DDA 2010, lecture 2:
Algorithms with running time O(log* n)

- Cole-Vishkin (1986):
- colour reduction technique
- colouring paths, cycles, trees
- Applications:
- colouring arbitrary graphs

Unique identifiers

- Assumption: each node has
 a unique identifier in its local input
- Node identifiers are a subset of 1, 2, ..., poly(n)
- Chosen by adversary

Algorithms for networks with unique identifiers

- With unique identifiers, "everything" can be solved in diameter(G) +1 rounds
- Algorithm: each node

1. gathers full information about G (including all local inputs)
2. solves the graph problem by brute force
3. chooses its local output accordingly
-What can be solved much faster?

Algorithms for networks with unique identifiers

- Running time is $\mathrm{T} \Leftrightarrow$ output is a function of input within distance T
$\mathrm{T}=2$:

Algorithms for networks with unique identifiers

- We have seen a simple algorithm with running time $O(\Delta)$
- We will soon see other algorithms with running times such as $\mathrm{O}\left(\Delta+\log ^{*} \mathrm{n}\right)$
- these can be much smaller than diameter(G)
- faster than just sending information across the network!
- these algorithms use only "local information" to produce their local outputs
- distributed algorithms in the strongest possible sense

DDA 2010, lecture 2a: Cole-Vishkin technique

- Richard Cole and Uzi Vishkin (1986): "Deterministic coin tossing with applications to optimal parallel list ranking"
- the original paper is about parallel algorithms and linked list data structures
- however, the same technique can be used in distributed algorithms and path graphs

Colour reduction

- Cole-Vishkin algorithm is a colour reduction technique:
- given a proper k_{1}-colouring of the graph, find a proper k_{2}-colouring
- large k_{1}, small k_{2}
- Note: unique identifiers form a colouring!
- hence we often have $k_{1}=\operatorname{poly}(n), k_{2}=O(1)$: given unique identifiers, find an $\mathrm{O}(1)$-colouring
- Convention: colours are integers $0,1, \ldots, k-1$

One successor

- Cole-Vishkin technique can be applied in directed graphs in which each node has at most 1 successor
- directed paths
- rooted trees
- directed cycles
- ... and in general, directed pseudoforests

Cole-Vishkin: colour reduction in pseudoforests

- Cole-Vishkin technique can be applied in directed graphs in which each node has at most 1 successor
- Reduces k-colouring to O(log k)-colouring in 1 step
- Reduces k-colouring to 6-colouring if applied repeatedly

- other techniques: 6-colouring to 3-colouring

Cole-Vishkin iteration

- Each node v in parallel:
- receive the colour of the successor u
- compare your colour c(v) to successor's colour c(u)

Cole-Vishkin iteration

- Each node v in parallel:
- receive the colour of the successor u
- compare your colour c(v) to successor's colour c(u) - in binary!
- find the rightmost bit that differs

Cole-Vishkin iteration

- Each node v in parallel:
- receive the colour of the successor u
- compare your colour c(v) to successor's colour c(u)
- new colour c'(v) is a pair (index, value):
- which bit differs

- value of the bit

Cole-Vishkin iteration

- Each node vin parallel:
- receive the colour of the successor u
- compare your colour c(v) to successor's colour c(u)
- new colour c'(v) is a pair (index, value)
- can be encoded in binary or in decimal

Cole-Vishkin iteration: correctness

- After one iteration, we have much smaller colours values
- But do we still have a proper colouring?
- yes - it is enough to show that your successor will choose a different colour

Cole-Vishkin iteration: correctness

- Case 1: successor u chooses the same index
- then u chooses a different value!
- u and v have different new colours

$$
c^{\prime}(\mathrm{u})=(5, \underline{1}) \mathrm{c}(\mathrm{t})=1010000011_{2}
$$

Cole-Vishkin iteration: correctness

- Case 1: successor u chooses the same index
- then u chooses a different value!
- u and v have different new colours
- Case 2: different index
- trivial: u and v have different new colours

Cole-Vishkin iteration

- Can be used repeatedly until we have $\mathrm{k}=6$
- i.e., colours 0, 1, ..., 5
- then we may be stuck and other techniques are needed

Cole-Vishkin iteration

- One special case: what if you don't have a successor?
- just proceed as if you had a successor whose colour differs from your colour
- e.g., pretend that the first bit differs

