
DDA 2010, lecture 2:
Algorithms with running time O(log* n)

• Cole–Vishkin (1986):
• colour reduction technique

• colouring paths, cycles, trees

• Applications:
• colouring arbitrary graphs

Unique identifiers

2

• Assumption:
each node has
a unique identifier
in its local input

• Node identifiers
are a subset of
1, 2, ..., poly(n)

• Chosen by adversary

4

8

3

2

Algorithms for networks with
unique identifiers

• With unique identifiers, “everything”
can be solved in diameter(G) + 1 rounds

• Algorithm: each node

1. gathers full information about G
(including all local inputs)

2. solves the graph problem by brute force

3. chooses its local output accordingly

• What can be solved much faster?

3

Algorithms for networks with
unique identifiers

• Running time is T
output is a function of input within distance T

4

?

“Local neighbourhood”T = 2:

Algorithms for networks with
unique identifiers

• We have seen a simple algorithm
with running time O(Δ)

• We will soon see other algorithms
with running times such as O(Δ + log* n)

• these can be much smaller than diameter(G)

• faster than just sending information across the network!

• these algorithms use only “local information”
to produce their local outputs

• distributed algorithms in the strongest possible sense

5

DDA 2010, lecture 2a:
Cole–Vishkin technique

• Richard Cole and Uzi Vishkin (1986):
“Deterministic coin tossing with applications
“to optimal parallel list ranking”

• the original paper is about parallel algorithms
and linked list data structures

• however, the same technique can be used in
distributed algorithms and path graphs

6

Colour reduction

• Cole–Vishkin algorithm is
a colour reduction technique:

• given a proper k1-colouring of the graph,
find a proper k2-colouring

• large k1, small k2

• Note: unique identifiers form a colouring!
• hence we often have k1 = poly(n), k2 = O(1):

given unique identifiers, find an O(1)-colouring

• Convention: colours are integers 0, 1, ..., k − 1

7

One successor

8

• Cole–Vishkin technique can be applied
in directed graphs in which each node
has at most 1 successor

• directed paths

• rooted trees

• directed cycles

• ... and in general,
directed pseudoforests

Cole–Vishkin:
colour reduction in pseudoforests

9

• Cole–Vishkin technique can be applied
in directed graphs in which each node
has at most 1 successor

• Reduces k-colouring to
O(log k)-colouring in 1 step

• Reduces k-colouring to
6-colouring if applied repeatedly

• other techniques:
6-colouring to 3-colouring

Cole–Vishkin iteration

• Each node v in parallel:
• receive the colour

of the successor u

• compare your colour c(v)
to successor’s colour c(u)

10

c(u) = 675

c(v) = 259

Cole–Vishkin iteration

• Each node v in parallel:
• receive the colour

of the successor u

• compare your colour c(v)
to successor’s colour c(u)
— in binary!

• find the rightmost bit
that differs

11

c(u) = 10101000112

c(v) = 1000000112

bit 5 differs

Cole–Vishkin iteration

• Each node v in parallel:
• receive the colour

of the successor u

• compare your colour c(v)
to successor’s colour c(u)

• new colour c’(v) is
a pair (index, value):

• which bit differs

• value of the bit

12

c(u) = 10101000112

c(v) = 1000000112

bit 5 differs

c’(v) = (5, 0)

Cole–Vishkin iteration

• Each node v in parallel:
• receive the colour

of the successor u

• compare your colour c(v)
to successor’s colour c(u)

• new colour c’(v) is
a pair (index, value)

• can be encoded
in binary or in decimal

13

c(u) = 10101000112

c(v) = 1000000112

bit 5 differs

c’(v) = (5, 0)
c’(v) = 10102

c’(v) = 10

Cole–Vishkin iteration:
correctness

• After one iteration,
we have much smaller
colours values

• But do we still have
a proper colouring?

• yes — it is enough
to show that your
successor will choose
a different colour

14

c(u) = 10101000112

c(v) = 1000000112

bit 5 differs

c’(v) = (5, 0)
c’(v) = 10102

c’(v) = 10

Cole–Vishkin iteration:
correctness

• Case 1: successor u
chooses the same index

• then u chooses a
different value!

• u and v have
different new colours

15

c(u) = 10101000112

c(v) = 1000000112

c’(v) = (5, 0)
c’(v) = 10102

c’(v) = 10

c(t) = 10100000112

c’(u) = (5, 1)

Cole–Vishkin iteration:
correctness

• Case 1: successor u
chooses the same index

• then u chooses a
different value!

• u and v have
different new colours

• Case 2: different index
• trivial: u and v have

different new colours

16

c(u) = 10101000112

c(v) = 1000000112

c’(v) = (5, 0)
c’(v) = 10102

c’(v) = 10

c(t) = 11101000112

c’(u) = (7, 0)

Cole–Vishkin iteration

• Can be used repeatedly
until we have k = 6

• i.e., colours 0, 1, ..., 5

• then we may be stuck
and other techniques
are needed

17

c(u) = 1 = 0012

c(v) = 5 = 1012

c’(v) = (2, 1)
c’(v) = 1012

c’(v) = 5

Cole–Vishkin iteration

• One special case:
what if you don’t
have a successor?

