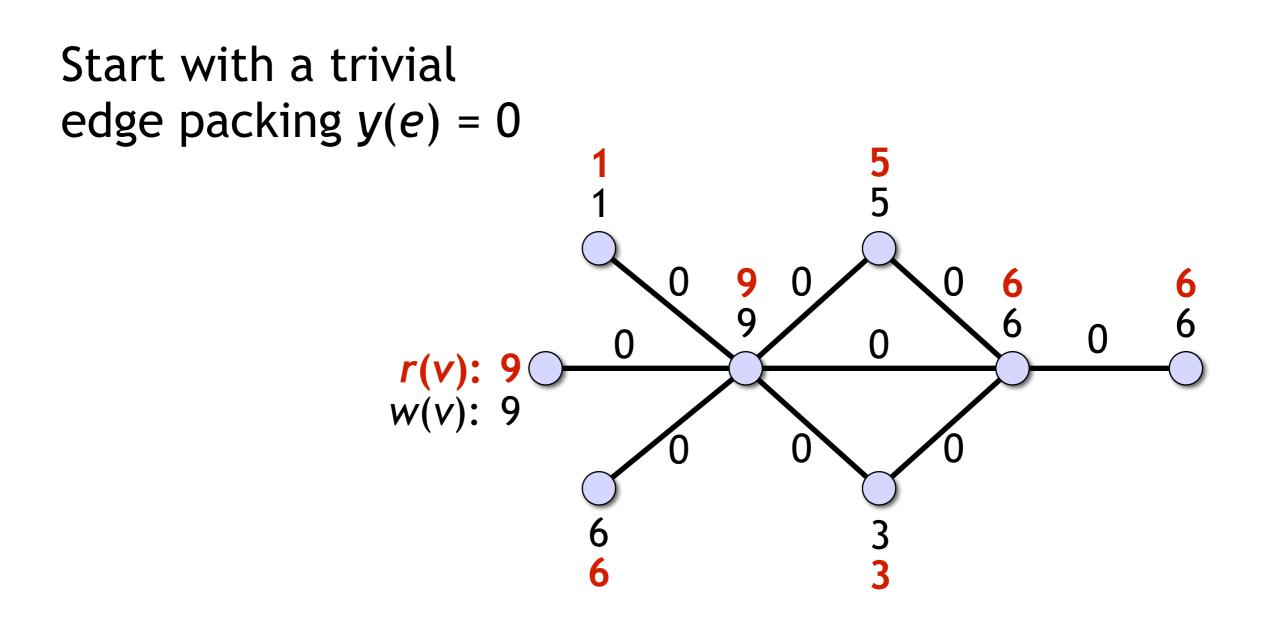
- Goal:
 - Find a 2-approximation of minimum-weight vertex cover
 - Deterministic algorithm in the **port-numbering** model
- Idea:
 - Find a maximal edge packing, take saturated nodes
- Coming up next:
 - Begin with a "greedy but safe" algorithm
 - We will see later how the Cole-Vishkin technique helps

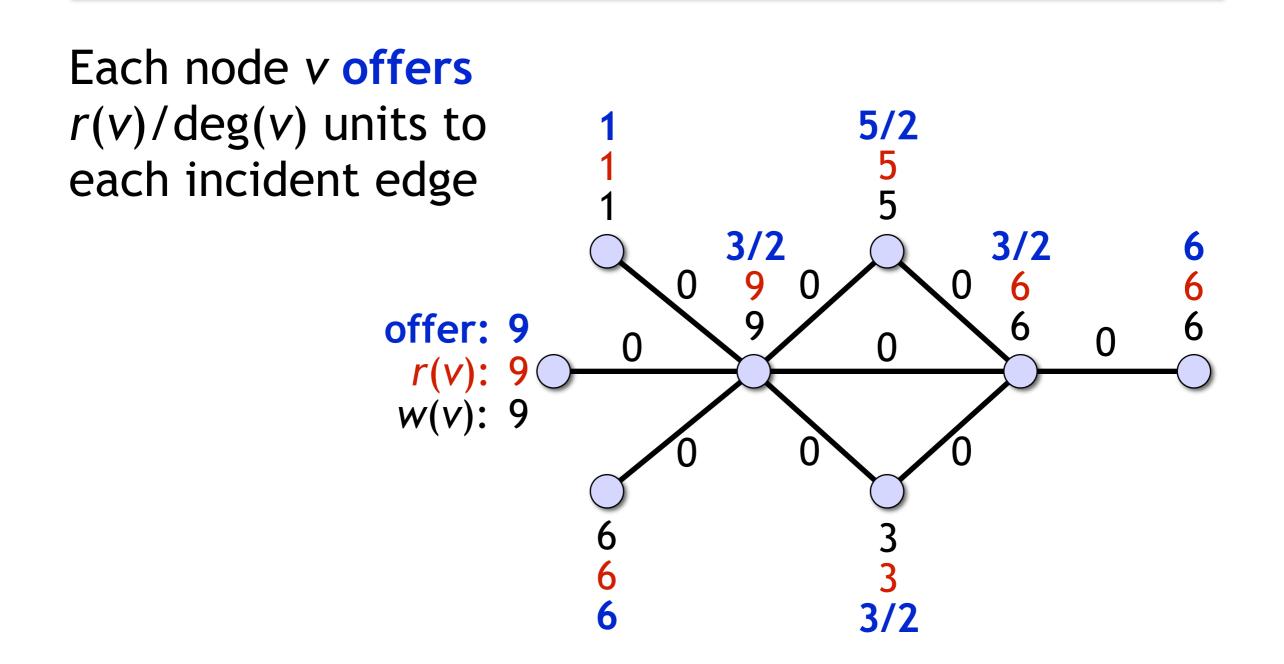
DDA 2010, lecture 7b: Finding a maximal edge packing



