DDA 2010, lecture 4 :
 Applications of Ramsey's theorem

- Using Ramsey's theorem, we can show that these problems can't be solved in O(1) rounds:
- finding large independent sets in cycles
- graph colourings and maximal matchings in cycles
- better than 2-approximation of vertex cover
- and many more...

DDA 2010, lecture 4a:
Introduction and background

- Hardness of graph colouring and other symmetry-breaking problems

Graph colouring

- Graph colouring is a central symmetry-breaking primitive in distributed algorithms
- Colouring can be used to schedule the actions of the nodes: e.g., neighbours don't transmit simultaneously
- Given a graph colouring, we can solve other problems: maximal independent set, maximal matching, etc.
- We can use colours to simulate greedy algorithms: finding small dominating sets, etc.

Graph colouring

- Graph colouring is a central symmetry-breaking primitive in distributed algorithms
- Many problems are as difficult as graph colouring
- Given an algorithm that finds a maximal independent set, we can use it to find a graph colouring, and vice versa
- To understand the capabilities of distributed algorithms, it is important to know how fast we can find a graph colouring

Hardness of graph colouring

- Cole-Vishkin algorithm can be used to colour cycles in almost constant running time: O(log* n)
- assuming we have unique identifiers
- Could we get exactly constant running time?
- it seems very difficult to come up with an $\mathrm{O}(1)$-time algorithm for graph colouring...
- but how could one possibly prove that no such algorithm exists?
- there are infinitely many algorithms!

Hardness of graph colouring

- Cole-Vishkin algorithm can be used to colour cycles in almost constant running time: O(log* n)
- assuming we have unique identifiers
- Could we get exactly constant running time?
- This was resolved by Nathan Linial in 1992:
- 3 -colouring an n-cycle requires $\Omega\left(\log ^{*} n\right)$ rounds
- Cole-Vishkin technique is within constant factor of the best possible algorithm!

Hardness of other problems

- Linial's result shows that it is not possible to solve these problems in cycles in $\mathrm{O}(1)$ time:
- vertex colouring, edge colouring, maximal independent set, maximal matching, ...
- Naor and Stockmeyer (1995): generalisations
- using Ramsey's theorem
- What about other problems?

Hardness of other problems

- Linial: we can't find maximal independent sets in constant time
- However, could we perhaps find a "fairly large" independent set in constant time?
- e.g., an independent set with at least $\mathrm{n} / 10$ nodes?
- We will see that this is not possible, either
- strong negative result
- proof uses Ramsey's theorem

DDA 2010, lecture 4b: Finding a non-trivial independent set

- Czygrinow et al. (2008)
- constant-time algorithms can't find large independent sets in cycles

Lower-bound result for finding large independent sets

- Numbered directed n-cycle:
- directed n-cycle, each node has outdegree $=$ indegree $=1$
- node identifiers are a permutation of $\{1,2, \ldots, n\}$

Lower-bound result for finding large independent sets

- We will show that the problem is difficult even if we have a numbered directed cycle
- general case of cycles with unique IDs at least as hard

Lower-bound result for finding large independent sets

- Fix any $\varepsilon>0$ and running time T (constants)
- Algorithm A finds a feasible independent set in any numbered directed cycle in time T
- Theorem: For a sufficiently large n there is a numbered directed n-cycle C in which A outputs an independent set with $\leq \varepsilon$ n nodes
- can't find an independent set with >0.001 n nodes
- not even if the running time is 1000000 rounds

Lower-bound result for finding large independent sets

- Let T be the running time of A , let $\mathrm{k}=2 \mathrm{~T}+1$
- The output of a node is a function f^{\prime} of a sequence of k integers (unique IDs)

Lower-bound result for finding large independent sets

- Lets focus on increasing sequences of IDs
- Then the output of a node is a function f of a set of k integers
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for finding large independent sets

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for finding large independent sets

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
- Fix a large m (depends on k and ε)
- Ramsey: If n is sufficiently large, we can find an m-subset $A \subset\{1,2, \ldots, n\}$
s.t. all k-subset $X \subset A$ have the same colour

Lower-bound result for finding large independent sets

- That is, if the ID space is sufficiently large...

Lower-bound result for finding large independent sets

- That is, if the ID space is sufficiently large, we can find a monochromatic subset of m IDs...

$$
\begin{aligned}
& f(\{2,3,6,7,11\})=f(\{2,3,6,7,13\})= \\
& f(\{2,3,6,7,21\})=f(\{2,3,6,11,13\})= \\
& \ldots=f(\{6,7,11,13,21\})
\end{aligned}
$$

Lower-bound result for finding large independent sets

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for finding large independent sets

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for finding large independent sets

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for finding large independent sets

- Hence there is an n-cycle with a chain of m - 2T nodes that output 0

Lower-bound result for finding large independent sets

- Hence there is an n-cycle with a chain of $\mathrm{m}-2 \mathrm{~T}$ nodes that output 0
- We can choose as large m as we want
- Good, more "black" nodes that output 0
- However, n increases rapidly if we increase m
- Bad, more "grey" nodes that might output 1
- Trick: choose "unnecessarily large" n so that we can apply Ramsey's theorem repeatedly

Lower-bound result for finding large independent sets

- Huge ID space...

Lower-bound result for finding large independent sets

- Find a monochromatic subset of size m...

Lower-bound result for finding large independent sets

- Delete these IDs...

Lower-bound result for finding large independent sets

- Still sufficiently many IDs to apply Ramsey...

Lower-bound result for finding large independent sets

- Repeat...

Lower-bound result for finding large independent sets

- Repeat until stuck

Lower-bound result for finding large independent sets

- Several monochromatic subsets + some leftovers

Lower-bound result for finding large independent sets

Lower-bound result for finding large independent sets

- Thus A outputs an independent set with $\leq \varepsilon$ n nodes

DDA 2010, lecture 4c: Corollaries

- Finding "anything" non-trivial in cycles is not possible in constant time

A strong negative result

- We have used Ramsey's theorem to show that constant-time algorithms can't find large independent sets in cycles
- moreover, we can get a Ω (log* n) lower bound on the running time of any algorithm that finds a large independent set
- trick: use a power tower upper bound for $\mathrm{R}_{2}(\mathrm{n} ; \mathrm{k})$
- What implications do we have?

A strong negative result

- If we could find a graph colouring...
- we could find a maximal independent set...
- which is an independent set with at least $\mathrm{n} / 3$ nodes
- contradiction
- Corollary: graph colouring can't be solved in constant time in cycles
- we got Linial's result as a simple corollary...

A strong negative result

- If we could find a ($2-\varepsilon$)-approximation of vertex cover...
- we would have a vertex cover with at most $n-\varepsilon n / 2$ nodes in an n-cycle (even n)
- its complement is an independent set with at least $\varepsilon \mathrm{n} / 2$ nodes
- contradiction
- This is tight: it is possible to find a 2-approximation in time independent of n

A strong negative result

- Using Ramsey's theorem, we are able to show that these problems can't be solved in O(1) time:
- vertex colouring, edge colouring, ...
- maximal independent set, maximal matching, ...
- (2- ε)-approximation of vertex cover
- ($\Delta+1-\varepsilon$)-approximation of dominating set...
- Next lecture: something positive with $O(1)$ running time...

