DDA 2010, lecture 5: Weak colouring and other tricks

- Symmetry can be broken very fast if nodes have odd degrees...
- ... but we need port numbering and orientation

DDA 2010, lecture 5a: Port numbering and orientation

- A new model
- stronger than the port-numbering model
- weaker than networks with unique identifiers

Introduction

- How could we design algorithms that are faster than Cole-Vishkin? Constant-time algorithms?
- if we try to exploit the numerical values of unique identifiers, we will usually get running times Ω (log* n) or worse
- what if we just used the relative order of unique identifiers?
- let's have a look at a model in which each pair of neighbours is ordered, and see what kinds of problems can be solved...

Port-numbering and orientation

- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Each edge has an orientation
- ends labelled: head, tail
- Port-numbering and orientation chosen by adversary

Port-numbering and orientation

- If you have unique identifiers or colouring, you can easily find an orientation
- orient from smaller to larger ID (or colour)
- we used this trick in lecture 2 to construct directed forests

Port-numbering and orientation

- Is this model stronger than port numbering?
- Is this model weaker than unique identifiers?

Port-numbering and orientation

- Is this model stronger than port numbering?
- Yes: colouring of 2-node paths is possible
- Is this model weaker than unique identifiers?

Port-numbering and orientation

- Is this model stronger than port numbering?
- Yes: colouring of 2-node paths is possible
- Is this model weaker than unique identifiers?
- Yes: colouring of 3-cycles is impossible

Port-numbering and orientation

- Can we solve anything non-trivial in this model?
- Looks bad: we can still have symmetric inputs

Port-numbering and orientation

- Can we solve anything non-trivial in this model?
- Looks bad: we can still have symmetric inputs
- but in all these constructions indegree = outdegree, and therefore nodes must have even degrees!

DDA 2010, lecture 5b: Weak colouring

- Naor-Stockmeyer (1995):
- fast symmetry breaking in graphs with indegree \neq outdegree

Symmetry breaking in graphs with port numbering and orientation

- The simplest case: 1-regular graphs
- Consists of isolated edges, certainly we can break symmetry for each pair of nodes
- one is "head", the other one is "tail" (head has indegree 1, tail has outdegree 1)

Symmetry breaking in graphs with port numbering and orientation

- In general, we can always label nodes by their (outdegree, indegree) pairs
- different outdegrees or different indegrees: different labels, symmetry broken
- only $O\left(\Delta^{2}\right)$ possible labels; easy to reduce using C-V tricks

Symmetry breaking in graphs with port numbering and orientation

- In general, we can always label nodes by their (outdegree, indegree) pairs
- But what if a node and all of its neighbours have identical (outdegree, indegree) pairs?

Symmetry breaking in graphs with port numbering and orientation

- In general, we can always label nodes by their (outdegree, indegree) pairs
- But what if a node and all of its neighbours have identical (outdegree, indegree) pairs?
- we already know that if outdegree = indegree for all nodes, we are in trouble
- but what if we know that outdegree \neq indegree?
- for example, what if all nodes have degree $=3$ and therefore necessarily outdegree \neq indegree?

Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree $=1$, outdegree $=2$
- Label = outgoing port number in predecessor

Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree $=1$, outdegree $=2$
- Label = outgoing port number in predecessor

Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree $=1 \quad$ Label $=X$
- Label = outgoing port numb Can't have $X=2$ and $X=3$

Symmetry broken!

Symmetry breaking in graphs with port numbering and orientation

- We can construct a weak colouring:
- for each non-isolated node at least one neighbour has different colour
- C-V can be used to reduce the number of colours

Symmetry breaking in graphs with port numbering and orientation

- Indegree = 1, outdegree = 2: weak colouring
- node takes its label from the port numbers of its parent
- Generalisation to any indegree \neq outdegree?
- enough to study the case indegree < outdegree
- then we can reverse the directions and get the same result for indegree > outdegree!
- let's present the algorithm in the general case and prove that it finds a weak colouring...

Symmetry breaking in graphs with port numbering and orientation

- General case: indegree < outdegree
- Label = list of outgoing port numbers in all predecessors

Symmetry breaking in graphs with port numbering and orientation

- General case: indegree < outdegree
- Label = list of outgoing port numbers in all predecessors

Symmetry breaking in graphs with port numbering and orientation

- General case: indegree < outdegree
- Label = list of outgoing port numbers in all predecessors

Symmetry breaking in graphs with port numbering and orientation

- Lemma: for each v, the successors of v have at least 2 different labels
- Proof: pigeonhole again...

Symmetry breaking in graphs with port numbering and orientation

- E.g., outdegree $=3$, indegree $=2$:
- a 2-element list can't contain all 3 outgoing port numbers of v
- must have at least 2 different 2 -element lists!

Symmetry breaking in graphs with port numbering and orientation

- General case, outdegree $=s$, indegree $=t$:
- an s-element list can't contain all t outgoing port numbers of v if $s<t$
- must have at least 2 different s-element lists!

Symmetry breaking in graphs with port numbering and orientation

- Lemma: for each v, the successors of v have at least 2 different labels
- Corollary: v has a successor u such that v and u have different labels
- i.e., we have a weak colouring
- again, we can use C-V to reduce the number of colours
- it is possible to construct a weak 2-colouring; running time is $O\left(\log ^{*} \Delta\right)$, independent of n
- assumptions: port numbering, indegree \neq outdegree

Summary

- Model: port numbering and orientation
- If outdegree = indegree:
- we may have a symmetric input
- in the worst case all nodes will produce the same output
- If outdegree \neq indegree:
- symmetry can be broken
- we can find a weak 2 -colouring - very fast!
- however, we can't find a (non-weak) colouring

