DDA 2010, lecture 1: Introduction

- Synchronous deterministic distributed algorithms
- Two models:
 - Port-numbering model
 - Unique identifiers

Some notational conventions

- Graphs:
 - unless otherwise mentioned, graphs are undirected and simple
 - graphs are pairs: G = (V, E),
 V set of nodes, E set of edges
 - undirected edges are unordered pairs: if there is an edge between $u \in V$ and $v \in V$, we have $\{u, v\} \in E$
 - directed edges are ordered pairs, e.g. $(u, v) \in E$
 - deg(v) = degree of $v \in V$

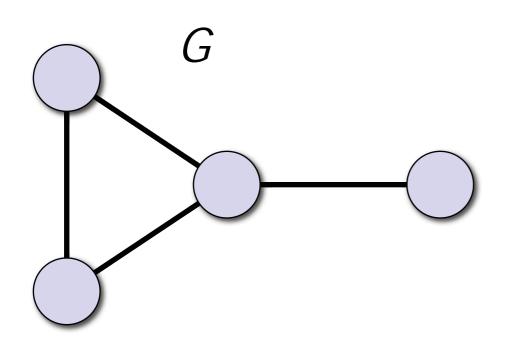
Some notational conventions

- Parameters:
 - n = |V|, number of nodes
 - Δ is an upper bound on degrees: deg(v) $\leq \Delta$ for all $v \in V$
- These are often used in algorithm analysis
 - e.g., "running time $O(\Delta + \log n)$ "
- Sometimes we assume that Δ is a global constant
 - "bounded-degree graphs", $\Delta = O(1)$

DDA 2010, lecture 1a: Port-numbering model

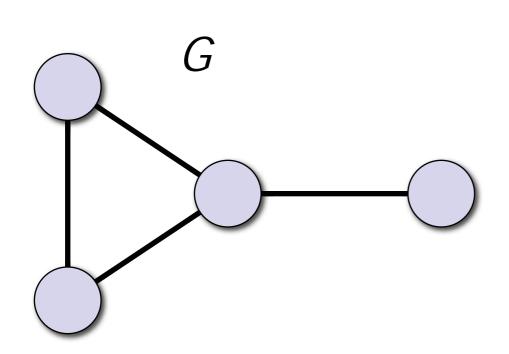
- Synchronous deterministic distributed algorithms in the port-numbering model
- Limited model, we will study extensions later

Distributed algorithms



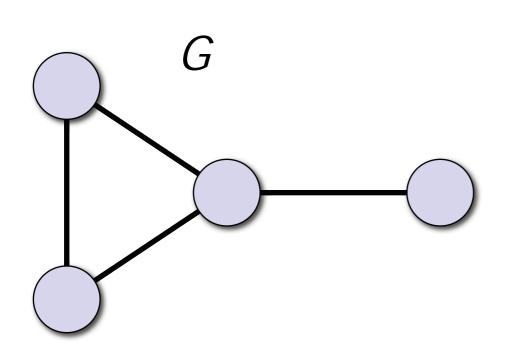
- Communication graph G
- Node = computer
 - e.g., Turing machine, finite state machine
- Edge = communication link
 - computers can exchange messages

Distributed algorithms



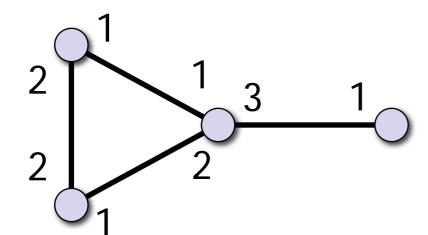
- All nodes are identical, run the same algorithm
- *We* can choose the algorithm
- An *adversary* chooses the structure of *G*
- Our algorithm must produce a correct output in any graph *G*

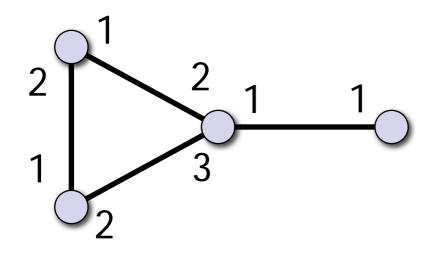
Distributed algorithms



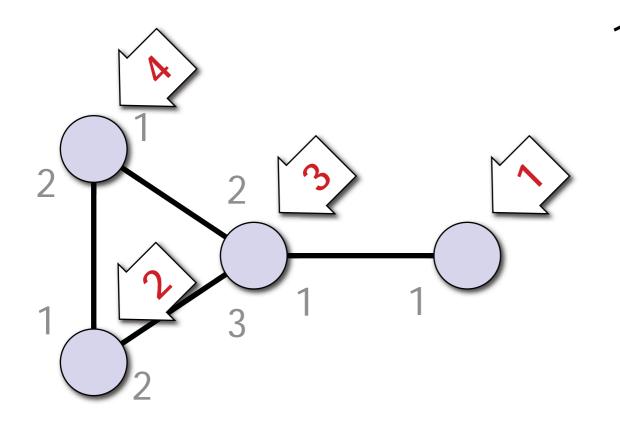
- Usually, computational problems are related to the structure of the communication graph *G*
 - example: find a maximal independent set for *G*
 - the same graph is both the input and the system that tries to solve the problem...