• just proceed as if
you had a successor
whose colour differs
from your colour

• e.g., pretend that
the first bit differs

18

c(v) = 1000000112

c’(v) = (0, 1)
c’(v) = 012

c’(v) = 1

DDA 2010, lecture 2b:
Analysing Cole–Vishkin

• The algorithm is very fast — exactly how fast?

• Let’s introduce some notation: log(i) x, log* x

19

Logarithms

20

• Here: all logarithms are to base 2

• Shorthand notation for iterations:
() =
() =
() =
() = (−) = . . .

︸ ︷︷ ︸

=

Logarithms: examples

21

() ≈ .
() =
() ≈ .

() ≈ .

() =
() =
() =
() =

() ··
︸︷︷︸

=

Iterated logarithm — log*, “log-star”

• log* x = smallest integer i such that log(i) x ≤ 1
• How many times we need to take logarithms until

the value is at most 1?

22

∗ = () =
∗ = () = , () =
∗ = () ≈ . , () ≈ .
∗ = () = , () =
∗ = () ≈ . , () ≈ .

Iterated logarithm — log*, “log-star”

• log* x = smallest integer i such that log(i) x ≤ 1
• How many times we need to take logarithms until

the value is at most 1?

23

∗ = () < . , () ≈ .
∗ = () = , () =
∗ = () ≈ . , () > .
∗ = () ≈ . , () ≈ .
∗ = () ≈ . , () ≈ .

Cole–Vishkin: one iteration

• One iteration of the Cole–Vishkin algorithm
reduces the number of colours:

• Proof: There are f(k) possible (index, value) pairs
• log k (rounded up) possible “indexes”

• 2 possible “values”

24

→ () = � �

Cole–Vishkin: one iteration

• One iteration of the Cole–Vishkin algorithm
reduces the number of colours:

• Example: k = 100, log k ≈ 6.6, f(k) = 2 × 7 = 14
• k colours 0, 1, ..., 99 can be encoded in 7 bits,

therefore “index” is in {0, 1, ..., 6}

• “value” is in {0, 1}

25

→ () = � �

Cole–Vishkin: repeated iterations

• What about repeated iterations?

• Uh-oh, what does that mean in practice?

• How many iterations until we have 6 colours?

26

→ () = � �
→ (()) = � � ��
→ ((())) = . . .

Cole–Vishkin: repeated iterations

• Theorem: Cole–Vishkin reduces the number of
colours from k to 6 in at most log* k iterations

• Proof:
• Case 1: assume that log* k ≤ 2

• Then k ≤ 4 and the claim is trivial:
we already have at most 6 colours
without any iterations

27

→ () = � �

Cole–Vishkin: repeated iterations

• Theorem: Cole–Vishkin reduces the number of
colours from k to 6 in at most log* k iterations

• Proof:
• Case 2: assume that log* k = 3

• Then k ≤ 16, f(k) ≤ 8, f(f(k)) ≤ 6

• 2 iterations are enough, the claim holds

28

→ () = � �

Cole–Vishkin: repeated iterations

• Theorem: Cole–Vishkin reduces the number of
colours from k to 6 in at most log* k iterations

• Proof:
• Case 3: assume that m = log* k ≥ 4

• Let’s study the number of colours
after 1, 2, ..., m − 3 iterations...

29

→ () = � �

Cole–Vishkin: repeated iterations

• Lemma: If m = log* k ≥ 4 and i ≤ m − 3,
then i iterations reduce the number of colours
from k to at most 4 log(i) k

• Proof: by induction
• Basis i = 0: Trivial, 4 log(0) k = 4 k ≥ k

• Inductive step: Assume that after i ≤ m − 4
iterations we have at most 4 log(i) k colours.
Let’s show that after i + 1 iterations we have
at most 4 log(i+1) k colours...

30

→ () = � �

Cole–Vishkin: repeated iterations

• Lemma: If m = log* k ≥ 4 and i ≤ m − 3,
then i iterations reduce the number of colours
from k to at most 4 log(i) k

• after i ≤ m − 4 iterations at most 4 log(i) k colours

• after i + 1 iterations at most f(4 log(i) k)
≤ 2(1 + log(4 log(i) k))
≤ 2 + 2 log 4 + 2 log log(i) k
< 2 × 4 + 2 log(i+1) k
< 4 log(i+1) k

colours

31

(i)

m = log* k: log(m−1) k > 1,
log(i+1) k ≥ log(m−3) k > 4

→ () = � �

Cole–Vishkin: repeated iterations

• Lemma: If m = log* k ≥ 4 and i ≤ m − 3,
then i iterations reduce the number of colours
from k to at most 4 log(i) k

• Corollary: After m − 3 iterations we have at most
4 log(m−3) k ≤ 4 × 16 = 64 colours

• Corollary: After m iterations
the number of colours is at most
f(f(f(64))) = f(f(12)) = f(8) = 6

32

→ () = � �

m = log* k:
log(m) k ≤ 1,

log(m−3) k ≤ 16

Cole–Vishkin: repeated iterations

• Theorem: Cole–Vishkin reduces the number of
colours from k to 6 in at most log* k iterations

• Coming up next: how to get
from 6 to 3 in at most 3 iterations?

