DDA 2010, lecture 2: Algorithms with running time O(log* n)

- Cole-Vishkin (1986):
 - colour reduction technique
 - colouring paths, cycles, trees
- Applications:
 - colouring arbitrary graphs

Unique identifiers

- Assumption: each node has a unique identifier in its local input
- Node identifiers are a subset of 1, 2, ..., poly(n)
- Chosen by adversary

Algorithms for networks with unique identifiers

- With unique identifiers, "everything" can be solved in diameter(G) + 1 rounds
 - Algorithm: each node
 - 1. gathers full information about *G* (including all local inputs)
 - 2. solves the graph problem by brute force
 - 3. chooses its local output accordingly
- What can be solved much faster?

Algorithms for networks with unique identifiers

• Running time is $T \Leftrightarrow$ output is a function of input within distance T

Algorithms for networks with unique identifiers

- We have seen a simple algorithm with running time O(Δ)
- We will soon see other algorithms with running times such as $O(\Delta + \log^* n)$
 - these can be *much* smaller than diameter(G)
 - faster than just sending information across the network!
 - these algorithms use only "local information" to produce their local outputs
 - distributed algorithms in the strongest possible sense

DDA 2010, lecture 2a: Cole-Vishkin technique

- Richard Cole and Uzi Vishkin (1986): "Deterministic coin tossing with applications to optimal parallel list ranking"
 - the original paper is about *parallel* algorithms and *linked list data structures*
 - however, the same technique can be used in distributed algorithms and path graphs

Colour reduction

- Cole-Vishkin algorithm is a colour reduction technique:
 - given a proper k₁-colouring of the graph, find a proper k₂-colouring
 - large k_1 , small k_2
- Note: unique identifiers form a colouring!
 - hence we often have k₁ = poly(n), k₂ = O(1):
 given unique identifiers, find an O(1)-colouring
- Convention: colours are integers 0, 1, ..., k 1

One successor

- Cole-Vishkin technique can be applied in directed graphs in which each node has at most 1 successor
 - directed paths
 - rooted trees
 - directed cycles
 - ... and in general,
 directed pseudoforests

Cole-Vishkin: colour reduction in pseudoforests

- Cole-Vishkin technique can be applied in directed graphs in which each node has at most 1 successor
- Reduces k-colouring to
 O(log k)-colouring in 1 step
- Reduces k-colouring to
 6-colouring if applied repeatedly
 - other techniques:
 6-colouring to 3-colouring

- Each node *v* in parallel:
 - receive the colour of the successor *u*
 - compare your colour c(v) to successor's colour c(u)

- Each node *v* in parallel:
 - receive the colour of the successor *u*
 - compare your colour c(v) to successor's colour c(u) — in binary!
 - find the rightmost bit that differs

- Each node *v* in parallel:
 - receive the colour of the successor *u*
 - compare your colour c(v) to successor's colour c(u)
 - new colour C'(V) is a pair (index, value):
 - which bit differs
 - value of the bit

- Each node *v* in parallel:
 - receive the colour of the successor *u*
 - compare your colour c(v) to successor's colour c(u)
 - new colour C' (V) is a pair (index, value)
 - can be encoded in binary or in decimal

Cole-Vishkin iteration: correctness

- After one iteration, we have much smaller colours values
- But do we still have a proper colouring?
 - yes it is enough to show that your successor will choose a different colour

Cole-Vishkin iteration: correctness

- Case 1: successor *u* chooses the same index
 - then *u* chooses a different value!
 - *u* and *v* have different new colours

C'(U) = (5, 1) $C(U) = 101000011_{2}$ $C(U) = 1010100011_{2}$ $C(U) = 100000011_{2}$ $C(V) = 100000011_{2}$ C'(V) = (5, 0) $= 1010_{2}$ = 10

Cole-Vishkin iteration: correctness

- Case 1: successor *u* chooses the same index
 - then *u* chooses a different value!
 - *u* and *v* have different new colours
- Case 2: different index
 - trivial: *u* and *v* have different new colours

 $c'(u) = (7, 0) \qquad c(u) = 1010100011_{2}$ $c(u) = 1010100011_{2}$ $c(u) = 100000011_{2}$ $c(v) = 100000011_{2}$ c'(v) = (5, 0) $= 1010_{2}$ = 10

- Can be used repeatedly until we have *k* = 6
 - i.e., colours 0, 1, ..., 5
 - then we may be stuck and other techniques are needed

- One special case: what if you don't have a successor?
 - just proceed *as if* you had a successor whose colour differs from your colour
 - e.g., pretend that the first bit differs

 $C(V) = 10000011_2$ C'(V) = (0, 1) $= 01_2$ = 1

DDA 2010, lecture 2b: Analysing Cole-Vishkin

- The algorithm is very fast exactly how fast?
- Let's introduce some notation: $\log^{(i)} x$, $\log^* x$