- y[v] = total weight of edges incident to node v
- Residual capacity of node v: r(v) = w(v) y[v]





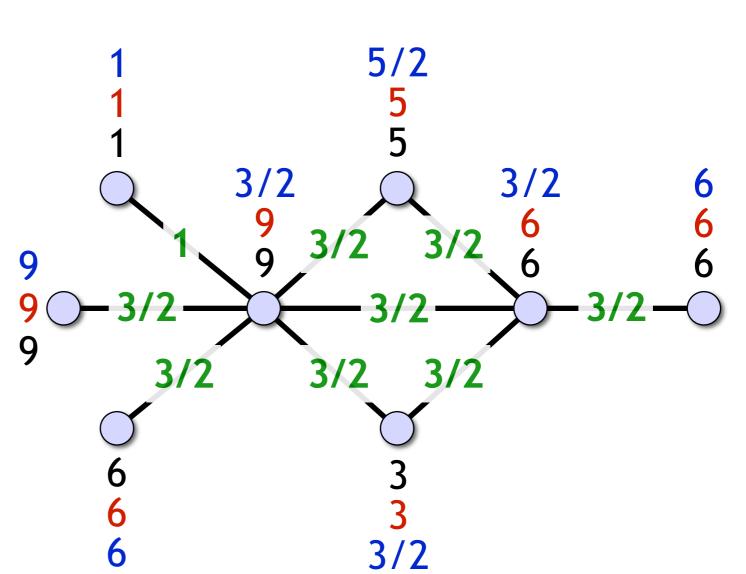


Finding a maximal edge packing: basic idea

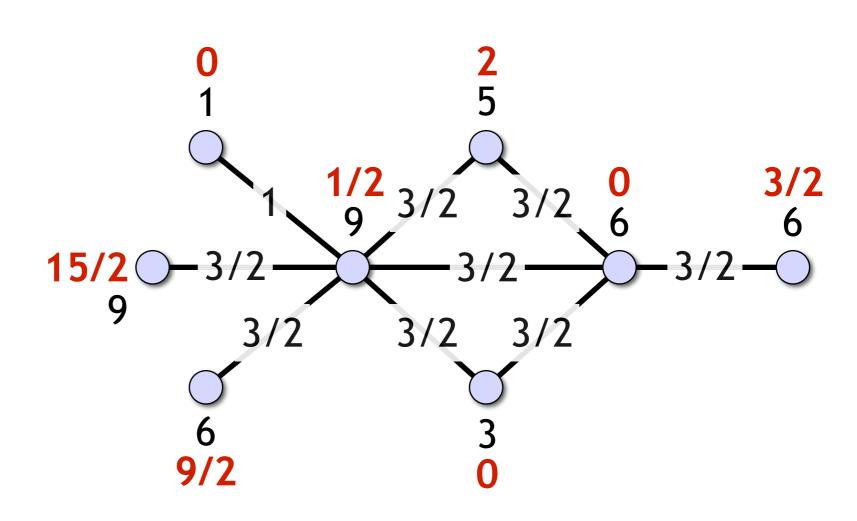
Each edge **accepts** the smallest of the 2 offers it received

Increase y(e) by this amount

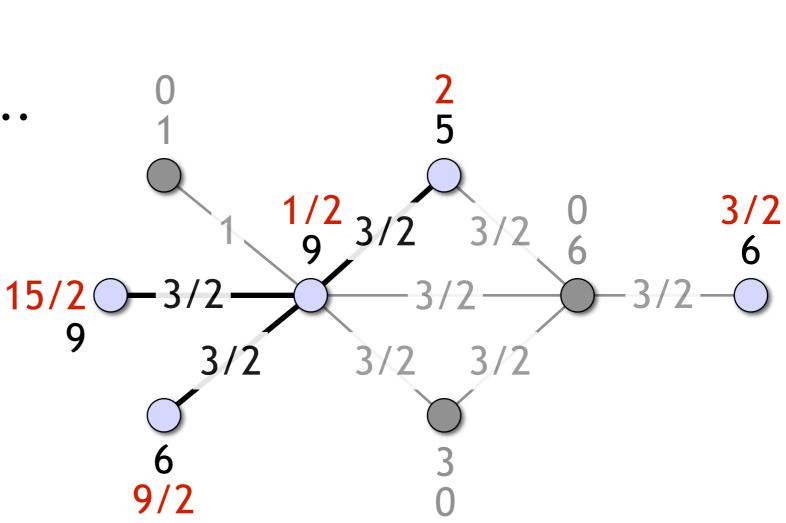
• Safe, can't violate packing constraints



Update **residuals**...