Port-numbering model

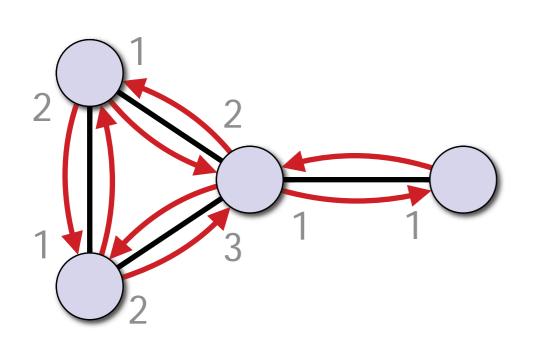




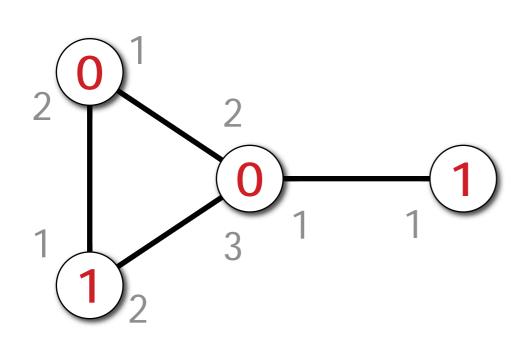
- A node of degree *d* can refer to its neighbours by integers 1, 2, ..., *d*
- Port-numbering chosen by adversary



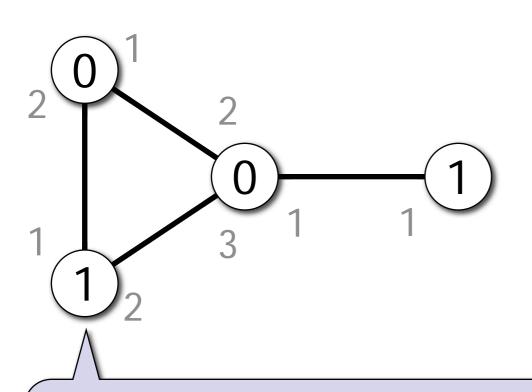
- 1. Each node reads its own local input
 - Depends on the problem, for example:
 - node weight
 - weights of incident edges
 - May be empty



- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds

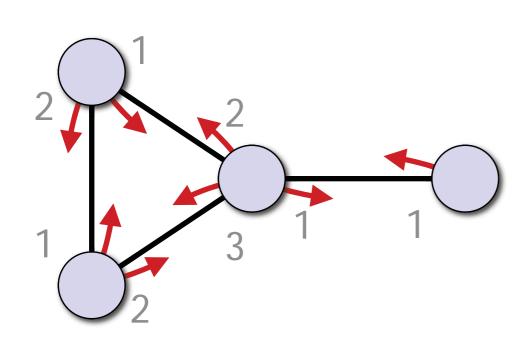


- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds until all nodes have announced their local outputs
 - Solution of the problem

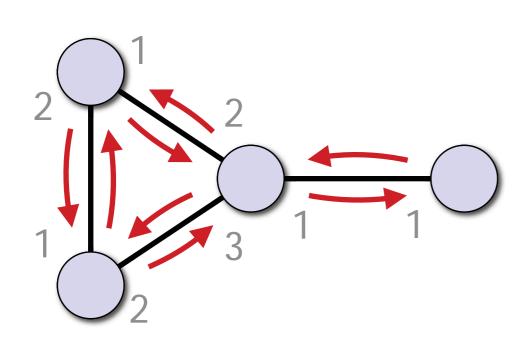


- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds until all nodes have announced their local outputs

