DDA 2010, lecture 6: Exploration and rendezvous

Treasure hunt in port-numbered graphs

DDA 2010, lecture 6a: Treasure hunt in port-numbered graphs

Universal traversal sequences exist

Graph exploration

- Connected graph with port-numbering
- Robot placed in some starting node s
- Treasure hidden in some target node t
- Program the robot so that it will find the treasure!

Graph exploration

- Connected graph with port-numbering
 - we will first focus on the case of d-regular graphs
 - assume that we know an upper bound on n

- Simple solution with randomness:
 - just take a random walk

- Simple solution with randomness:
 - just take a random walk

- Simple solution with randomness:
 - just take a random walk
 - might take a while...

- Simple solution with randomness:
 - just take a random walk
 - might take a while...

- Simple solution with randomness:
 - just take a random walk
 - might take a while...
 - but eventually we will stumble on the treasure
 - expected time: poly(n)
 - see references on course web page

- Random walk = sequence of port numbers
 - any such sequence can be applied in any regular graph!
- Expected time from s to any v and back is $O(n^2)$
 - here we assume that graph is d-regular and d = O(1)
 - proof: e.g., Motwani-Raghavan (1995), Section 6.4

- Random walk = sequence of port numbers
 - any such sequence can be applied in any regular graph!
- Expected time from s to any v and back is $O(n^2)$
- Take a random walk w of length $\Theta(n^2)$ and apply it to any O(1)-regular graph G:
 - for any v, walk w fails to visit v with probability < 1/4
 - Markov's inequality

- Random walk = sequence of port numbers
 - any such sequence can be applied in any regular graph!
- Expected time from s to any v and back is $O(n^2)$
- Take a random walk w of length $\Theta(n^2)$ and apply it to any O(1)-regular graph G:
 - for any v, walk w fails to visit v with probability < 1/4
- Take log x consecutive walks of length $\Theta(n^2)$:
 - failure probability $< (1/4)^{\log x} = 1/(x^2)$

- Take log x consecutive walks of length $\Theta(n^2)$:
 - failure probability $< (1/4)^{\log x} = 1/(x^2)$
- Let x = number of possible choices (G, v)
 - number of d-regular port-numbered graphs with at most n nodes: n^{O(n)}
 - number of possible choices of v: O(n)
 - $\log x = O(n \log n)$

- Take log x consecutive walks of length $\Theta(n^2)$:
 - failure probability $< (1/4)^{\log x} = 1/(x^2)$
- Let x = number of possible choices (G, v)
 - $\log x = O(n \log n)$
- Expected number of failures is $< x/(x^2) < 1$
 - failure = walk does not reach v in G
 - total length of walk = $O(n^3 \log n)$
- There exists a walk that never fails for any G, v!

Graph exploration: universal traversal sequences

- Therefore for every *n*, *d* there exists a universal traversal sequence *w*:
 - w consists of poly(n) port numbers
 - w always guides the robot from s to t in any d-regular port-numbered graph with at most n nodes
- This is completely deterministic!
 - e.g., choose the first w in lexicographic order
 - however, constructing w is not easy...

Graph exploration: universal traversal sequences

- Slightly simpler case: universal exploration sequence
 - next outgoing port depends on previous incoming port
- Omer Reingold (2005) showed how to construct universal exploration sequences efficiently
 - together with many other techniques, the paper shows that connectivity in undirected graphs can be solved by using deterministic log-space algorithms...

DDA 2010, lecture 6a: Meeting in a maze

• Dessmark et al. (2006): "Deterministic rendezvous in graphs"

- Connected graph with port-numbering
- Two robots placed in some nodes s_1 , s_2
- Program the robots so that they will meet each other!

- Identical robots:
 - not solvable by using a deterministic algorithm
 - counterexample:
 - symmetric cycle
 - both robots move in sync

- Robots with labels 1 and 2:
 - as easy as exploration
 - robot 1 explores
 - robot 2 stands still

- Robots with unknown unique labels L₁ and L₂:
 - can't choose
 which one waits and
 which one explores
 - random walks would solve the problem
 - but how to make it deterministic?

Rendezvous in K₂

- Robots with unknown unique labels L_1 and L_2
- Simplest special case: path with 2 nodes
 - bad if neither moves
 - bad if both move
- How to break symmetry using the labels?

Rendezvous in K2 - simple idea

- s_1 moves at time step L_1
- s₂ moves at time step L₂
 - will meet at time min $\{L_1, L_2\}$
- Slow if labels are large
- Requires global time!
 - assumes that robots are activated simultaneously

- Labels are bit strings (possibly different lengths)
 - agent with label $L_i = b_1b_2...b_k$ creates the string $X_i = 10b_1b_1b_2b_2...b_kb_k$
 - most significant bit 1, X_i begins 1011...
 - move according to X_i repeatedly: bit 1 = move, bit 0 = wait
- Lemma: X_1X_1 cannot be a substring of $X_2X_2...$, and vice versa

- Lemma: X_1X_1 cannot be a substring of $X_2X_2...$, and vice versa
 - *X*₁ begins 101...
 - X_2X_2 ... contains ...101... only at the beginning of each fragment X_2
- Same length, bit pairs differ:
 - $X_1X_1 = 1011aa...bb00cc...dd1011...$ $X_2X_2 = 1011aa...bb11cc...dd1011...$

- Lemma: X_1X_1 cannot be a substring of $X_2X_2...$, and vice versa
 - *X*₁ begins 101...
 - X_2X_2 ... contains ...101... only at the beginning of each fragment X_2
- Different lengths, boundary differs:
 - $X_1X_1 = 1011aa...bb1011...$ $X_2X_2 = 1011aa...bb11cc...dd1011...$

- Lemma: X_1X_1 cannot be a substring of $X_2X_2...$, and vice versa
 - agents can't stay in sync forever
- Corollary: Even if s₁ and s₂
 are activated at different times,
 they will meet after O(log l) rounds,
 where l = min {L₁, L₂}

Rendezvous in trees

- First explore the tree
 - depth-first search, keep stack of port numbers
- There is a unique central node
 or central edge that minimises
 maximum distance to other nodes
 - central node: meet there
 - central edge: go to one endpoint, apply algorithm for K₂

Rendezvous in general graphs

- We have seen:
 - how to solve the case that labels are 1 and 2: treasure hunt
 - how to solve the case of arbitrary labels but simple graphs
 - similar ideas can be combined and generalised to arbitrary graphs
- Rendezvous can be solved using a deterministic algorithm in general graphs!

Rendezvous in general graphs

- What if we have more than 2 robots?
 - just pretend that we have the case of 2 robots
 - when any 2 robots with labels L_i and L_k meet, they form a group and then act as if they were one robot with label min $\{L_i, L_k\}$