Logarithms

- Here: all logarithms are to base 2 $\log x = \log_2 x$
- Shorthand notation for iterations:

$$log^{(0)} x = x$$

$$log^{(1)} x = log x$$

$$log^{(2)} x = log log x$$

$$log^{(i)} x = log^{(i-1)} log x = \underbrace{log log \dots log x}_{i \text{ times}}$$

Logarithms: examples

$$log^{(0)} 1 = 1$$
$$log^{(1)} 2 = 1$$
$$log^{(2)} 2^{2} = 1$$
$$log^{(3)} 2^{2^{2}} = 1$$
$$log^{(i)} 2^{2^{i^{2}}} = 1$$
$$i \text{ times}$$

 $\log^{(3)} 15 \approx 0.96$ $\log^{(3)} 16 = 1$ $\log^{(3)} 17 \approx 1.02$

$$\log^{(5)} 10^{1000} \approx 0.87$$

Iterated logarithm — log*, "log-star"

- $\log^* x$ = smallest integer *i* such that $\log^{(i)} x \le 1$
 - How many times we need to take logarithms until the value is at most 1?

$$log^* 1 = 0: log^{(0)} 1 = 1$$

$$log^* 2 = 1: log^{(1)} 2 = 1, log^{(0)} 2 = 2$$

$$log^* 3 = 2: log^{(2)} 3 \approx 0.66, log^{(1)} 3 \approx 1.58$$

$$log^* 4 = 2: log^{(2)} 4 = 1, log^{(1)} 4 = 2$$

$$log^* 5 = 3: log^{(3)} 5 \approx 0.28, log^{(2)} 5 \approx 1.22$$

Iterated logarithm — log*, "log-star"

- $\log^* x = \text{smallest integer } i \text{ such that } \log^{(i)} x \le 1$
 - How many times we need to take logarithms until the value is at most 1?

$$log^{*} 65535 = 4: log^{(4)} 65535 < 1.00, log^{(3)} 65535 \approx 2.00$$

$$log^{*} 65536 = 4: log^{(4)} 65536 = 1, log^{(3)} 65536 = 2$$

$$log^{*} 65537 = 5: log^{(5)} 65537 \approx 0.00, log^{(4)} 65537 > 1.00$$

$$log^{*} 10^{1000} = 5: log^{(5)} 10^{1000} \approx 0.87, log^{(4)} 10^{1000} \approx 1.83$$

$$log^{*} 10^{10000} = 5: log^{(5)} 10^{10000} \approx 0.98, log^{(4)} 10^{10000} \approx 1.97$$

Cole-Vishkin: one iteration

• One iteration of the Cole-Vishkin algorithm reduces the number of colours:

- **Proof**: There are *f*(*k*) possible (index, value) pairs
 - log k (rounded up) possible "indexes"
 - 2 possible "values"

Cole-Vishkin: one iteration

One iteration of the Cole-Vishkin algorithm reduces the number of colours:

- Example: k = 100, log $k \approx 6.6$, $f(k) = 2 \times 7 = 14$
 - k colours 0, 1, ..., 99 can be encoded in 7 bits, therefore "index" is in {0, 1, ..., 6}
 - "value" is in {0, 1}

• What about repeated iterations?

$$k \text{ colours } \rightarrow f(k) = 2\lceil \log k \rceil \text{ colours}$$

$$\rightarrow f(f(k)) = 2\lceil \log 2 \lceil \log k \rceil \rceil \text{ colours}$$

$$\rightarrow f(f(f(k))) = \dots$$

- Uh-oh, what does that mean in practice?
- How many iterations until we have 6 colours?

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
 - Case 1: assume that $\log^* k \le 2$
 - Then k ≤ 4 and the claim is trivial: we already have at most 6 colours without any iterations

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
 - Case 2: assume that $\log^{*} k = 3$
 - Then $k \le 16$, $f(k) \le 8$, $f(f(k)) \le 6$
 - 2 iterations are enough, the claim holds

- Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations
- Proof:
 - Case 3: assume that $m = \log^{*} k \ge 4$
 - Let's study the number of colours after 1, 2, ..., m – 3 iterations...

- Lemma: If $m = \log^{*} k \ge 4$ and $i \le m 3$, then *i* iterations reduce the number of colours from *k* to at most $4 \log^{(i)} k$
- **Proof**: by induction
 - Basis i = 0: Trivial, $4 \log^{(0)} k = 4 k \ge k$
 - Inductive step: Assume that after *i* ≤ *m* − 4 iterations we have at most 4 log^(*i*) *k* colours. Let's show that after *i* + 1 iterations we have at most 4 log^(*i*+1) *k* colours...