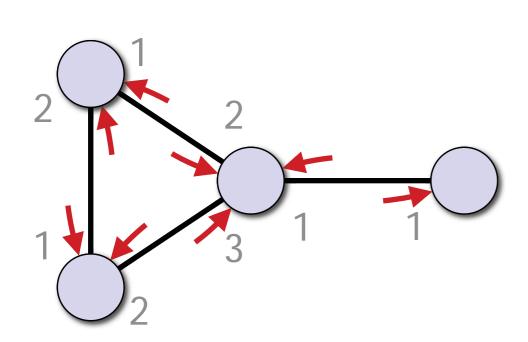
Example: Find a maximal independent set / Local output of a node v indicates whether $v \in I$



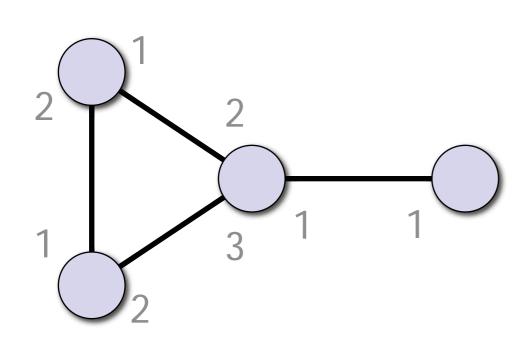
- Communication round: each node
 - 1. sends a message to each port



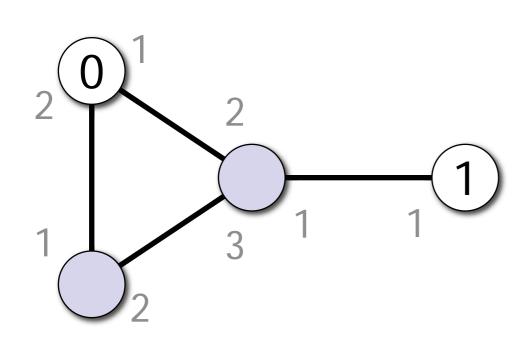
- Communication round: each node
 - 1. sends a message to each port
 - (message propagation...)



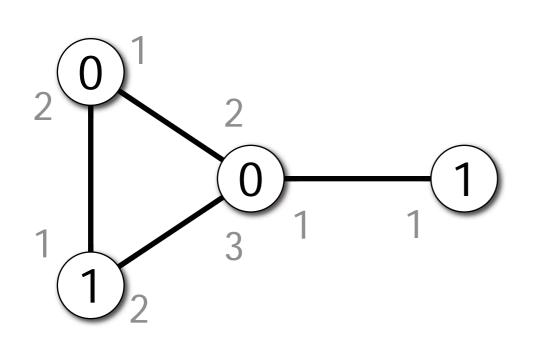
- Communication round: each node
 - 1. sends a message to each port
 - 2. receives a message from each port



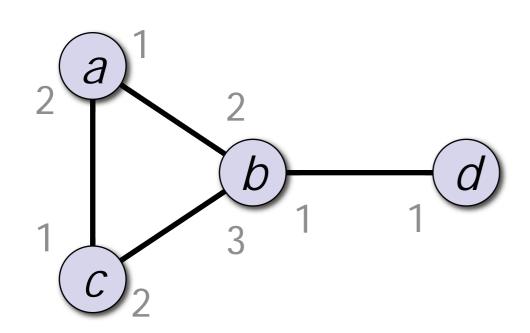
- Communication round: each node
 - 1. sends a message to each port
 - 2. receives a message from each port
 - 3. updates its own state



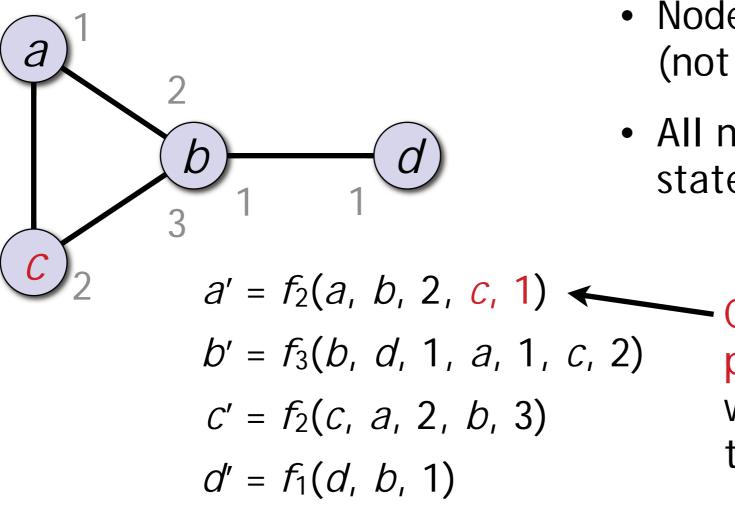
- Communication round: each node
 - 1. sends a message to each port
 - 2. receives a message from each port
 - 3. updates its own state
 - 4. possibly stops and announces its output