DDA 2010, lecture 2b: Analysing Cole-Vishkin

- The algorithm is very fast - exactly how fast?
- Let's introduce some notation: $\log ^{(i)}$ x, $\log ^{*} x$

Logarithms

- Here: all logarithms are to base 2

$$
\log x=\log _{2} x
$$

- Shorthand notation for iterations:

$$
\begin{aligned}
& \log ^{(0)} x=x \\
& \log ^{(1)} x=\log x \\
& \log ^{(2)} x=\log \log x \\
& \log ^{(i)} x=\log ^{(i-1)} \log x=\underbrace{\log \log \ldots \log x}_{i \text { times }}
\end{aligned}
$$

Logarithms: examples

$$
\begin{aligned}
\log ^{(0)} 1 & =1 \\
\log ^{(1)} 2 & =1 \\
\log ^{(2)} 2^{2} & =1 \\
\log ^{(3)} 2^{2^{2}} & =1 \\
\log ^{(i)} \underbrace{2^{2 \cdot 2}}_{i \text { times }} & =1
\end{aligned}
$$

$$
\begin{aligned}
& \log ^{(3)} 15 \approx 0.96 \\
& \log ^{(3)} 16=1 \\
& \log ^{(3)} 17 \approx 1.02
\end{aligned}
$$

$$
\log ^{(5)} 10^{1000} \approx 0.87
$$

Iterated logarithm — log*, "log-star"

- $\log ^{*} x=$ smallest integer i such that $\log ^{(i)} x \leq 1$
- How many times we need to take logarithms until the value is at most 1 ?

$$
\begin{array}{lll}
\log ^{*} 1=0: & \log ^{(0)} 1=1 & \\
\log ^{*} 2=1: & \log ^{(1)} 2=1, & \log ^{(0)} 2=2 \\
\log ^{*} 3=2: & \log ^{(2)} 3 \approx 0.66, & \log ^{(1)} 3 \approx 1.58 \\
\log ^{*} 4=2: & \log ^{(2)} 4=1, & \log ^{(1)} 4=2 \\
\log ^{*} 5=3: & \log ^{(3)} 5 \approx 0.28, & \log ^{(2)} 5 \approx 1.22
\end{array}
$$

Iterated logarithm — log*, "log-star"

- log* $x=$ smallest integer i such that $\log ^{(i)} x \leq 1$
- How many times we need to take logarithms until the value is at most 1 ?

$$
\begin{aligned}
& \log ^{*} 65535=4: \quad \log ^{(4)} 65535<1.00, \quad \log ^{(3)} 65535 \approx 2.00 \\
& \log ^{*} 65536=4: \quad \log ^{(4)} 65536=1, \quad \log ^{(3)} 65536=2 \\
& \log ^{*} 65537=5: \quad \log ^{(5)} 65537 \approx 0.00, \quad \log ^{(4)} 65537>1.00 \\
& \log ^{*} 10^{1000}=5: \quad \log ^{(5)} 10^{1000} \approx 0.87, \quad \log ^{(4)} 10^{1000} \approx 1.83 \\
& \log ^{*} 10^{10000}=5: \quad \log ^{(5)} 10^{10000} \approx 0.98, \log ^{(4)} 10^{10000} \approx 1.97
\end{aligned}
$$

Cole-Vishkin: one iteration

- One iteration of the Cole-Vishkin algorithm reduces the number of colours:

$$
k \text { colours } \rightarrow f(k)=2\lceil\log k\rceil \text { colours }
$$

- Proof: There are $f(k)$ possible (index, value) pairs
- $\log \mathrm{k}$ (rounded up) possible "indexes"
- 2 possible "values"

Cole-Vishkin: one iteration

- One iteration of the Cole-Vishkin algorithm reduces the number of colours:

$$
k \text { colours } \rightarrow f(k)=2\lceil\log k\rceil \text { colours }
$$

- Example: $k=100, \log k \approx 6.6, f(k)=2 \times 7=14$
- k colours $0,1, \ldots, 99$ can be encoded in 7 bits, therefore "index" is in $\{0,1, \ldots, 6\}$
- "value" is in $\{0,1\}$

Cole-Vishkin: repeated iterations

- What about repeated iterations?
k colours $\rightarrow \quad f(k)=2\lceil\log k\rceil$ colours

$$
\begin{aligned}
& \rightarrow \quad f(f(k))=2\lceil\log 2\lceil\log k\rceil\rceil \text { colours } \\
& \rightarrow f(f(f(k)))=\ldots
\end{aligned}
$$

- Uh-oh, what does that mean in practice?
- How many iterations until we have 6 colours?

