
DDA 2010, lecture 1:
Introduction

• Synchronous deterministic distributed algorithms

• Two models:
• Port-numbering model

• Unique identifiers

Some notational conventions

• Graphs:
• unless otherwise mentioned,

graphs are undirected and simple

• graphs are pairs: G = (V, E),
V set of nodes, E set of edges

• undirected edges are unordered pairs: if there is an edge
between u ∈ V and v ∈ V, we have {u, v} ∈ E

• directed edges are ordered pairs, e.g. (u, v) ∈ E

• deg(v) = degree of v ∈ V

2

Some notational conventions

• Parameters:
• n = |V|, number of nodes

• ∆ is an upper bound on degrees:
deg(v) ≤ ∆ for all v ∈ V

• These are often used in algorithm analysis
• e.g., “running time O(∆ + log n)”

• Sometimes we assume that ∆ is a global constant
• “bounded-degree graphs”, ∆ = O(1)

3

DDA 2010, lecture 1a:
Port-numbering model

• Synchronous deterministic distributed algorithms
in the port-numbering model

• Limited model, we will study extensions later

4

Distributed algorithms

5

• Communication graph G

• Node = computer
• e.g., Turing machine,

finite state machine

• Edge = communication
link

• computers can
exchange messages

G

Distributed algorithms

6

• All nodes are identical,
run the same algorithm

• We can choose
the algorithm

• An adversary chooses
the structure of G

• Our algorithm must
produce a correct
output in any graph G

G

Distributed algorithms

7

• Usually, computational
problems are related to
the structure of the
communication graph G

• example: find a maximal
independent set for G

• the same graph is both
the input and the system
that tries to solve the
problem...

G

Port-numbering model

8

• A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

• Port-numbering chosen
by adversary

1

1

1

12

22

3

1

1

2

22

31

1

Synchronous distributed algorithms

9

1. Each node reads its
own local input
• Depends on the problem,

for example:

• node weight

• weights of
incident edges

• May be empty

4

3 1

2 1

1

2

22

31 1

Synchronous distributed algorithms

10

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
...1

1

2

22

31 1

Synchronous distributed algorithms

11

0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

• Solution of the problem

1

1

2

22

31 1

Synchronous distributed algorithms

12

0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

Example: Find a maximal independent set I

Local output of a node v indicates whether v ∈ I

1

1

2

22

31 1

Synchronous distributed algorithms

13

• Communication round:
each node

1.sends a message
to each port

1

1

2

22

31 1

Synchronous distributed algorithms

14

• Communication round:
each node

1.sends a message
to each port

(message propagation...)1

1

2

22

31 1

Synchronous distributed algorithms

15

• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

1

1

2

22

31 1

Synchronous distributed algorithms

16

• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3.updates its own state

1

1

2

22

31 1

Synchronous distributed algorithms

17

0

1

• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3.updates its own state

4.possibly stops and
announces its output

1

1

2

22

31 1

Synchronous distributed algorithms

18

0

0

1

1

• Communication rounds
are repeated until all
nodes have stopped and
announced their outputs

• Running time =
number of rounds

• Worst-case analysis

1

1

2

22

31 1

Synchronous distributed algorithms:
networks of state machines

19

b

a

c

d

• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their
states simultaneously1

1

2

22

31 1

Synchronous distributed algorithms:
networks of state machines

20

b

a

c

d

• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their
states simultaneously1

1

2

22

31 1

 = f2(a, b, 2, c, 1)

 = f3(b, d, 1, a, 1, c, 2)

 = f2(c, a, 2, b, 3)

 = f1(d, b, 1)

Current state +
port number:
we can reconstruct
the outgoing message

a’

b’

c’

d’

Synchronous distributed algorithms:
networks of state machines

21

b

a

c

d

• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their
states simultaneously1

1

2

22

31 1

 = f2(a, b, 2, c, 1)

 = f3(b, d, 1, a, 1, c, 2)

 = f2(c, a, 2, b, 3)

 = f1(d, b, 1)

Same function
f2 = algorithm for
degree-2 nodes

a’

b’

c’

d’

Synchronous distributed algorithms:
networks of state machines

22

b

a

c

d

• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their
states simultaneously

• Initial state = local input
(incl. degree of the node)

• Final state = local output

1

1

2

22

31 1

 = f2(a, b, 2, ...)

 = f3(b, d, 1, ...)

 = f2(c, a, 2, ...)

