DDA 2010, lecture 1: Introduction

- Synchronous deterministic distributed algorithms
- Two models:
- Port-numbering model
- Unique identifiers

Some notational conventions

- Graphs:
- unless otherwise mentioned, graphs are undirected and simple
- graphs are pairs: $G=(V, E)$, V set of nodes, E set of edges
- undirected edges are unordered pairs: if there is an edge between $u \in V$ and $v \in V$, we have $\{u, v\} \in E$
- directed edges are ordered pairs, e.g. (u, v) $\in E$
- $\operatorname{deg}(\mathrm{v})=$ degree of $\mathrm{v} \in \mathrm{V}$

Some notational conventions

- Parameters:
- $\mathrm{n}=|\mathrm{V}|$, number of nodes
- Δ is an upper bound on degrees: $\operatorname{deg}(\mathrm{v}) \leq \Delta$ for all $v \in \mathrm{~V}$
- These are often used in algorithm analysis
- e.g., "running time $O(\Delta+\log n)$ "
- Sometimes we assume that Δ is a global constant
- "bounded-degree graphs", $\Delta=O(1)$

DDA 2010, lecture 1a: Port-numbering model

- Synchronous deterministic distributed algorithms in the port-numbering model
- Limited model, we will study extensions later

Distributed algorithms

- Communication graph G

- Node = computer
- e.g., Turing machine, finite state machine
- Edge = communication link
- computers can exchange messages

Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An adversary chooses the structure of G
- Our algorithm must produce a correct output in any graph G

Distributed algorithms

- Usually, computational problems are related to the structure of the communication graph G
- example: find a maximal independent set for G
- the same graph is both the input and the system that tries to solve the problem...

Port-numbering model

- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Port-numbering chosen by adversary

Synchronous distributed algorithms

1. Each node reads its own local input

- Depends on the problem, for example:
- node weight
- weights of incident edges
- May be empty

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs

- Solution of the problem

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs

Example: Find a maximal independent set I
Local output of a node vindicates whether $v \in I$

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each port

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each port (message propagation...)

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each port
2. receives a message from each port

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each port
2. receives a message from each port
3. updates its own state

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each port
2. receives a message from each port
3. updates its own state
4. possibly stops and announces its output

Synchronous distributed algorithms

- Communication rounds are repeated until all nodes have stopped and announced their outputs
- Running time $=$ number of rounds
- Worst-case analysis

Synchronous distributed algorithms: networks of state machines

- Equivalently:
- Node = state machine (not necessarily finite)
- All nodes update their states simultaneously

Synchronous distributed algorithms: networks of state machines

- Equivalently:
- Node = state machine (not necessarily finite)
- All nodes update their states simultaneously

$$
\begin{array}{ll}
a^{\prime}=f_{2}(a, b, 2, c, 1) \leftarrow & \text { Current state }+ \\
b^{\prime}=f_{3}(b, d, 1, a, 1, c, 2) & \text { port number: } \\
c^{\prime}=f_{2}(c, a, 2, b, 3) & \text { we can reconstruct } \\
d^{\prime}=f_{1}(d, b, 1) & \\
\text { the outgoing message }
\end{array}
$$

Synchronous distributed algorithms: networks of state machines

- Equivalently:
- Node = state machine (not necessarily finite)
- All nodes update their states simultaneously

$$
\begin{array}{ll}
a^{\prime}=f_{2}(a, b, 2, c, 1) \longleftarrow & \text { Same function } \\
b^{\prime}=f_{3}(b, d, 1, a, 1, c, 2) \\
c^{\prime}=f_{2}(c, a, 2, b, 3) & \begin{array}{l}
f_{2}=\text { algorithm for } \\
\text { degree }-2 \text { nodes }
\end{array} \\
d^{\prime}=f_{1}(d, b, 1)
\end{array}
$$

Synchronous distributed algorithms: networks of state machines

$$
\begin{aligned}
a^{\prime} & =f_{2}(a, b, 2, \ldots) \\
b^{\prime} & =f_{3}(b, d, 1, \ldots) \\
c^{\prime} & =f_{2}(c, a, 2, \ldots) \\
d^{\prime} & =f_{1}(d, b, 1)
\end{aligned}
$$

- Equivalently:
- Node = state machine (not necessarily finite)
- All nodes update their states simultaneously
- Initial state = local input (incl. degree of the node)
- Final state = local output

DDA 2010, lecture 1b:
Computability in port-numbering model

- Impossibility of symmetry breaking
- Covering maps and covering graphs: tools for proving more impossibility results

Symmetry can't be broken

- Input may be symmetric
- symmetric graph
- symmetric port numbering
- identical local inputs

Symmetry can't be broken

- Same input
- Same algorithm
- Same initial state

Symmetry can't be broken

- Same current state

- Messages sent to port 1 are identical to each other
- Messages sent to port 2 are identical to each other

Symmetry can't be broken

Symmetry can't be broken

- Messages received from port 1 are identical to each other
- Messages received from port 2 are identical to each other

Symmetry can't be broken

- Same old state
- Same set of received messages
- Same deterministic algorithm
- Same new state

Symmetry can't be broken

- Same new state

- Either none of the nodes stops or all of them stop and produce identical outputs
- Symmetry can't be broken!
- let's formalise this...

Covering maps

Covering maps and covering graphs

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

H is a covering graph of G if there is a covering map $f: V^{\prime} \rightarrow \mathrm{V}$

Covering maps and covering graphs

- Run the same algorithm in G and H
- $\mathrm{v}^{\prime} \in \mathrm{V}^{\prime}$ and $\mathrm{f}\left(\mathrm{v}^{\prime}\right) \in \mathrm{V}$ have the same input for all v^{\prime}
- Then $\mathrm{v}^{\prime} \in \mathrm{V}^{\prime}$ and $\mathrm{f}\left(\mathrm{v}^{\prime}\right) \in \mathrm{V}$:

- have identical state transitions
- produce identical local outputs!