- Communication rounds are repeated until all nodes have stopped and announced their outputs
- Running time = number of rounds
- Worst-case analysis

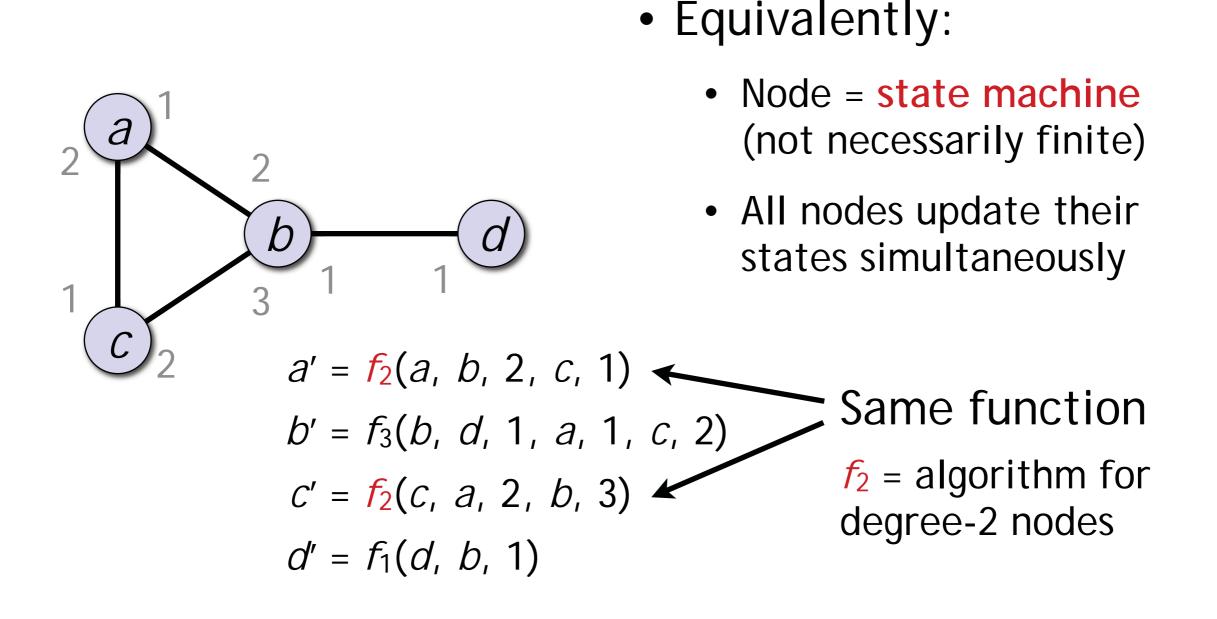


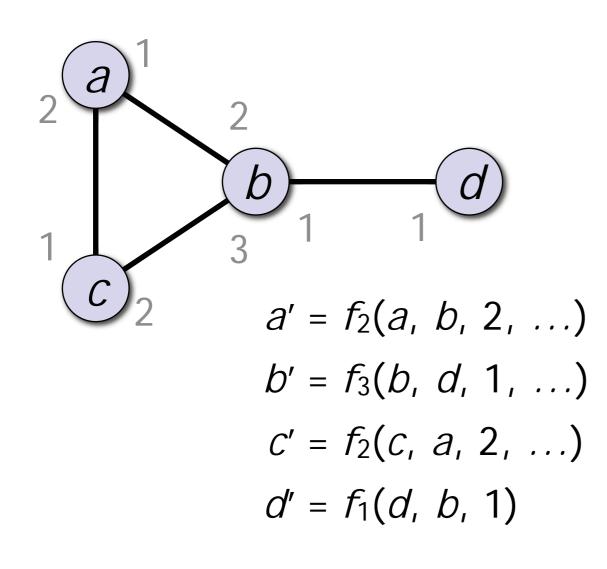
- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously



- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously

Current state +
 port number:
 we can reconstruct
 the outgoing message

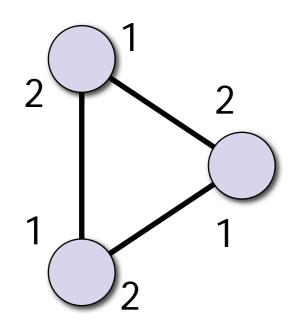




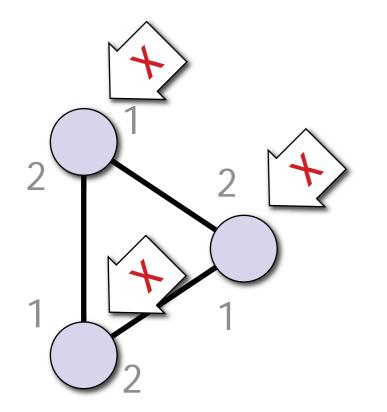
- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously
 - Initial state = local input (incl. degree of the node)
 - Final state = local output