33

DDA 2010, lecture 2c:
Linear-time colour reduction

• Simple algorithm: from k-colouring
to (k − 1)-colouring in one round

• in paths, cycles, rooted trees, ...

• slower progress than Cole–Vishkin

• however, can be used until we have 3 colours

34

Linear-time colour reduction
in pseudoforests

• First “shift” all colours:
• new colour c’(v)

of node v =
old colour c(u) of its
successor u

• root: choose
another colour

• siblings have
the same colour!

35

Linear-time colour reduction
in pseudoforests

• First “shift” all colours

• Then each node v with
colour k − 1 chooses a
new colour from {0, 1, 2}

• always possible:
v’s neighbours have
at most 2 different
colours

• shifting was needed
to achieve this!

36

Linear-time colour reduction
in pseudoforests

• First “shift” all colours

• Then each node v with
colour k − 1 chooses a
new colour from {0, 1, 2}

• Largest colour k − 1
eliminated

• We can repeat until
we have a 3-colouring

37

Linear-time colour reduction
in pseudoforests

• Cole–Vishkin:
• from k to O(log k) colours in 1 step, until k = 6

• Simple algorithm:
• from k to k−1 colours in 1 step, until k = 3

• Combine both:
• from k to 3 colours in at most 3 + log* k iterations

• in directed paths, cycles, trees, pseudoforests

• what can we do in more general graphs?

38

DDA 2010, lecture 2d:
Colouring in general graphs

• We know how to colour rooted trees,
how does this help in general graphs?

• (Δ + 1)-colouring in O(Δ2 + log* n) rounds
• Goldberg, Plotkin & Shannon (1988):

“Parallel symmetry-breaking in sparse graphs”

• Panconesi & Rizzi (2001):
“Some simple distributed algorithms for sparse networks”

39

• We will show how to reduce the number of
colours from k to Δ + 1 in O(Δ2 + log* k) rounds

• What if we don’t have a k-colouring but
only unique identifiers from 1, 2, ..., poly(n)?

• if k = poly(n), then log* k = O(log* n) — see exercises

• therefore given unique IDs, we can find
a (Δ + 1)-colouring in O(Δ2 + log* n) rounds

Algorithm for graph colouring

40

• Partition the graph into Δ directed forests
• orientation: from smaller

to larger colour

• forest i = outgoing edges
from port i

Algorithm for graph colouring

41

1

1

1

12

22

3

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel
• Cole–Vishkin technique

Algorithm for graph colouring

42

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

43

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

44

Invariant: before & after
merger, this graph is

properly (Δ+1)-coloured

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

45

These pairs provide
a valid 3(Δ+1)-colouring

c c1

c’ = (c, c1)

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

46

Next we apply a simple
linear-time colour reduction
from 3(Δ+1) to Δ+1 colours:

repeatedly eliminate
the largest colour

c c1

c’ = (c, c1)
c’’ = ...

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

47

c

c2

c’ = (c, c2)
c’’ = ...

Merge: from Δ+1 to 3(Δ+1)

Reduce: back to Δ+1

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and
colourings one by one

Algorithm for graph colouring

48

c

c2

c’ = (c, c3)
c’’ = ...

Merge: from Δ+1 to 3(Δ+1)

Reduce: back to Δ+1

• Partition the graph into Δ directed forests

• 3-colour all forests in parallel

• Merge forests and colourings one by one
• After Δ steps, we will have a (Δ+1)-colouring of

the original graph

Algorithm for graph colouring

49

c

• Partition the graph into Δ directed forests
• O(1) time

• 3-colour all forests in parallel
• O(log* k) time

• Merge forests and colourings one by one
• Δ steps, each takes O(Δ) time:

O(1)-time merge + O(Δ)-time colour reduction

• Total running time: O(Δ2 + log* k)

Algorithm for graph colouring

50

• If we have unique identifiers, we can find
a (Δ+1)-colouring in O(Δ2 + log* n) rounds

• powerful symmetry-breaking primitive

• allows us to find a maximal independent set,
maximal matching, etc.

• more recent algorithms: running time O(Δ + log* n)

• Could we make it even faster, like O(Δ)?
Or is the O(log* n) part necessary?

• we can use Ramsey’s theorem to answer this question...

Algorithm for graph colouring

51