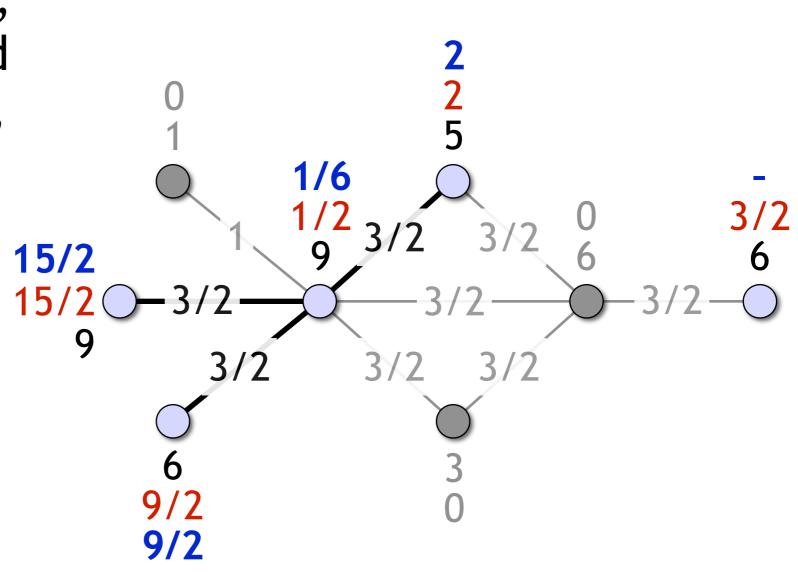


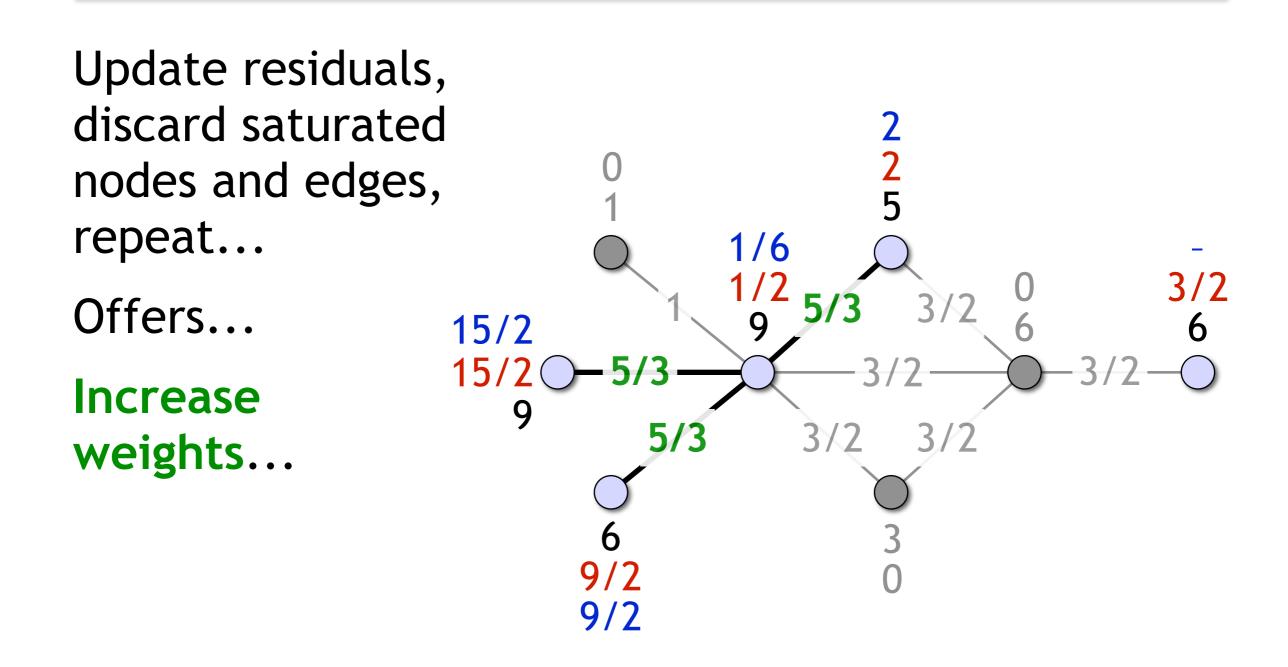
Update residuals, discard saturated nodes and edges...

