
DDA 2010, lecture 1:
Introduction

• Synchronous deterministic distributed algorithms

• Two models:
• Port-numbering model

• Unique identifiers



Some notational conventions

• Graphs:
• unless otherwise mentioned,

graphs are undirected and simple

• graphs are pairs: G = (V, E),
V set of nodes, E set of edges

• undirected edges are unordered pairs: if there is an edge
between u ∈ V and v ∈ V, we have {u, v} ∈ E

• directed edges are ordered pairs, e.g. (u, v) ∈ E

• deg(v) = degree of v ∈ V
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Some notational conventions

• Parameters:
• n = |V|, number of nodes

• ∆ is an upper bound on degrees:
deg(v) ≤ ∆ for all v ∈ V

• These are often used in algorithm analysis
• e.g., “running time O(∆ + log n)”

• Sometimes we assume that ∆ is a global constant
• “bounded-degree graphs”, ∆ = O(1)
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DDA 2010, lecture 1a:
Port-numbering model

• Synchronous deterministic distributed algorithms
in the port-numbering model

• Limited model, we will study extensions later
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Distributed algorithms
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• Communication graph G

• Node = computer
• e.g., Turing machine, 

finite state machine

• Edge = communication 
link

• computers can
exchange messages

G



Distributed algorithms
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• All nodes are identical,
run the same algorithm

• We can choose
the algorithm

• An adversary chooses
the structure of G

• Our algorithm must 
produce a correct 
output in any graph G

G



Distributed algorithms
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• Usually, computational 
problems are related to 
the structure of the 
communication graph G

• example: find a maximal 
independent set for G

• the same graph is both 
the input and the system 
that tries to solve the 
problem...

G



Port-numbering model
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• A node of degree d can 
refer to its neighbours 
by integers 1, 2, ..., d

• Port-numbering chosen 
by adversary
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Synchronous distributed algorithms
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1. Each node reads its
own local input
• Depends on the problem,

for example:

• node weight

• weights of
incident edges

• May be empty
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Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
...1
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Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
until all nodes
have announced
their local outputs

• Solution of the problem
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Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
until all nodes
have announced
their local outputs

Example: Find a maximal independent set I

Local output of a node v indicates whether v ∈ I
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Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each port
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Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each port

(message propagation...)1
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Synchronous distributed algorithms

15

• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port
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Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3.updates its own state
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Synchronous distributed algorithms
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0
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• Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3.updates its own state

4.possibly stops and 
announces its output
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Synchronous distributed algorithms
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• Communication rounds 
are repeated until all 
nodes have stopped and 
announced their outputs

• Running time =
number of rounds

• Worst-case analysis
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Synchronous distributed algorithms:
networks of state machines

19

b

a

c

d

• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their 
states simultaneously1
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Synchronous distributed algorithms:
networks of state machines
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• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their 
states simultaneously1
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 = f2(a, b, 2, c, 1)

 = f3(b, d, 1, a, 1, c, 2)

 = f2(c, a, 2, b, 3)

 = f1(d, b, 1)

Current state +
port number:
we can reconstruct
the outgoing message

a’

b’

c’

d’



Synchronous distributed algorithms:
networks of state machines
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• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their 
states simultaneously1
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 = f2(a, b, 2, c, 1)

 = f3(b, d, 1, a, 1, c, 2)

 = f2(c, a, 2, b, 3)

 = f1(d, b, 1)

Same function
f2 = algorithm for
degree-2 nodes

a’

b’

c’

d’



Synchronous distributed algorithms:
networks of state machines
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• Equivalently:
• Node = state machine

(not necessarily finite)

• All nodes update their 
states simultaneously

• Initial state = local input
(incl. degree of the node)

• Final state = local output

1

1

2

22

31 1

 = f2(a, b, 2, ...)

 = f3(b, d, 1, ...)

 = f2(c, a, 2, ...)