Covering maps and covering graphs

Covering maps and covering graphs

Covering maps and covering graphs

Covering maps and covering graphs

- Symmetric cycles are a simple special case of covering maps

Computability in the port-numbering model

- Very limited model
- in a cycle, we can only find a trivial solution: empty set, all nodes, ...
- we can't even break symmetry in a 2 -node network!
- What can be solved?

DDA 2010, lecture 1c:
Algorithms in port-numbering model

- Some problems can be solved in the port-numbering model...
- and covering graphs can be used as an algorithm design technique, too!
- Example: vertex cover approximation

Symmetry breaking out of thin air: bipartite double covers

- Replace each node by two virtual nodes: black and white
- original nodes simulate virtual nodes
- each computers runs two programs in parallel:
"black program" and "white program"
- Edges: black-to-white

Symmetry breaking out of thin air: bipartite double covers

- Virtual graph His a covering graph of G
- It is a double cover:

2 nodes of H map to each node of G

- It is bipartite
- and we have already coloured its two parts: black and white!

Symmetry breaking out of thin air: bipartite double covers

2-coloured graph

Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited

Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited

Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited

Symmetry breaking out of thin air: bipartite double covers

- Port-numbered graphs without colouring:
- not possible to find a maximal matching (consider an even cycle)
- Port-numbered graphs with 2-colouring:
- very easy to find a maximal matching!

Maximal matching in 2-coloured graphs

- Each white node sends proposals to its black neighbours
- one by one, order by port numbers

Maximal matching in 2-coloured graphs

- Each white node sends proposals to its black neighbours
- one by one, order by port numbers
- Each black node accepts the first proposal it gets
- break ties using port numbers

Maximal matching in 2-coloured graphs

- Each white node sends proposals to its black neighbours
- one by one, order by port numbers
- until its proposal is accepted, or all neighbours have rejected

Maximal matching in 2-coloured graphs

- Each white node sends proposals to its black neighbours
- one by one, order by port numbers
- Each black node accepts the first proposal it gets
- break ties using port numbers

Maximal matching in 2-coloured graphs

- Accepted proposals M: matching
- white nodes don't propose after acceptance
- black nodes don't accept more than once
- all nodes incident to at most one edge

Maximal matching in 2-coloured graphs

- Accepted proposals M: maximal matching!
- assume $\{u, v\} \in E \backslash M$ u unmatched
- then u has sent a proposal to v and v has rejected it
- therefore v had already received another proposal, v is matched
- can't add $\{u, v\}$ to M

Maximal matching in bipartite double cover

Map back to original graph

Maximal matching in bipartite double cover

Different possibilities...

Maximal matching in
 bipartite double cover

Different possibilities...

Maximal matching in bipartite double cover

- However, this is not possible, because M is a matching
- Minduces a subgraph of H with max. degree 1
- therefore:

Dinduces a subgraph of G with max. degree 2

Maximal matching in bipartite double cover

- And this is not possible, because M is maximal
- each edge of H is in M or shares at least one endpoint with M
- endpoints of M form a vertex cover in H
- endpoints of Dform a vertex cover in G!

Finding a vertex cover

- So we will find a set D of edges such that:
- Dinduces a subgraph of maximum degree 2
- D must consist of paths and cycles
- endpoints of Dform a vertex cover C
- is it a small vertex cover?

Finding a vertex cover

- So we will find a set D of edges such that:
- Dinduces a subgraph of maximum degree 2
- D must consist of paths and cycles
- endpoints of Dform a vertex cover C
- is it a small vertex cover?

Finding a vertex cover

- Different cases:
- Cycle with 3 edges: 3 nodes in $\mathrm{C}, \geq 2$ in C^{*}
- Cycle with 4 edges: 4 nodes in $\mathrm{C}, \geq 2$ in C^{*}
- Cycle with 5 edges: 5 nodes in $\mathrm{C}, \geq 3$ in C^{*}
$|C| \leq 2\left|C^{*}\right|$

Finding a vertex cover

- Different cases:
- Path with 1 edge: 2 nodes in $\mathrm{C}, \geq 1 \mathrm{in} \mathrm{C}^{*}$
- Path with 2 edges: 3 nodes in C, ≥ 1 in C*
- Path with 3 edges: 4 nodes in C, ≥ 2 in C^{*}
- Path with 4 edges: 5 nodes in C, ≥ 2 in C*
$|C| \leq 3\left|C^{*}\right|$

Finding a vertex cover

- In each path or cycle:
- C has at most 3 times as many nodes as C*
- Summing over all paths and cycles:
- $|\mathrm{C}| \leq 3\left|\mathrm{C}^{*}\right|$
- The algorithm finds a 3-approximation of minimum vertex cover!

Finding a vertex cover:

 summary- Vertex cover is a graph problem that can be solved reasonably well in the port-numbering model with a deterministic distributed algorithm
- And the algorithm was simple and fast: $\mathrm{O}(\Delta)$ rounds!

Finding a vertex cover: two very different worlds

- Centralised setting, polynomial-time algorithms:
- trivial to find a minimal vertex cover: greedy algorithm
- it requires more thought to find a good approximation of minimum vertex cover
- Distributed setting, port-numbering model:
- impossible to find a minimal vertex cover: symmetry breaking issues
- but we have seen that it is possible to find a good approximation of minimum vertex cover

Finding a vertex cover: symmetry breaking

- Vertex cover approximation does not require symmetry breaking
- Proof: algorithm in the port-numbering model
- However, many interesting problems do...
- Let's study a stronger model of distributed computing

