DDA 2010, lecture 2:
Algorithms with running time O(log* n)

e Cole-Vishkin (1986):

e colour reduction technique

e colouring paths, cycles, trees
e Applications:

e colouring arbitrary graphs

Unique identifiers

e Assumption:
each node has
a unique identifier
In its local Input

e Node 1dentifiers
are a subset of

1, 2, ..., poly(n)
e Chosen by adversary

Algorithms for networks with
unique identifiers

e With unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

e Algorithm: each node

1. gathers full information about G
(including all local inputs)

2. solves the graph problem by brute force

3. chooses Its local output accordingly

e \What can be solved much faster?

Algorithms for networks with
unique identifiers

e Running time iIs T <
output Is a function of input within distance T

T = 2" “Local neighbourhood”

Algorithms for networks with
unique identifiers

e \We have seen a simple algorithm
with running time O(A)

e We will soon see other algorithms
with running times such as O(A + log* n)
e these can be much smaller than diameter(G)
e faster than just sending information across the network!

e these algorithms use only “local information™
to produce their local outputs

e distributed algorithms in the strongest possible sense

DDA 2010, lecture 2a:
Cole-Vishkin technique

e Richard Cole and Uzi Vishkin (1986):

“Deterministic coin tossing with applications
to optimal parallel list ranking™

e the original paper Is about parallel algorithms
and linked list data structures

e however, the same technique can be used In
distributed algorithms and path graphs

Colour reduction

e Cole-Vishkin algorithm is
a colour reduction technique:

e given a proper ki-colouring of the graph,
find a proper kz-colouring

e large ki, small ko

e Note: unigue identifiers form a colouring!

e hence we often have ki = poly(n), ko = O(1):
given unique identifiers, find an O(1)-colouring

e Convention: colours are integers 0, 1, ..., k-1

One successor

e Cole-Vishkin technigue can be applied
In directed graphs in which each node

has at most 1 successor Q/'O/'O
e directed paths
e rooted trees
e directed cycles i>®
e ... and in general,

directed pseudoforests i:

Cole-Vishkin:
colour reduction in pseudoforests

e Cole-Vishkin technigue can be applied
In directed graphs in which each node

has at most 1 successor Q/'O/'O

e Reduces k-colouring to
O(log k)-colouring In 1 step
e Reduces k-colouring to

6-colouring If applied repeatedly

e other techniques:
6-colouring to 3-colouring

Cole-VishKkin 1teration

e Each node v In parallel:

e receive the colour
of the successor u

e compare your colour c(v) c(u) = 675
to successor’s colour c(u)

c(v) = 259

10

Cole-VishKkin 1teration

e Each node v In parallel:

e receive the colour
of the successor u bit 5 differs

e compare your colour c(v)
to successor’s colour c(u)
— In binary!

e find the rightmost bit
that differs

c(u) = 1010100011,

() @ c(v) = 100000011,

11

Cole-VishKkin 1teration

e Each node v In parallel:

e receive the colour
of the successor u bit 5 differs

e compare your colour c(v)

: c(u) = 1010100011>
to successor’s colour c(u)

e new colour c’(v) Is O c(v) = 100000011,
a pair (index, value): ¢’(v) = (5, 0)

e which bit differs

e value of the bit

12

Cole-VishKkin 1teration

e Each node v In parallel:

e receive the colour
of the successor u bit 5 differs

e compare your colour c(v)
to successor’s colour c(u)

e new colour c’(v) Is

Q

c(u) = 1010100011,

c(v) = 100000011,

a pair (index, value) c’(v) = (5, 0)

e can be encoded = 1010-

In binary or in decimal =10

13

Cole-Vishkin 1teration:
correctness

e After one I1teration,
we have much smaller

colours values bit 5 differs

c(u) = 1010100011,

e But do we still have
a proper colouring?
e yes — it is enough Q @ c(v)=100000011-

to show that your c’(v) = (5, 0)

successor will choose = 1010
a different colour - 10

14

Cole-Vishkin 1teration:
correctness

e Case 1: successor u
chooses the same Iindex
c(t) = 1010000011,

!