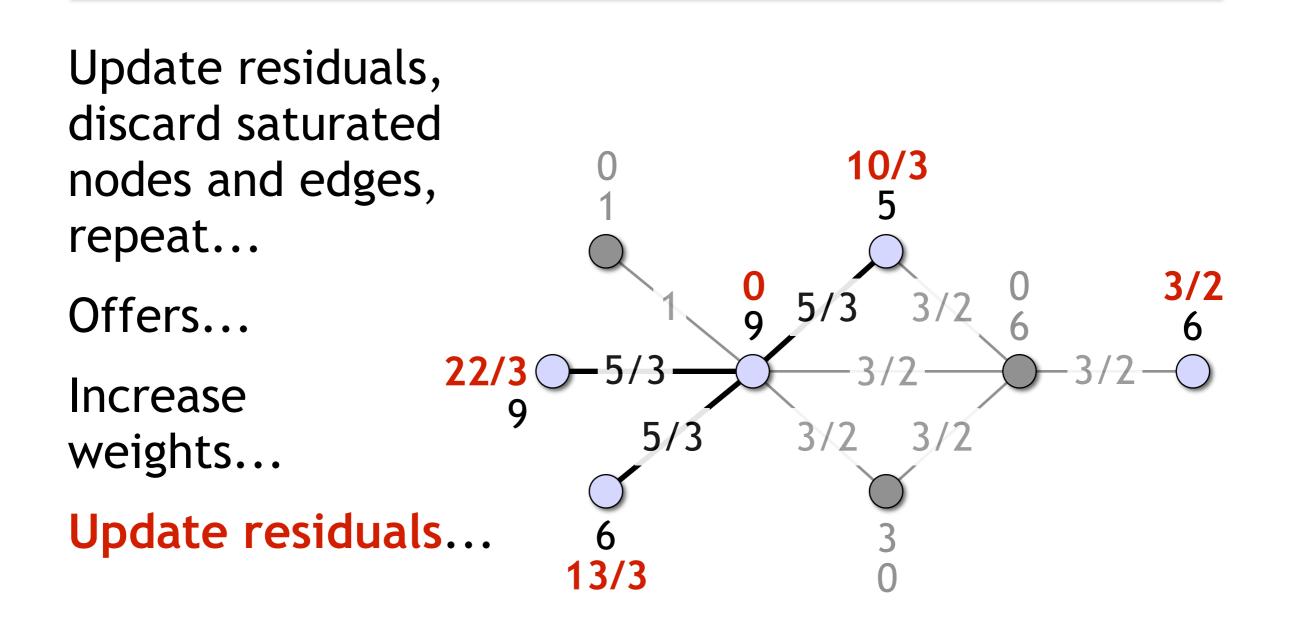


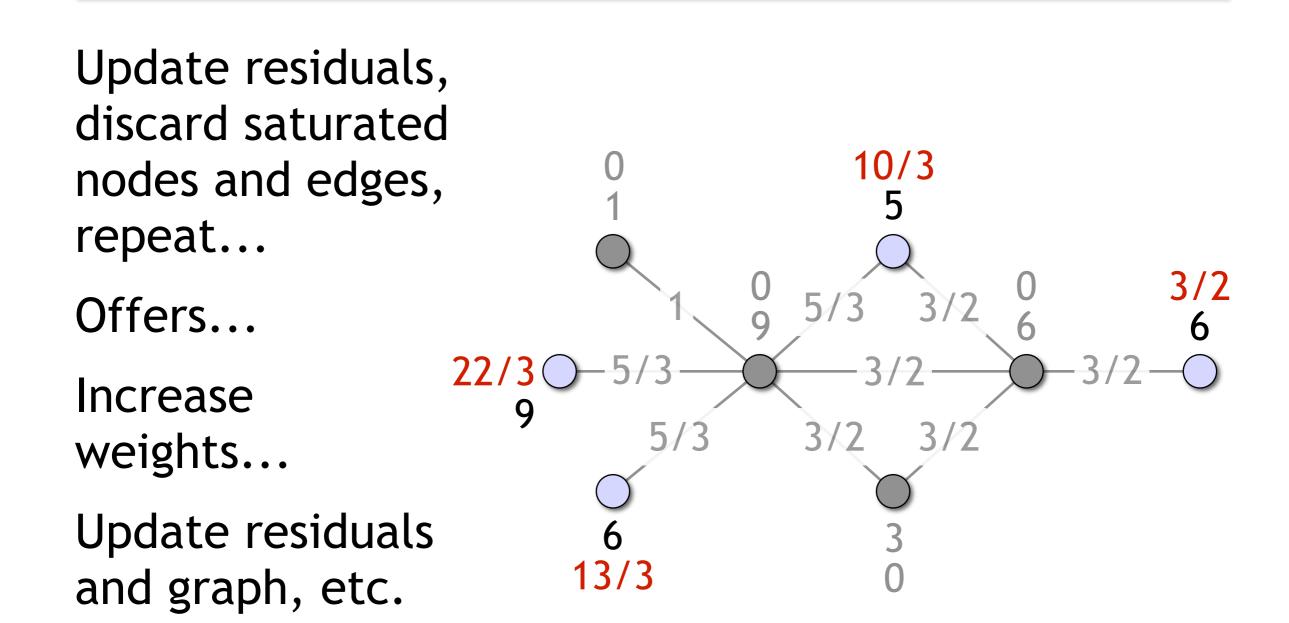
Update residuals, discard saturated nodes and edges, repeat...

Offers...