- Lemma: If $m = \log^{*} k \ge 4$ and $i \le m 3$, then *i* iterations reduce the number of colours from *k* to at most $4 \log^{(i)} k$
 - after $i \le m 4$ iterations at most $4 \log^{(i)} k$ colours
 - after i + 1 iterations at most $f(4 \log^{(i)} k)$ $\leq 2(1 + \log(4 \log^{(i)} k))$ $\leq 2 + 2 \log 4 + 2 \log \log^{(i)} k$ $< 2 \times 4 + 2 \log^{(i+1)} k$ $< 4 \log^{(i+1)} k$ colours $m = \log^* k: \log^{(m-1)} k > 1,$ $\log^{(i+1)} k \geq \log^{(m-3)} k > 4$

- Lemma: If $m = \log^{*} k \ge 4$ and $i \le m 3$, then *i* iterations reduce the number of colours from *k* to at most $4 \log^{(i)} k$
- Corollary: After m 3 iterations we have at most $4 \log^{(m-3)} k \le 4 \times 16 = 64$ colours
- Corollary: After *m* iterations the number of colours is at most f(f(f(64))) = f(f(12)) = f(8) = 6

$$m = \log^{*} k$$
:
 $\log^{(m)} k \le 1$,
 $\log^{(m-3)} k \le 16$

 Theorem: Cole-Vishkin reduces the number of colours from k to 6 in at most log* k iterations

• Coming up next: how to get from 6 to 3 in at most 3 iterations?

DDA 2010, lecture 2c: Linear-time colour reduction

- Simple algorithm: from k-colouring to (k – 1)-colouring in one round
 - in paths, cycles, rooted trees, ...
 - slower progress than Cole-Vishkin
 - however, can be used until we have 3 colours

- First "shift" all colours:
 - new colour c'(v)
 of node v =
 old colour c(u) of its
 successor u
 - root: choose another colour
 - siblings have the same colour!

- First "shift" all colours
- Then each node v with colour k – 1 chooses a new colour from {0, 1, 2}
 - always possible:
 v's neighbours have at most 2 different colours
 - shifting was needed to achieve this!

- First "shift" all colours
- Then each node v with colour k – 1 chooses a new colour from {0, 1, 2}
- Largest colour k 1 eliminated
- We can repeat until we have a 3-colouring

- Cole-Vishkin:
 - from k to O(log k) colours in 1 step, until k = 6
- Simple algorithm:
 - from k to k-1 colours in 1 step, until k = 3
- Combine both:
 - from k to 3 colours in at most $3 + \log^* k$ iterations
 - in directed paths, cycles, trees, pseudoforests
 - what can we do in more general graphs?

DDA 2010, lecture 2d: Colouring in general graphs

- We know how to colour rooted trees, how does this help in general graphs?
- $(\Delta + 1)$ -colouring in $O(\Delta^2 + \log^* n)$ rounds
 - Goldberg, Plotkin & Shannon (1988): "Parallel symmetry-breaking in sparse graphs"
 - Panconesi & Rizzi (2001): "Some simple distributed algorithms for sparse networks"

- We will show how to reduce the number of colours from k to $\Delta + 1$ in $O(\Delta^2 + \log^* k)$ rounds
- What if we don't have a k-colouring but only unique identifiers from 1, 2, ..., poly(n)?
 - if k = poly(n), then $log^* k = O(log^* n)$ see exercises
 - therefore given unique IDs, we can find a $(\Delta + 1)$ -colouring in $O(\Delta^2 + \log^* n)$ rounds

- Partition the graph into Δ directed forests
 - orientation: from smaller to larger colour
 - forest *i* = outgoing edges
 from port *i*

3

2

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
 - Cole-Vishkin technique

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

- Partition the graph into Δ directed forests

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Merge: from Δ +1 to 3(Δ +1) Reduce: back to Δ +1

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel

С

 $C' = (C, C_3)$

C'' =

• Merge forests and colourings one by one

Merge: from Δ +1 to 3(Δ +1) Reduce: back to Δ +1

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one
 - After Δ steps, we will have a (Δ+1)-colouring of the original graph

- Partition the graph into Δ directed forests
 - *O*(1) time
- 3-colour all forests in parallel
 - *O*(log* *k*) time
- Merge forests and colourings one by one
 - Δ steps, each takes $O(\Delta)$ time: O(1)-time merge + $O(\Delta)$ -time colour reduction
- Total running time: $O(\Delta^2 + \log^* k)$

- If we have unique identifiers, we can find a $(\Delta + 1)$ -colouring in $O(\Delta^2 + \log^* n)$ rounds
 - powerful symmetry-breaking primitive
 - allows us to find a maximal independent set, maximal matching, etc.
 - more recent algorithms: running time $O(\Delta + \log^* n)$
- Could we make it even faster, like O(Δ)?
 Or is the O(log* n) part necessary?
 - we can use Ramsey's theorem to answer this question...