DDA 2010, lecture 1b: Computability in port-numbering model

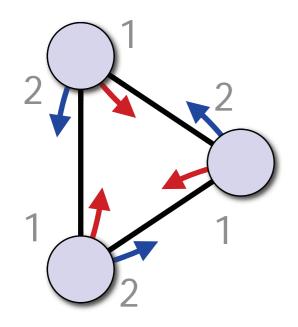
- Impossibility of symmetry breaking
- Covering maps and covering graphs: tools for proving more impossibility results



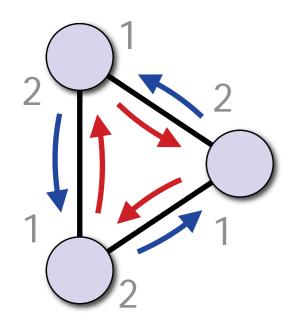
- Input may be symmetric
 - symmetric graph
 - symmetric port numbering
 - identical local inputs

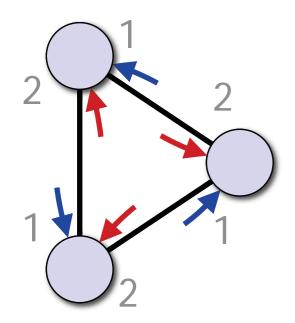


- Same input
- Same algorithm
- Same initial state

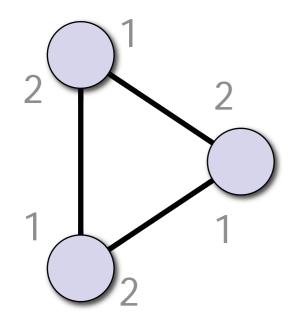


- Same current state
- Messages sent to port 1 are identical to each other
- Messages sent to port 2 are identical to each other

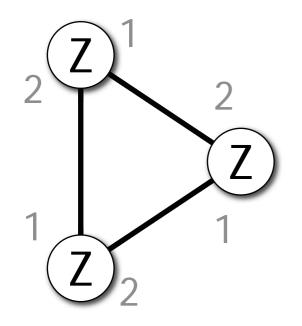




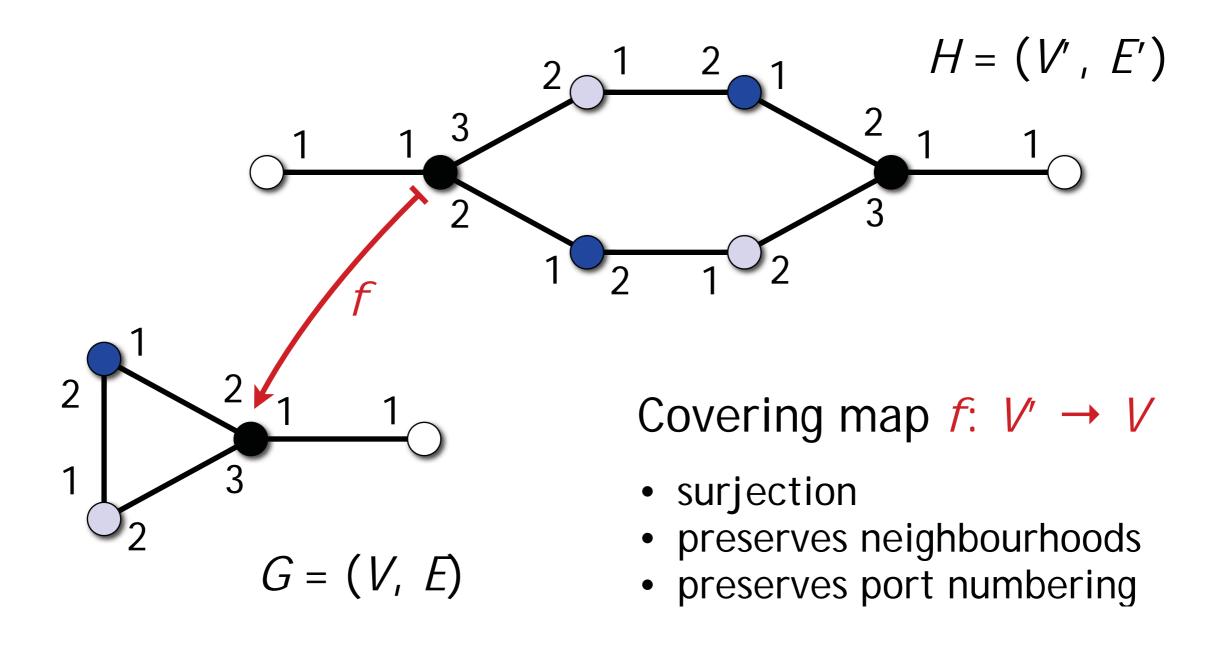
- Messages received from port 1 are identical to each other
- Messages received from port 2 are identical to each other