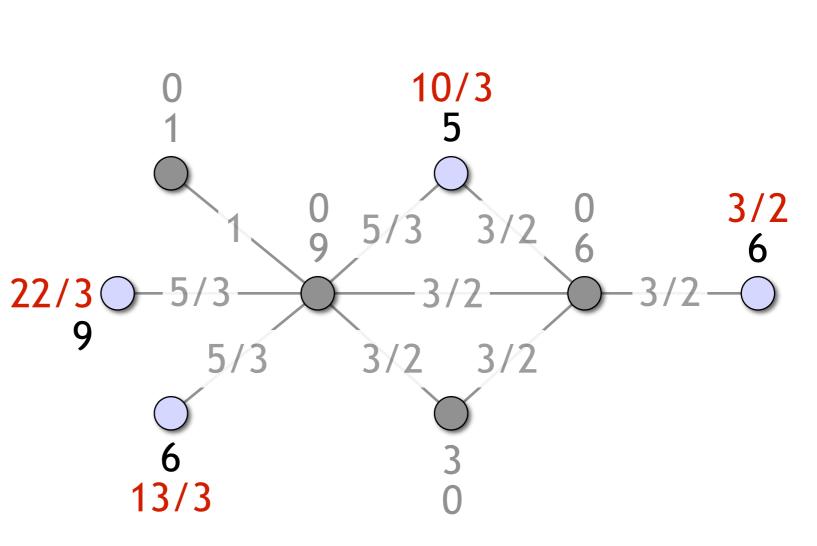






This is a simple deterministic distributed algorithm We are making

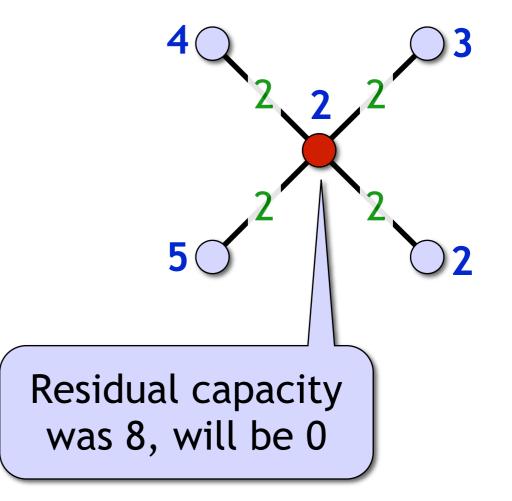
some progress towards finding a maximal edge packing – but...



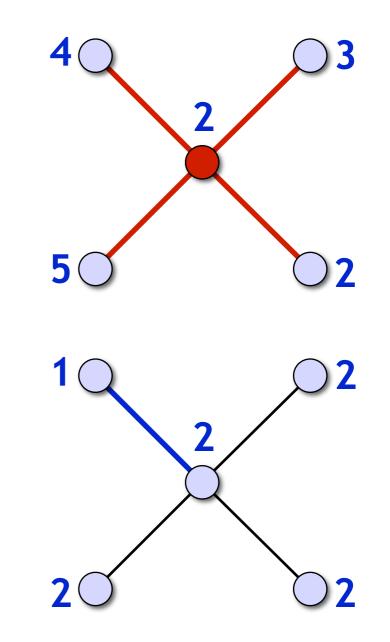
This is a simple deterministic distributed algorithm

We are making some progress towards finding a maximal edge packing — but this is too slow!

- Offer is a local minimum:
 - Node will be saturated
 - And all edges incident to it will be saturated as well

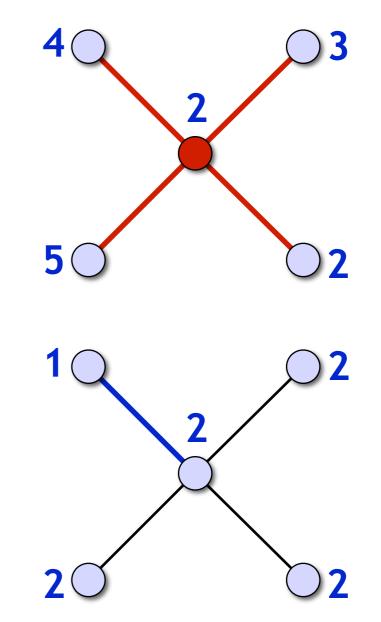


- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as "colours"
 - Nodes u and v have different colours: {u, v} is multicoloured

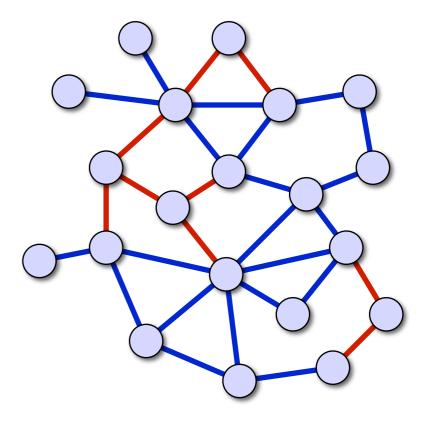


- Some progress guaranteed:
 - On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 - Such edges are be discarded in phase I: node degrees decrease by at least one on each iteration
 - Hence in ∆ iterations all edges are saturated or multicoloured

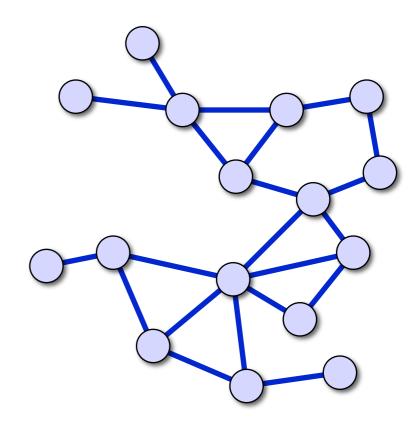
 Δ = maximum degree



- Phase I: in ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?