Cole-Vishkin: repeated iterations

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
- Case 1: assume that log* $k \leq 2$
- Then $\mathrm{k} \leq 4$ and the claim is trivial: we already have at most 6 colours without any iterations

$$
k \text { colours } \rightarrow f(k)=2\lceil\log k\rceil \text { colours }
$$

Cole-Vishkin: repeated iterations

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
- Case 2: assume that $\log ^{*} k=3$
- Then $k \leq 16, f(k) \leq 8, f(f(k)) \leq 6$
- 2 iterations are enough, the claim holds
k colours $\rightarrow f(k)=2\lceil\log k\rceil$ colours

Cole-Vishkin: repeated iterations

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
- Case 3: assume that $m=\log ^{*} \mathrm{k} \geq 4$
- Let's study the number of colours after 1, 2, ..., m-3 iterations...

$$
k \text { colours } \rightarrow f(k)=2\lceil\log k\rceil \text { colours }
$$

Cole-Vishkin: repeated iterations

- Lemma: If $m=\log ^{*} k \geq 4$ and $i \leq m-3$, then i iterations reduce the number of colours from k to at most $4 \log ^{(i)} k$
- Proof: by induction
- Basis i = 0: Trivial, $4 \log ^{(0)} k=4 k \geq k$
- Inductive step: Assume that after $\mathrm{i} \leq \mathrm{m}-4$ iterations we have at most $4 \log ^{(i)} k$ colours. Let's show that after $\mathrm{i}+1$ iterations we have at most $4 \log ^{(i+1)} k$ colours...

$$
k \text { colours } \rightarrow f(k)=2\lceil\log k\rceil \text { colours }
$$

Cole-Vishkin: repeated iterations

- Lemma: If $m=\log ^{*} k \geq 4$ and $\mathrm{i} \leq m-3$, then i iterations reduce the number of colours from k to at most $4 \log ^{(i)} k$
- after $\mathrm{i} \leq \mathrm{m}-4$ iterations at most $4 \log ^{(i)} \mathrm{k}$ colours
- after $\mathrm{i}+1$ iterations at most $\mathrm{f}\left(4 \log ^{(i)} \mathrm{k}\right)$

$$
\begin{aligned}
& \leq 2\left(1+\log \left(4 \log ^{(i)} k\right)\right) \\
& \leq 2+2 \log 4+2 \log ^{\log }(\mathrm{i}) \\
& <2 \times 4+2 \log ^{(i+1)} k \quad \begin{array}{l}
m=\log ^{*} k: \log ^{(m-1)} k>1, \\
<4 \log ^{(i+1)} k
\end{array} \quad \log ^{(i+1)} k \geq \log ^{(m-3)} k>4
\end{aligned}
$$

colours
k colours $\rightarrow f(k)=2\lceil\log k\rceil$ colours

Cole-Vishkin: repeated iterations

- Lemma: If $m=\log ^{*} k \geq 4$ and $\mathrm{i} \leq \mathrm{m}-3$, then i iterations reduce the number of colours from k to at most $4 \log ^{(i)} k$
- Corollary: After m-3 iterations we have at most $4 \log ^{(m-3)} \mathrm{k} \leq 4 \times 16=64$ colours
- Corollary: After m iterations the number of colours is at most

$$
\begin{gathered}
m=\log ^{*} k: \\
\log ^{(m)} k \leq 1 \\
\log ^{(m-3)} \mathrm{k} \leq 16
\end{gathered}
$$

$$
f(f(f(64)))=f(f(12))=f(8)=6
$$

k colours $\rightarrow f(k)=2\lceil\log k\rceil$ colours

Cole-Vishkin: repeated iterations

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Coming up next: how to get from 6 to 3 in at most 3 iterations?