c(u) = 1010100011,

e then u chooses a
different value!

c’(u) =(5,1)
e U and v have
different new colours

O c(v) = 100000011>
c’(v) = (5, 0)
= 1010,

=10

15

Cole-Vishkin 1teration:
correctness

e Case 1: successor u
chooses the same Iindex
c(t) = 1110100011,

!

c(u) = 1010100011,

e then u chooses a
different value!

c’(u)=(7,0
e U and v have (=1)

different new colours c(v) = 100000011,

c’(v) = (5, 0)

e trivial: u and v have = 1010-
different new colours =10

e Case 2: different index

16

Cole-VishKkin 1teration

e Can be used repeatedly
until we have k = 6

e |l.e., coloursO, 1, ...,5

e then we may be stuck
and other techniques
are needed

c(u) = 1 = 001,

c(v) =5=101,
c’(v) = (2, 1)
= 101>
=5

Q

17

Cole-VishKkin 1teration

e One special case:
what If you don’t
have a successor?

e just proceed as if
you had a successor
whose colour differs

from your colour c(v) = 100000011
e e.g., pretend that c’(v) = (0, 1)

the first bit differs = (1)12

18

DDA 2010, lecture 2Db:
Analysing Cole-Vishkin

e The algorithm is very fast — exactly how fast?

e Let’s introduce some notation: log® x, log* x

19

Logarithms

e Here: all logarithms are to base 2

log x = log, x

e Shorthand notation for iterations:

log!® x = x

log") x = log x

log!?) x =

log{") x =

0g log x

og" "V logx = loglog. . . log x

] times

20

Logarithms: examples

log{® 1 = 1
logt") 2 = 1
log(?) 22 = 1
log®) 22" =1
log") 22'.2 = 1
——

1 times

21

0g®) 15 ~ 0.96
.og(3) 16 =1
083 17 ~ 1.02

log®®) 101990 ~ 0,87

Iterated logarithm — log*, “log-star”

e log* x = smallest integer i such that log” x < 1

e How many times we need to take logarithms until
the value iIs at most 1?

og*1=0: og(® 1 =1

og*2=1: ogN2 =1, log®) 2 =2
log™ 3 = 2: log¥) 3 ~0.66, log!"3~1.58
og*4=2: logP4=1, og(N4=2
log™ 5 = 3: 0g3)5~0.28, log? 5~ 1.22

22

Iterated logarithm — log*, “log-star”

e log* x = smallest integer i such that log” x < 1

e How many times we need to take logarithms until
the value iIs at most 1?

og* 65535 =4: log™ 65535 < 1.00, log(®) 65535 ~ 2.00

og* 65536 =4: log¥ 65536 =1, 0gt®) 65536 = 2
log* 65537 =5: log(® 65537 ~ 0.00, log™ 65537 > 1.00
log* 10100 = 5. |0g(® 10190 ~ 0.87, log!*¥ 10"%%0 ~ 1.83

log* 1010000 = 5. [og(®) 1019000 ~, 0,98, log(*) 1079000 ~ 1,97

23

Cole-Vishkin: one 1teration

e One Iteration of the Cole-Vishkin algorithm
reduces the number of colours:

k colours — f(k) =2[logk]| colours

e Proof: There are f(k) possible (index, value) pairs
e |og k (rounded up) possible “indexes™

e 2 possible “values™

24

Cole-Vishkin: one 1teration

e One Iteration of the Cole-Vishkin algorithm
reduces the number of colours:

k colours — f(k) =2[logk]| colours

e Example: k=100, logk = 6.6, f(k) =2 x 7 =14

e kcolours0, 1, ..., 99 can be encoded In 7 bits,
therefore “index” 1sin {0, 1, ..., 6}

e “value” 1sin {0, 1}

25

Cole-Vishkin: repeated Iterations

e What about repeated iterations?

k colours —

—

f(k) =2
f(f(k)) =2

logk

colours

‘log2[logk]] colours
— f(f(f(k)))=...

e Uh-oh, what does that mean In practice?

e How many iterations until we have 6 colours?