 = f1(d, b, 1)

a’

b’

c’

d’

DDA 2010, lecture 1b:
Computability in port-numbering model

• Impossibility of symmetry breaking

• Covering maps and covering graphs:
tools for proving more impossibility results

23

Symmetry can’t be broken

24

• Input may be symmetric
• symmetric graph

• symmetric port
numbering

• identical local inputs

1

2

22

11

Symmetry can’t be broken

25

• Same input

• Same algorithm

• Same initial state

X

X

X

1

2

22

11

Symmetry can’t be broken

26

• Same current state

• Messages sent to port 1
are identical to each
other

• Messages sent to port 2
are identical to each
other

1

2

22

11

Symmetry can’t be broken

27

1

2

22

11

Symmetry can’t be broken

28

• Messages received from
port 1 are identical to
each other

• Messages received from
port 2 are identical to
each other

1

2

22

11

Symmetry can’t be broken

29

• Same old state

• Same set of
received messages

• Same deterministic
algorithm

• Same new state

1

2

22

11

Symmetry can’t be broken

30

Z

Z

Z

• Same new state

• Either none of
the nodes stops —
or all of them
stop and produce
identical outputs

• Symmetry can’t
be broken!

• let’s formalise this...

1

2

22

11

Covering maps

31

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

f

Covering maps

32

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

Covering maps

33

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

Covering maps

34

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

Covering maps

35

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

Covering maps and covering graphs

36

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

H is a covering graph of
G if there is a covering
map f: V’ → V

Covering maps and covering graphs

• Run the same algorithm in G and H

• v’ ∈ V’ and f(v’) ∈ V have the same input for all v’

• Then v’ ∈ V’ and f(v’) ∈ V:

• have identical initial states

• send and receive the same messages

• have identical state transitions

• produce identical
local outputs!

37

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Covering maps and covering graphs

38

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Same output

Covering maps and covering graphs

39

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Same output

Covering maps and covering graphs

40

1

1

2

22

31

1

1

1

2

2

2

3

1

11

2

1

1

3

2

2

1

H = (V’, E’)

G = (V, E)

Same output

Covering maps and covering graphs

41

1

2

22

11
2 1

H = (V’, E’)G = (V, E)

Same output

• Symmetric cycles are a simple special case
of covering maps

Computability in
the port-numbering model

42

• Very limited model
• in a cycle, we can only

find a trivial solution:
empty set, all nodes, ...

• we can’t even break
symmetry in a 2-node
network!

• What can be solved?
11

1

2

22

11

DDA 2010, lecture 1c:
Algorithms in port-numbering model

• Some problems can be solved
in the port-numbering model...

• and covering graphs can be used as
an algorithm design technique, too!

• Example: vertex cover approximation

43

Symmetry breaking out of thin air:
bipartite double covers

44

• Replace each node by
two virtual nodes:
black and white

• original nodes
simulate virtual nodes

• each computers runs
two programs in parallel:
“black program” and
“white program”

• Edges: black-to-white

Symmetry breaking out of thin air:
bipartite double covers

45

• Virtual graph H is
a covering graph of G

• It is a double cover:
2 nodes of H map
to each node of G

• It is bipartite
• and we have already

coloured its two parts:
black and white!

H = (V’, E’)

G = (V, E)

Symmetry breaking out of thin air:
bipartite double covers

46

b

a

c

d

b

a

c

d

b

a

c

d
=

b

a

c

d

b

a

c

d

2-coloured graph

Symmetry breaking out of thin air:
bipartite double covers

47

b

a

c

d

b

a

c

d
1

1

2

22

31
1

b

a

c

d
=

b

a

c

d

b

a

c

d

Port-numbering inherited

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

Symmetry breaking out of thin air:
bipartite double covers

48

b

a

c

d

b

a

c

d
1

1

2

22

31
1

b

a

c

d
=

b

a

c

d

b

a

c

d

Port-numbering inherited

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

Symmetry breaking out of thin air:
bipartite double covers

49

b

a

c

d

b

a

c

d
1

1

2

22

31
1

b

a

c

d
=

b

a

c

d

b

a

c

d

Port-numbering inherited

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

Symmetry breaking out of thin air:
bipartite double covers

50

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Port-numbered graphs
without colouring:

• not possible to find
a maximal matching
(consider an even cycle)

• Port-numbered graphs
with 2-colouring:

• very easy to find
a maximal matching!