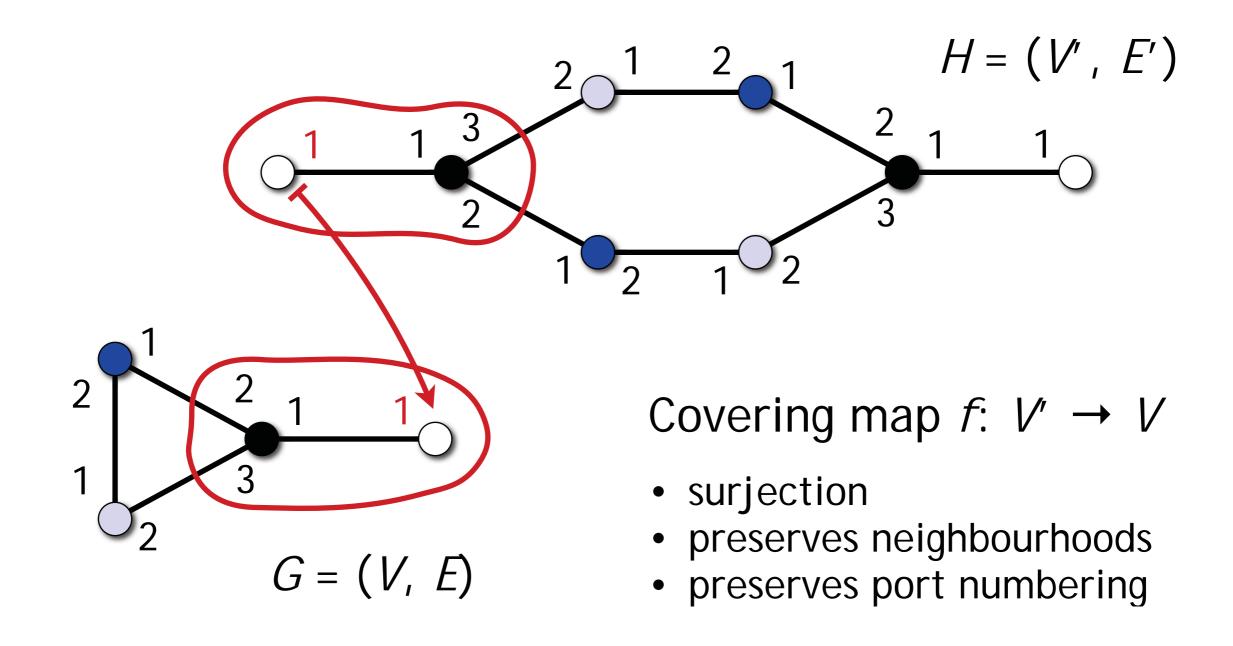


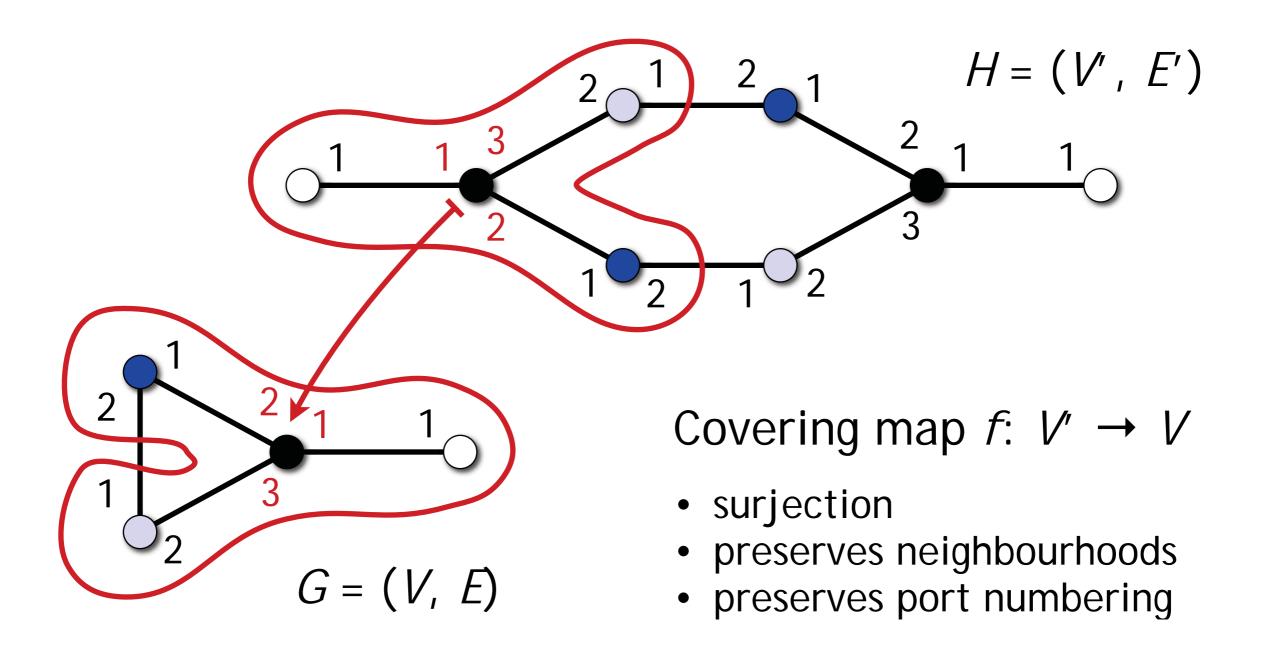
- Same old state
- Same set of received messages
- Same deterministic algorithm
- Same new state