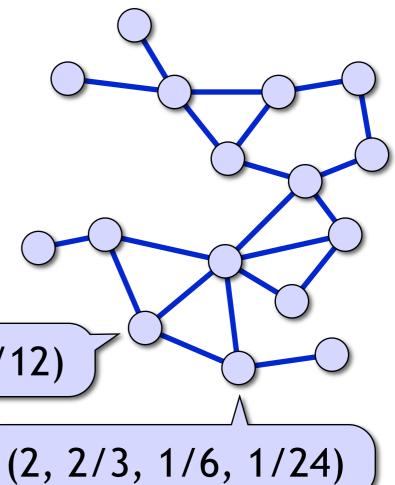


- Phase I: in ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let's focus on unsaturated nodes and edges



- Colours are sequences of Δ offers, which are rational numbers
- Assume that node weights are integers 1, 2, ..., W
- Let's analyse the offers more carefully in that case...



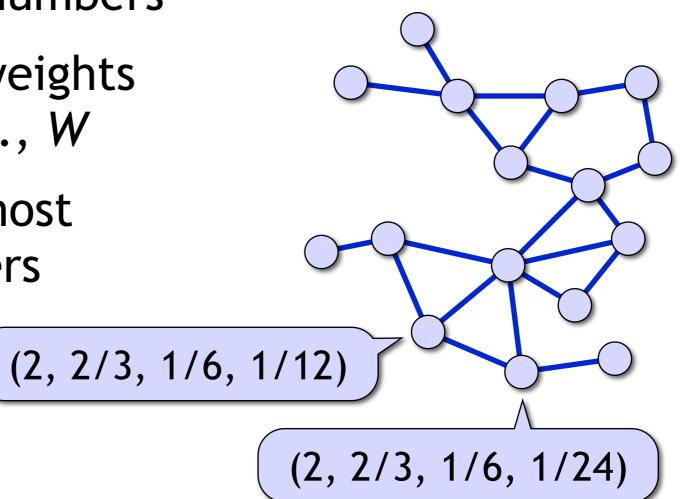


- Offers are rationals of the form $q/(\Delta!)^{\Delta}$
 - Proof idea: multiply weights by $(\Delta!)^{\Delta}$
 - Then r(v) is a multiple of $(\Delta!)^{\Delta}$ before iteration 1
 - Offer r(v)/deg(v) is a multiple of $(\Delta!)^{\Delta-1}$ on iteration 1
 - r(v) is a multiple of $(\Delta!)^{\Delta-1}$ after iteration 1
 - ... (more formally: proof by induction)
 - r(v) is a multiple of Δ ! before iteration Δ
 - Offers are integers on iteration $\boldsymbol{\Delta}$

- Offers are rationals of the form $q/(\Delta!)^{\Delta}$
 - Proof idea: if we multiplied weights by $(\Delta!)^{\Delta}$, then the offers would integers throughout the algorithm
 - Without scaling, we get in the worst case $q/(\Delta!)^{\Delta}$
- If node weights are integers 1, 2, ..., W, then offers are rationals between 0 and W
 - Offer of v is at most $r(v) \le w(v) \le W$
- There are at most $W(\Delta!)^{\Delta}$ possible offers!

Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers
- Assume that node weights are integers 1, 2, ..., W
- Then there are at most $W(\Delta!)^{\Delta}$ possible offers
- And hence only $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours



Finding a maximal edge packing: colouring trick

- Only $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours
- Replace "inconvenient" colours (sequences of rationals) with "convenient" colours (integers 1, 2, ..., k)

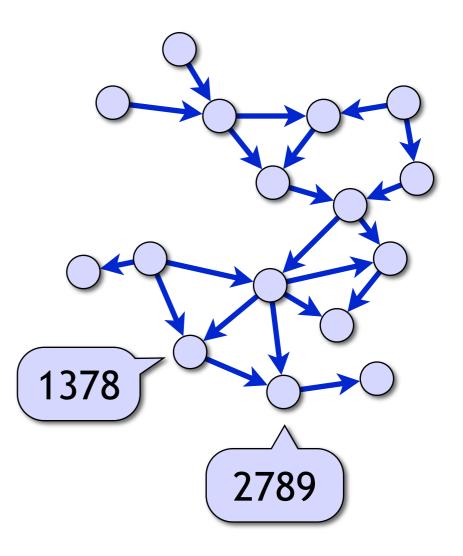
1378

(2, 2/3, 1/6, 1/12)