Maximal matching in 2-coloured graphs

51

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Each white node sends
proposals to its black
neighbours

• one by one,
order by port numbers

Maximal matching in 2-coloured graphs

52

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Each white node sends
proposals to its black
neighbours

• one by one,
order by port numbers

• Each black node accepts
the first proposal it gets

• break ties using
port numbers

Maximal matching in 2-coloured graphs

53

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Each white node sends
proposals to its black
neighbours

• one by one,
order by port numbers

• until its proposal
is accepted, or
all neighbours
have rejected

Maximal matching in 2-coloured graphs

54

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Each white node sends
proposals to its black
neighbours

• one by one,
order by port numbers

• Each black node accepts
the first proposal it gets

• break ties using
port numbers

Maximal matching in 2-coloured graphs

55

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Accepted proposals M:
matching

• white nodes don’t propose
after acceptance

• black nodes don’t accept
more than once

• all nodes incident to
at most one edge

M ⊆ E’

Maximal matching in 2-coloured graphs

56

b

a

c

d

b

a

c

d

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

• Accepted proposals M:
maximal matching!

• assume {u, v} ∈ E \ M
u unmatched

• then u has sent a proposal
to v and v has rejected it

• therefore v had already
received another proposal,
v is matched

• can’t add {u, v} to M

M ⊆ E’

Maximal matching in
bipartite double cover

57

b

a

c

d

b

a

c

d
1

1

2

22

31
1

b

a

c

d
=

b

a

c

d

b

a

c

d

Map back to original graph

1

22

1

1 1

3 3

1 1

2 2
2 2
1 1

At least 1 of 2
virtual edges in M

M ⊆ E’

D ⊆ E

Maximal matching in
bipartite double cover

58

b

a

c

d

b

a

c

d

b

a

c

d
=

b

a

c

d

b

a

c

d

Different possibilities...

At least 1 of 2
virtual edges in M

M ⊆ E’

D ⊆ E

Maximal matching in
bipartite double cover

59

b

a

c

d

b

a

c

d

b

a

c

d
=

b

a

c

d

b

a

c

d

Different possibilities...

M ⊆ E’

D ⊆ E

Maximal matching in
bipartite double cover

60

b

a

c

d

b

a

c

d

b

a

c

d

M ⊆ E’

D ⊆ E • However, this is not
possible, because
M is a matching

• M induces a subgraph of
H with max. degree 1

• therefore:
D induces a subgraph of
G with max. degree 2

Maximal matching in
bipartite double cover

61

b

a

c

d

b

a

c

d

b

a

c

d

M ⊆ E’

D ⊆ E • And this is not possible,
because M is maximal

• each edge of H is
in M or shares at least
one endpoint with M

• endpoints of M form
a vertex cover in H

• endpoints of D form
a vertex cover in G!

Finding a vertex cover

62

• So we will find a set D
of edges such that:

• D induces a subgraph of
maximum degree 2

• D must consist of
paths and cycles

• endpoints of D form
a vertex cover C

• is it a small vertex cover?

Finding a vertex cover

63

• So we will find a set D
of edges such that:

• D induces a subgraph of
maximum degree 2

• D must consist of
paths and cycles

• endpoints of D form
a vertex cover C

• is it a small vertex cover?

An optimal
vertex cover
C* needs to
cover these
edges, too!

Thus C*
must contain

2 of these
5 nodes

Finding a vertex cover

64

• Different cases:
• Cycle with 3 edges:

3 nodes in C, ≥ 2 in C*

• Cycle with 4 edges:
4 nodes in C, ≥ 2 in C*

• Cycle with 5 edges:
5 nodes in C, ≥ 3 in C*
...

|C| ≤ 2|C*|

Finding a vertex cover

65

• Different cases:
• Path with 1 edge:

2 nodes in C, ≥ 1 in C*

• Path with 2 edges:
3 nodes in C, ≥ 1 in C*

• Path with 3 edges:
4 nodes in C, ≥ 2 in C*

• Path with 4 edges:
5 nodes in C, ≥ 2 in C*
...|C| ≤ 3|C*|

Finding a vertex cover

66

• In each path or cycle:
• C has at most 3 times

as many nodes as C*

• Summing over all
paths and cycles:

• |C| ≤ 3|C*|

• The algorithm finds
a 3-approximation of
minimum vertex cover!

Finding a vertex cover:
summary

• Vertex cover is a graph problem
that can be solved reasonably well
in the port-numbering model with
a deterministic distributed algorithm

• And the algorithm was simple and fast: O(∆) rounds!

67

Finding a vertex cover:
two very different worlds

• Centralised setting, polynomial-time algorithms:
• trivial to find a minimal vertex cover: greedy algorithm

• it requires more thought to find
a good approximation of minimum vertex cover

• Distributed setting, port-numbering model:
• impossible to find a minimal vertex cover:

symmetry breaking issues

• but we have seen that it is possible to find
a good approximation of minimum vertex cover

68

Finding a vertex cover:
symmetry breaking

• Vertex cover approximation does not
require symmetry breaking

• Proof: algorithm in the port-numbering model

• However, many interesting problems do...

• Let’s study a stronger model of
distributed computing

69