26

Cole-Vishkin: repeated Iterations

e Theorem: Cole-Vishkin reduces the number of
colours from k to 6 in at most log* k Iterations

e Proof:
e Case 1: assume that log* k < 2

e Then k < 4 and the claim is trivial:
we already have at most 6 colours
without any Iterations

k colours — f(k) = 2[logk] colours

27

Cole-Vishkin: repeated Iterations

e Theorem: Cole-Vishkin reduces the number of
colours from k to 6 in at most log* k Iterations

e Proof:

e Case 2: assume that log* k = 3
e Then k < 16, f(k) < 8, f(f(k)) <6

e 2 Iterations are enough, the claim holds

k colours — f(k) = 2[logk] colours

28

Cole-Vishkin: repeated Iterations

e Theorem: Cole-Vishkin reduces the number of
colours from k to 6 in at most log* k Iterations

e Proof:
e Case 3: assume that m = log* k > 4

e |Let’s study the number of colours
after 1, 2, ..., m - 3 iterations...

k colours — f(k) = 2[logk] colours

29

Cole-Vishkin: repeated Iterations

e lemma: Ifm=log*k>4andi<m- 3,
then 1 1terations reduce the number of colours
from k to at most 4 log®" k

e Proof: by induction
e Basis i = 0: Trivial, 4 log®© k=4 k > k

e |nductive step: Assume that afteri <m -4
iterations we have at most 4 log®" k colours.
Let’s show that after |1 + 1 iterations we have
at most 4 log{*V k colours...

k colours — f(k) = 2[logk] colours

30

Cole-Vishkin: repeated Iterations

elemma:lfm=log*rk>4andi<m- 3,
then 1 1terations reduce the number of colours

from k to at most 4 log®" k

e after i < m - 4 iterations at most 4 log®” k colours

e after i + 1 iterations at most f(4 log® k)

< 2(1 + log(4 log® k))
<2+2log4+2loglog® k

-

<2 x4+2logtb Kk
< 4 logt*d k
colours

o

o
m = log* k: log™m1 k > 1,

logt*d k > log(™=3) k > 4

A

k colours — f(k) = 2[logk] colours

31

Cole-Vishkin: repeated Iterations

elemma:lfm=log*rk>4andi<m- 3,
then 1 1terations reduce the number of colours
from k to at most 4 log®" k

e Corollary: After m - 3 iterations we have at most

4 logM3) k < 4 x 16 = 64 colours — - N

_ _ m = log* k:

e Corollary: After m iterations log™ k < 1,
the number of colours Is at most . log(™-3) k < 16)

f((f(64))) = 1(f(12)) = 1(8) = 6
k colours — f(k) = 2[logk] colours

32

Cole-Vishkin: repeated Iterations

e Theorem: Cole-Vishkin reduces the number of
colours from k to 6 in at most log* k Iterations

e Coming up next: how to get
from 6 to 3 In at most 3 1terations?

33

DDA 2010, lecture 2c:
Linear-time colour reduction

e Simple algorithm: from k-colouring
to (k - 1)-colouring Iin one round

e In paths, cycles, rooted trees, ...
e slower progress than Cole-Vishkin

e however, can be used until we have 3 colours

34

L inear-time colour reduction
In pseudoforests

e First “shift’” all colours:

e new colour c’(v)
of node v =
old colour c(u) of its
successor u

e root: choose
another colour

e siblings have
the same colour!

35

L inear-time colour reduction
In pseudoforests

e First “shift’” all colours

e Then each node v with
colour k - 1 chooses a
new colour from {0, 1, 2}

e always possible:
v’s neighbours have
at most 2 different
colours

e shifting was needed
to achieve this!