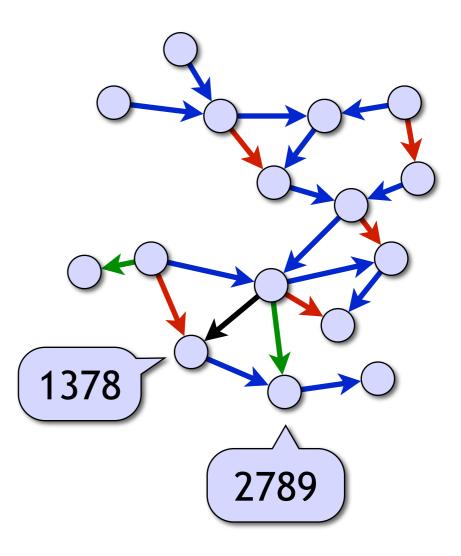
2789

 $\frac{2}{3}, \frac{1}{6}, \frac{1}{24}$

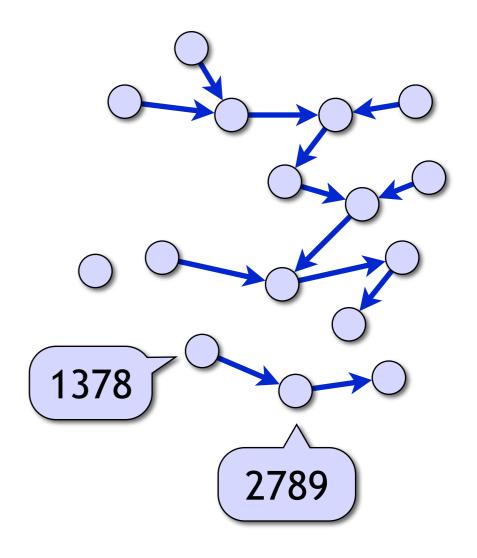
- We have a proper *k*-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)



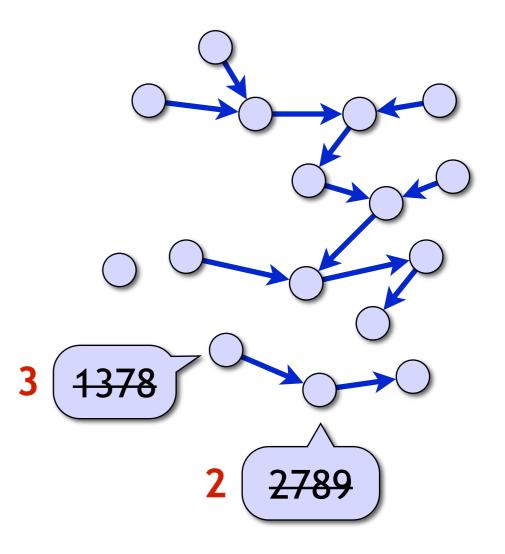
- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests



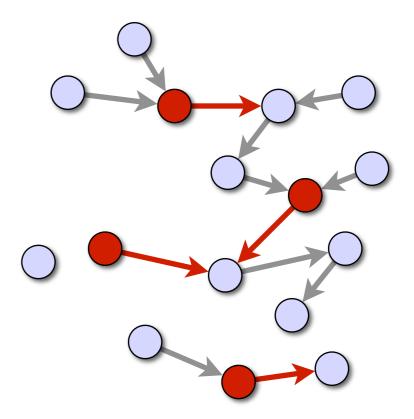
• For each forest in parallel...



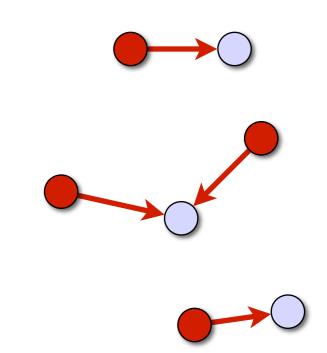
- For each forest in parallel:
 - Use Cole-Vishkin style colour reduction algorithm
 - Given a k-colouring, finds a 3-colouring in time O(log* k)



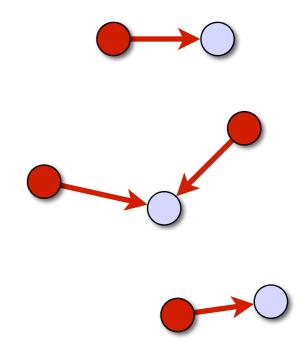
- For each forest and each colour j = 1, 2, 3 in sequence:
 - Consider all outgoing edges of colour-j nodes



- For each forest and each colour j = 1, 2, 3 in sequence:
 - Consider all outgoing edges of colour-*j* nodes
 - Node-disjoint stars: easy to saturate all such edges in parallel
 - Two simple cases:
 - saturate centre
 - saturate all leaves

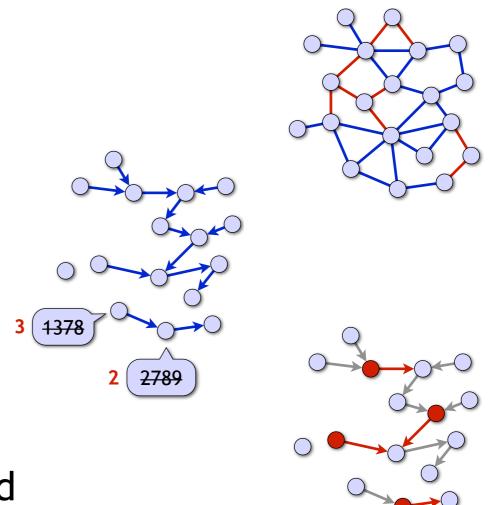


- This way we can saturate all multicoloured edges:
 - Each edge belongs to one forest, and its tail has colour 1, 2, or 3
 - We simply go through all forests and all colours and therefore saturate everything