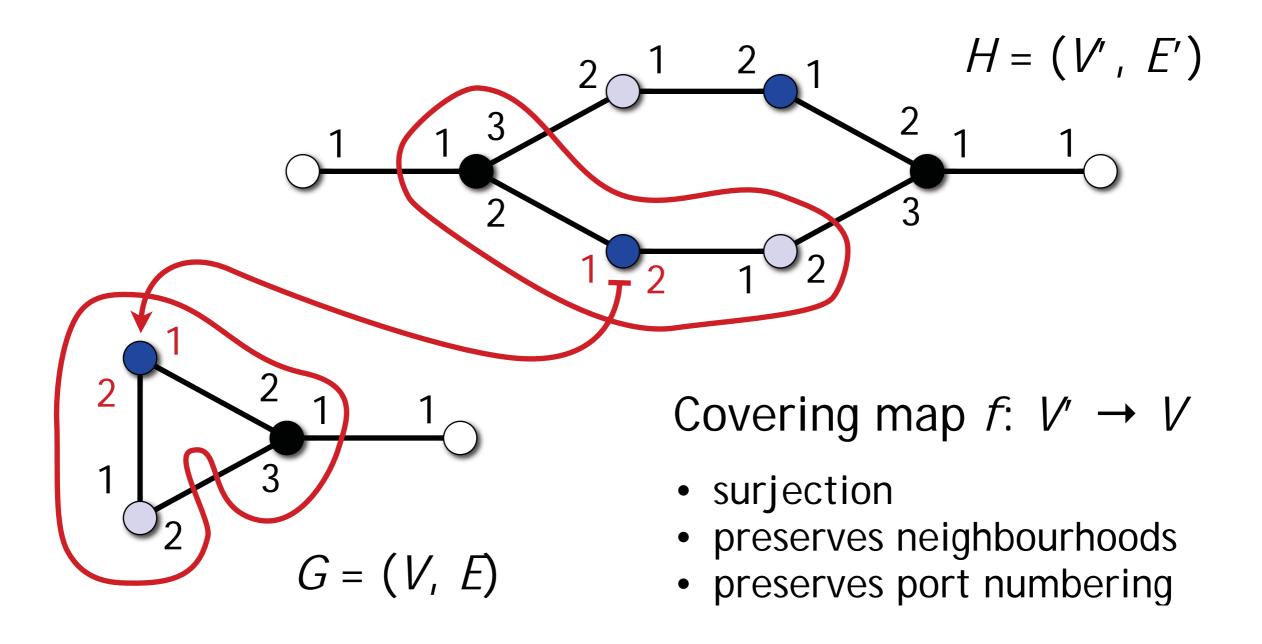


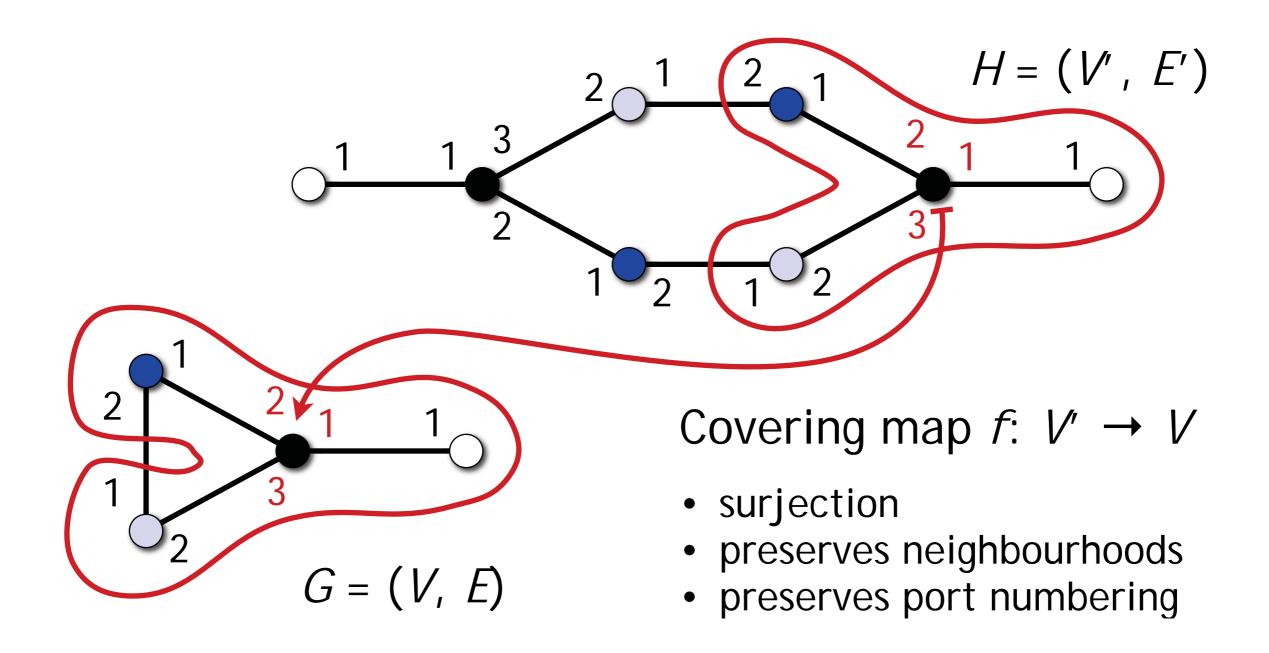
- Same new state
- Either none of the nodes stops or all of them stop and produce identical outputs
- Symmetry can't be broken!