36

L inear-time colour reduction
In pseudoforests

e First “shift’” all colours

e Then each node v with
colour k - 1 chooses a
new colour from {0, 1, 2}

e Largest colour k - 1
eliminated

e \WWe can repeat until
we have a 3-colouring

37

L inear-time colour reduction
In pseudoforests

e Cole-Vishkin:
e from k to O(log k) colours in 1 step, until k=6
e Simple algorithm:
e from k to k-1 colours in 1 step, until k=3
e Combine both:
e from k to 3 colours in at most 3 + log* k iterations

e In directed paths, cycles, trees, pseudoforests

e what can we do in more general graphs?

38

DDA 2010, lecture 2d:
Colouring In general graphs

e We know how to colour rooted trees,
how does this help in general graphs?

e (A + 1)-colouring in O(A? + log* n) rounds

e Goldberg, Plotkin & Shannon (1988):
“Parallel symmetry-breaking in sparse graphs”

e Panconesi & Rizzi (2001):
“Some simple distributed algorithms for sparse networks”

39

Algorithm for graph colouring

e We will show how to reduce the number of
colours from k to A + 1 in O(A? + log* K) rounds

e What if we don’t have a k-colouring but
only unique identifiers from 1, 2, ..., poly(n)?

e If k = poly(n), then log* k = O(log* n) — see exercises

e therefore given unigue IDs, we can find
a (A + 1)-colouring in O(A% + log* n) rounds

40

Algorithm for graph colouring

e Partition the graph into A directed forests

e orientation: from smaller
to larger colour

e forest I = outgoing edges
from port | Q

Q

Q

41

Algorithm for graph colouring

e Partition the graph into A directed forests
« 3-colour all forests in parallel ‘\.
« Cole-Vishkin technique O

42

Algorithm for graph colouring

e Partition the graph into A directed forests

e 3-colour all forests in parallel ‘\.

e Merge forests and O
colourings one by one O

O

Q O

Q@

Q o

43

Algorithm for graph colouring

e Partition the graph into A directed forests

o 3./¢zalaur_nj_l_famgtLuo_ng\ra”e|
o M Invariant: before & after
merger, this graph is

Cl properly (A+1)-coloured)
Y

O\\/ O ’
Q@

Q o

44

Algorithm for graph colouring

e Partition the graph into A directed forests

e 3-colour all forests in parallel
e Merge forests and

colourif These pairs provide
a valid 3(A+1)-colouring

O QJ}—>Q¢’

c’=(c, c1) e

45

~

.

Algorithm for graph colouring

o Parti}:inn_thgamnh_inm_A_dit%C'ted forests

e 3-CO

e Merd

colotl

Q

o

Next we apply a simple
linear-time colour reduction ‘\.
from 3(A+1) to A+1 colours:

repeatedly eliminate
the largest colour

, - f/'

> &

c = (c Cl)

46

Algorithm for graph colouring

e Partition the graph into A directed forests

e 3-colour all forests in parallel ‘\.
e Merge forests and O
colourings one by one O .
2

C
I/ c’=(c, C2) Merge: from A+1 to 3(A+1)
C” —_

= ... Reduce: back to A+1

47

Algorithm for graph colouring

e Partition the graph into A directed forests

e 3-colour all forests in parallel ‘\. Co
e Merge forests and ¢

colourings one by one O

Merge: from A+1 to 3(A+1)
Reduce: back to A+1

48

Algorithm for graph colouring

e Partition the graph into A directed forests

e 3-colour all forests in parallel

e Merge forests and colourings one by one

e After A steps, we will have a (A+1)-colouring of
the original graph

C

49

Algorithm for graph colouring

e Partition the graph into A directed forests
e O(1) time

e 3-colour all forests in parallel
e O(log* k) time

e Merge forests and colourings one by one

e A steps, each takes O(A) time:
O(1)-time merge + O(A)-time colour reduction

e Total running time: O(A? + log* k)

50

Algorithm for graph colouring

e |[f we have unique identifiers, we can find
a (A+1)-colouring in O(A? + log* n) rounds

e powerful symmetry-breaking primitive

e allows us to find a maximal independent set,
maximal matching, etc.

e more recent algorithms: running time O(A + log* n)

e Could we make It even faster, like O(A)?
Or i1s the O(log* n) part necessary?

e We can use Ramsey’s theorem to answer this question...

o1