DDA 2010, lecture 2c:
Linear-time colour reduction

- Simple algorithm: from k-colouring to ($k-1$)-colouring in one round
- in paths, cycles, rooted trees, ...
- slower progress than Cole-Vishkin
- however, can be used until we have 3 colours

Linear-time colour reduction in pseudoforests

- First "shift" all colours:
- new colour c'(v) of node $v=$ old colour c(u) of its successor u
- root: choose another colour
- siblings have the same colour!

Linear-time colour reduction in pseudoforests

- First "shift" all colours
- Then each node v with colour k-1 chooses a new colour from \{0, 1, 2\}
- always possible: v's neighbours have at most 2 different colours
- shifting was needed to achieve this!

Linear-time colour reduction in pseudoforests

- First "shift" all colours
- Then each node v with colour k - 1 chooses a new colour from \{0, 1, 2\}
- Largest colour k-1 eliminated
- We can repeat until we have a 3-colouring

Linear-time colour reduction in pseudoforests

- Cole-Vishkin:
- from k to $O(\log k)$ colours in 1 step, until $k=6$
- Simple algorithm:
- from k to $\mathrm{k}-1$ colours in 1 step, until $\mathrm{k}=3$
- Combine both:
- from k to 3 colours in at most $3+$ log* * iterations
- in directed paths, cycles, trees, pseudoforests
- what can we do in more general graphs?

DDA 2010, lecture 2d: Colouring in general graphs

- We know how to colour rooted trees, how does this help in general graphs?
- $(\Delta+1)$-colouring in $\mathrm{O}\left(\Delta^{2}+\right.$ log* $\left.^{*} \mathrm{n}\right)$ rounds
- Goldberg, Plotkin \& Shannon (1988):
"Parallel symmetry-breaking in sparse graphs"
- Panconesi \& Rizzi (2001):
"Some simple distributed algorithms for sparse networks"

Algorithm for graph colouring

- We will show how to reduce the number of colours from k to $\Delta+1$ in $O\left(\Delta^{2}+\right.$ log* $\left.^{*} k\right)$ rounds
- What if we don't have a k-colouring but only unique identifiers from $1,2, \ldots, \operatorname{poly}(\mathrm{n})$?
- if $k=\operatorname{poly}(n)$, then $\log ^{*} k=0(\log * n)$ - see exercises
- therefore given unique IDs, we can find
a $(\Delta+1)$-colouring in $O\left(\Delta^{2}+\log ^{*} n\right)$ rounds

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- orientation: from smaller to larger colour
- forest $\mathrm{i}=$ outgoing edges from port i

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Cole-Vishkin technique

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-calnur all faractc in narallel
- M Invariant: before \& after merger, this graph is properly ($\Delta+1$)-coloured

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourir These pairs provide a valid $3(\Delta+1)$-colouring

Algorithm for graph colouring

- Partitinn the aranh intn \wedge directed forests
- 3-co

Next we apply a simple linear-time colour reduction

- Merg from 3($\Delta+1$) to $\Delta+1$ colours:
colo repeatedly eliminate the largest colour

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Merge: from $\Delta+1$ to $3(\Delta+1)$ Reduce: back to $\Delta+1$

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Merge: from $\Delta+1$ to $3(\Delta+1)$ Reduce: back to $\Delta+1$

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one
- After Δ steps, we will have a ($\Delta+1$)-colouring of the original graph

Algorithm for graph colouring

- Partition the graph into Δ directed forests
- O(1) time
- 3-colour all forests in parallel
- O(log* k) time
- Merge forests and colourings one by one
- Δ steps, each takes $O(\Delta)$ time: $O(1)$-time merge $+O(\Delta)$-time colour reduction
- Total running time: $\mathrm{O}\left(\Delta^{2}+\log ^{*} k\right)$

Algorithm for graph colouring

- If we have unique identifiers, we can find a ($\Delta+1$)-colouring in $\mathrm{O}\left(\Delta^{2}+\right.$ log* $\left.^{*} \mathrm{n}\right)$ rounds
- powerful symmetry-breaking primitive
- allows us to find a maximal independent set, maximal matching, etc.
- more recent algorithms: running time $\mathrm{O}\left(\Delta+\right.$ log* *)
- Could we make it even faster, like $O(\Delta)$? Or is the O(log* n) part necessary?
- we can use Ramsey's theorem to answer this question...