 = f1(d, b, 1)

a’

b’

c’

d’



DDA 2010, lecture 1b:
Computability in port-numbering model

• Impossibility of symmetry breaking

• Covering maps and covering graphs:
tools for proving more impossibility results
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Symmetry can’t be broken
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• Input may be symmetric
• symmetric graph

• symmetric port 
numbering

• identical local inputs
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Symmetry can’t be broken
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• Same input

• Same algorithm

• Same initial state
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Symmetry can’t be broken
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• Same current state

• Messages sent to port 1 
are identical to each 
other

• Messages sent to port 2 
are identical to each 
other
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Symmetry can’t be broken
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Symmetry can’t be broken
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• Messages received from 
port 1 are identical to 
each other

• Messages received from 
port 2 are identical to 
each other
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Symmetry can’t be broken
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• Same old state

• Same set of
received messages

• Same deterministic 
algorithm

• Same new state
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Symmetry can’t be broken
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Z

Z

Z

• Same new state

• Either none of
the nodes stops —
or all of them
stop and produce
identical outputs

• Symmetry can’t
be broken!

• let’s formalise this...
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Covering maps
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H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering

f



Covering maps
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H = (V’, E’)

G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering



Covering maps
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G = (V, E)

Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering



Covering maps
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Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering



Covering maps
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Covering map f: V’ → V

• surjection
• preserves neighbourhoods
• preserves port numbering



Covering maps and covering graphs
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H = (V’, E’)

G = (V, E)

H is a covering graph of 
G if there is a covering 
map f: V’ → V



Covering maps and covering graphs

• Run the same algorithm in G and H

• v’ ∈ V’ and f(v’) ∈ V have the same input for all v’

• Then v’ ∈ V’ and f(v’) ∈ V:

• have identical initial states

• send and receive the same messages

• have identical state transitions

• produce identical
local outputs!
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Covering maps and covering graphs
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Same output



Covering maps and covering graphs
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Covering maps and covering graphs
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Covering maps and covering graphs
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H = (V’, E’)G = (V, E)

Same output

• Symmetric cycles are a simple special case
of covering maps



Computability in
the port-numbering model
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• Very limited model
• in a cycle, we can only 

find a trivial solution:
empty set, all nodes, ...

• we can’t even break 
symmetry in a 2-node 
network!

• What can be solved?
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DDA 2010, lecture 1c:
Algorithms in port-numbering model

• Some problems can be solved
in the port-numbering model...

• and covering graphs can be used as
an algorithm design technique, too!

• Example: vertex cover approximation
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Symmetry breaking out of thin air:
bipartite double covers
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• Replace each node by 
two virtual nodes:
black and white

• original nodes
simulate virtual nodes

• each computers runs
two programs in parallel:
“black program” and
“white program”

• Edges: black-to-white



Symmetry breaking out of thin air:
bipartite double covers
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• Virtual graph H is
a covering graph of G

• It is a double cover:
2 nodes of H map
to each node of G

• It is bipartite
• and we have already

coloured its two parts:
black and white!

H = (V’, E’)

G = (V, E)



Symmetry breaking out of thin air:
bipartite double covers
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Symmetry breaking out of thin air:
bipartite double covers
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Symmetry breaking out of thin air:
bipartite double covers
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Symmetry breaking out of thin air:
bipartite double covers
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Symmetry breaking out of thin air:
bipartite double covers
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• Port-numbered graphs
without colouring:

• not possible to find
a maximal matching
(consider an even cycle)

• Port-numbered graphs
with 2-colouring:

• very easy to find
a maximal matching!