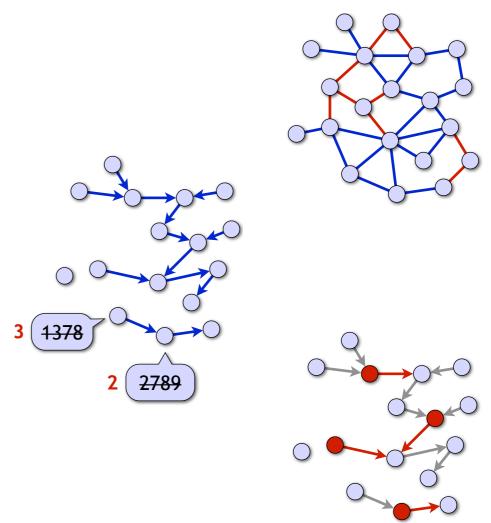
Finding a maximal edge packing: algorithm overview

- Phase I:
 - All edges become saturated or multicoloured
- Phase II:
 - Multicoloured edges are partitioned in Δ forests
 - Forests are 3-coloured
 - 3-coloured forests are saturated



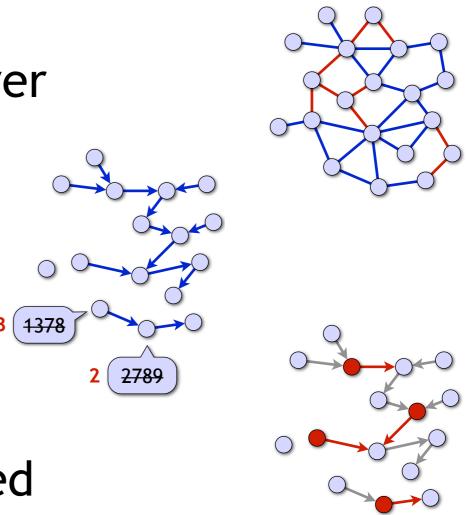
Finding a maximal edge packing: running time analysis

- Total running time:
 - All edges become saturated or multicoloured: O(Δ)
 - Multicoloured forests are 3-coloured: O(log* k)
 - 3-coloured forests are saturated: O(Δ)
- $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 - k is huge, but log* grows slowly



Finding a maximal edge packing: summary

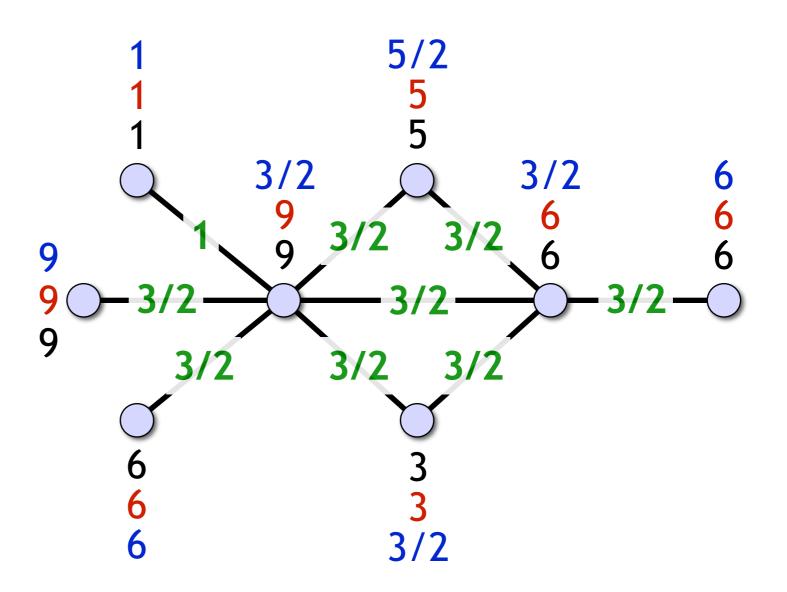
- Maximal edge packing and 2-approximation of vertex cover in time O(Δ + log* W)
 - *W* = maximum node weight
- Unweighted graphs: running time simply O(∆), independent of n
- Everything can be implemented in the port-numbering model



Finding a maximal edge packing: recap

Phase I:

- Residuals r(v) = w(v) - y[v]
- Offer r(v)/deg(v)
- Accept minimum, increase weights
- Progress: edges
 become *saturated* or *multicoloured* (different offers)



Finding a maximal edge packing: recap

Phase II:

- Saturated edges are already ok, we focus on multicoloured edges
- Colours are sequences of offers, re-colour with integers 1, 2, ..., k

1378

- Partition in Δ forests
- Cole-Vishkin: 3-colouring
- Use colours to saturate all edges

(2, 2/3, 1/6, 1/12)

2789

3, 1/6, 1/24

Finding a maximal edge packing: some intuition

- Regular graph with uniform weights:
 - Symmetry-breaking (e.g., graph colouring) is not possible in the port-numbering model
 - But it is trivial to find a maximal edge packing directly
- "Irregular" graph:
 - We have symmetry-breaking information, which can be used to find a graph colouring, which can be used to find a maximal edge packing
- Handling these two cases turns out to be enough!

Take-home messages

- Non-trivial problems can be solved in very restrictive models of distributed computing
- Generalise!
 - More difficult problems may be easier to solve: vertex cover → weighted vertex cover → weighted set cover...
- Cole-Vishkin technique is a powerful tool
 - Wide range of applications far beyond the textbook examples of colouring cycles with numerical IDs
 - log* of almost everything is something reasonable