
DDA 2010, lecture 4:
Applications of Ramsey’s theorem

• Using Ramsey’s theorem, we can show that
these problems can’t be solved in O(1) rounds:

• finding large independent sets in cycles

• graph colourings and maximal matchings in cycles

• better than 2-approximation of vertex cover

• and many more...



DDA 2010, lecture 4a:
Introduction and background

• Hardness of graph colouring and
other symmetry-breaking problems
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Graph colouring
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• Graph colouring is a central symmetry-breaking 
primitive in distributed algorithms

• Colouring can be used to schedule the actions of the 
nodes: e.g., neighbours don’t transmit simultaneously

• Given a graph colouring, we can solve other problems:
maximal independent set, maximal matching, etc.

• We can use colours to simulate greedy algorithms:
finding small dominating sets, etc.



Graph colouring

• Graph colouring is a central symmetry-breaking 
primitive in distributed algorithms

• Many problems are as difficult as graph colouring
• Given an algorithm that finds a maximal independent set,

we can use it to find a graph colouring, and vice versa

• To understand the capabilities of distributed 
algorithms, it is important to know how fast
we can find a graph colouring
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Hardness of graph colouring

• Cole–Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

• assuming we have unique identifiers

• Could we get exactly constant running time?
• it seems very difficult to come up with

an O(1)-time algorithm for graph colouring...

• but how could one possibly prove that no such
algorithm exists?

• there are infinitely many algorithms!
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Hardness of graph colouring

• Cole–Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

• assuming we have unique identifiers

• Could we get exactly constant running time?

• This was resolved by Nathan Linial in 1992:
• 3-colouring an n-cycle requires Ω(log* n) rounds

• Cole–Vishkin technique is within constant factor
of the best possible algorithm!
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Hardness of other problems

• Linial’s result shows that it is not possible
to solve these problems in cycles in O(1) time:

• vertex colouring, edge colouring,
maximal independent set, maximal matching, ...

• Naor and Stockmeyer (1995): generalisations
• using Ramsey’s theorem

• What about other problems?
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Hardness of other problems

• Linial: we can’t find maximal
independent sets in constant time

• However, could we perhaps find a “fairly large”
independent set in constant time?

• e.g., an independent set with at least n/10 nodes?

• We will see that this is not possible, either
• strong negative result

• proof uses Ramsey’s theorem
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DDA 2010, lecture 4b:
Finding a non-trivial independent set

• Czygrinow et al. (2008)
• constant-time algorithms can’t find

large independent sets in cycles
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Lower-bound result for
finding large independent sets

• Numbered directed n-cycle:
• directed n-cycle, each node has outdegree = indegree = 1

• node identifiers are a permutation of {1, 2, ..., n}
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Lower-bound result for
finding large independent sets

• We will show that the problem is difficult even if 
we have a numbered directed cycle

• general case of cycles with unique IDs at least as hard
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Lower-bound result for
finding large independent sets

• Fix any ε > 0 and running time T (constants)

• Algorithm A finds a feasible independent set
in any numbered directed cycle in time T

• Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs an independent set with ≤ εn nodes

• can’t find an independent set with > 0.001n nodes

• not even if the running time is 1000000 rounds
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Lower-bound result for
finding large independent sets

• Let T be the running time of A, let k = 2T + 1

• The output of a node is a function f’ of
a sequence of k integers (unique IDs)
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11 93 56 72

T = 2, k = 5:

output = f’(3, 11, 9, 5, 2)

output = f’(11, 9, 5, 2, 7)



Lower-bound result for
finding large independent sets

• Lets focus on increasing sequences of IDs

• Then the output of a node is a function f of
a set of k integers
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6 73 112 2113

k = 5:

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})



Lower-bound result for
finding large independent sets

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}
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6 73 112 2113

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})k = 5:



Lower-bound result for
finding large independent sets

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

• Fix a large m (depends on k and ε)

• Ramsey: If n is sufficiently large,
we can find an m-subset A ⊂ {1, 2, ..., n}
s.t. all k-subset X ⊂ A have the same colour
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Lower-bound result for
finding large independent sets

• That is, if the ID space is sufficiently large...
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Lower-bound result for
finding large independent sets

• That is, if the ID space is sufficiently large,
we can find a monochromatic subset of m IDs...
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11 12 13 14 15 16 17 18 19 20
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f({2, 3, 6, 7, 11}) = f({2, 3, 6, 7, 13}) =
f({2, 3, 6, 7, 21}) = f({2, 3, 6, 11, 13}) =
... = f({6, 7, 11, 13, 21})



Lower-bound result for
finding large independent sets

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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Lower-bound result for
finding large independent sets

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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f({2, 3, 6, 7, 11}) =
f({3, 6, 7, 11, 13}) = ...

Same output



Lower-bound result for
finding large independent sets

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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Same output
... and it must be 0



Lower-bound result for
finding large independent sets

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 0
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Lower-bound result for
finding large independent sets

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 0

• We can choose as large m as we want
• Good, more “black” nodes that output 0 

• However, n increases rapidly if we increase m
• Bad, more “grey” nodes that might output 1

• Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result for
finding large independent sets

• Huge ID space...
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Lower-bound result for
finding large independent sets

• Find a monochromatic subset of size m...
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Lower-bound result for
finding large independent sets

• Delete these IDs...
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Lower-bound result for
finding large independent sets

• Still sufficiently many IDs to apply Ramsey...
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Lower-bound result for
finding large independent sets

• Repeat...
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Lower-bound result for
finding large independent sets

• Repeat until stuck
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Lower-bound result for
finding large independent sets

• Several monochromatic subsets + some leftovers
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Lower-bound result for
finding large independent sets
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Lower-bound result for
finding large independent sets
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• Thus A outputs an independent set with ≤ εn nodes



DDA 2010, lecture 4c:
Corollaries

• Finding “anything” non-trivial in cycles
is not possible in constant time
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A strong negative result

• We have used Ramsey’s theorem to show
that constant-time algorithms can’t find
large independent sets in cycles

• moreover, we can get a Ω(log* n) lower bound
on the running time of any algorithm
that finds a large independent set

• trick: use a power tower upper bound for R2(n; k)

• What implications do we have?
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A strong negative result

• If we could find a graph colouring...
• we could find a maximal independent set...

• which is an independent set with at least n/3 nodes

• contradiction

• Corollary: graph colouring can’t be solved
in constant time in cycles

• we got Linial’s result as a simple corollary...
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A strong negative result

• If we could find a (2 − ε)-approximation of
vertex cover...

• we would have a vertex cover with
at most n − εn/2 nodes in an n-cycle (even n)

• its complement is an independent set with
at least εn/2 nodes

• contradiction

• This is tight: it is possible to find
a 2-approximation in time independent of n
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A strong negative result

• Using Ramsey’s theorem, we are able to show
that these problems can’t be solved in O(1) time:

• vertex colouring, edge colouring, ...

• maximal independent set, maximal matching, ...

• (2 − ε)-approximation of vertex cover

• (∆ + 1 − ε)-approximation of dominating set...

• Next lecture: something positive with
O(1) running time...
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