Maximal matching in 2-coloured graphs
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• Each white node sends
proposals to its black 
neighbours

• one by one,
order by port numbers



Maximal matching in 2-coloured graphs
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• Each white node sends
proposals to its black 
neighbours

• one by one,
order by port numbers

• Each black node accepts
the first proposal it gets

• break ties using
port numbers



Maximal matching in 2-coloured graphs
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• Each white node sends
proposals to its black 
neighbours

• one by one,
order by port numbers

• until its proposal
is accepted, or
all neighbours
have rejected



Maximal matching in 2-coloured graphs
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• Each white node sends
proposals to its black 
neighbours

• one by one,
order by port numbers

• Each black node accepts
the first proposal it gets

• break ties using
port numbers



Maximal matching in 2-coloured graphs
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• Accepted proposals M:
matching

• white nodes don’t propose 
after acceptance

• black nodes don’t accept 
more than once

• all nodes incident to
at most one edge

M ⊆ E’



Maximal matching in 2-coloured graphs
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• Accepted proposals M:
maximal matching!

• assume {u, v} ∈ E \ M
u unmatched

• then u has sent a proposal 
to v and v has rejected it

• therefore v had already 
received another proposal,
v is matched

• can’t add {u, v} to M

M ⊆ E’



Maximal matching in
bipartite double cover
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At least 1 of 2 
virtual edges in M

M ⊆ E’

D ⊆ E



Maximal matching in
bipartite double cover
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Maximal matching in
bipartite double cover
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Maximal matching in
bipartite double cover
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M ⊆ E’

D ⊆ E • However, this is not 
possible, because
M is a matching

• M induces a subgraph of 
H with max. degree 1

• therefore:
D induces a subgraph of
G with max. degree 2



Maximal matching in
bipartite double cover
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M ⊆ E’

D ⊆ E • And this is not possible, 
because M is maximal

• each edge of H is
in M or shares at least
one endpoint with M

• endpoints of M form
a vertex cover in H

• endpoints of D form
a vertex cover in G!



Finding a vertex cover
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• So we will find a set D 
of edges such that:

• D induces a subgraph of 
maximum degree 2

• D must consist of
paths and cycles

• endpoints of D form
a vertex cover C

• is it a small vertex cover?



Finding a vertex cover
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• So we will find a set D 
of edges such that:

• D induces a subgraph of 
maximum degree 2

• D must consist of
paths and cycles

• endpoints of D form
a vertex cover C

• is it a small vertex cover?

An optimal 
vertex cover 
C* needs to 
cover these 
edges, too! 

Thus C*
must contain

2 of these
5 nodes



Finding a vertex cover
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• Different cases:
• Cycle with 3 edges:

3 nodes in C, ≥ 2 in C*

• Cycle with 4 edges:
4 nodes in C, ≥ 2 in C*

• Cycle with 5 edges:
5 nodes in C, ≥ 3 in C*
...

|C| ≤ 2|C*|



Finding a vertex cover
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• Different cases:
• Path with 1 edge:

2 nodes in C, ≥ 1 in C*

• Path with 2 edges:
3 nodes in C, ≥ 1 in C*

• Path with 3 edges:
4 nodes in C, ≥ 2 in C*

• Path with 4 edges:
5 nodes in C, ≥ 2 in C*
...|C| ≤ 3|C*|



Finding a vertex cover

66

• In each path or cycle:
• C has at most 3 times

as many nodes as C*

• Summing over all
paths and cycles:

• |C| ≤ 3|C*|

• The algorithm finds
a 3-approximation of 
minimum vertex cover!



Finding a vertex cover:
summary

• Vertex cover is a graph problem
that can be solved reasonably well
in the port-numbering model with
a deterministic distributed algorithm

• And the algorithm was simple and fast: O(∆) rounds!
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Finding a vertex cover:
two very different worlds

• Centralised setting, polynomial-time algorithms:
• trivial to find a minimal vertex cover: greedy algorithm

• it requires more thought to find
a good approximation of minimum vertex cover

• Distributed setting, port-numbering model:
• impossible to find a minimal vertex cover:

symmetry breaking issues

• but we have seen that it is possible to find
a good approximation of minimum vertex cover
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Finding a vertex cover:
symmetry breaking

• Vertex cover approximation does not
require symmetry breaking

• Proof: algorithm in the port-numbering model

• However, many interesting problems do...

• Let’s study a stronger model of
distributed computing
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