 - let's formalise this...



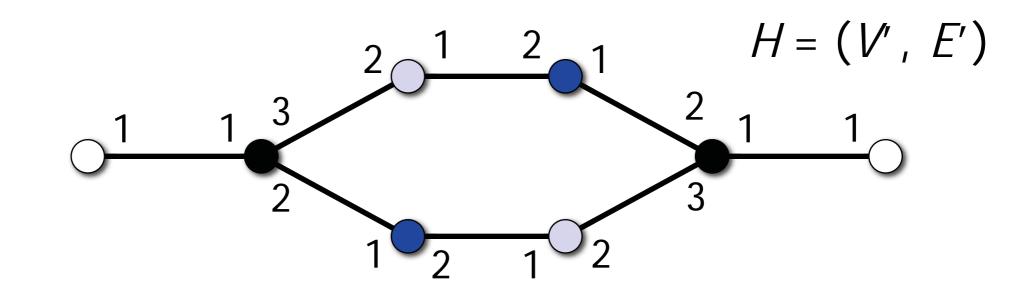


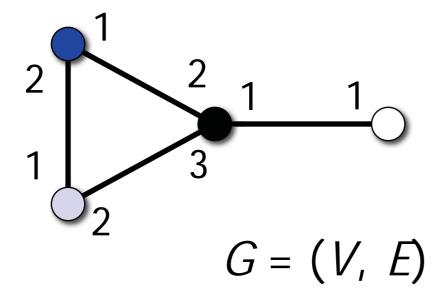






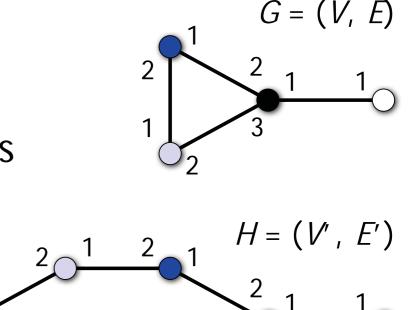
Covering maps and covering graphs

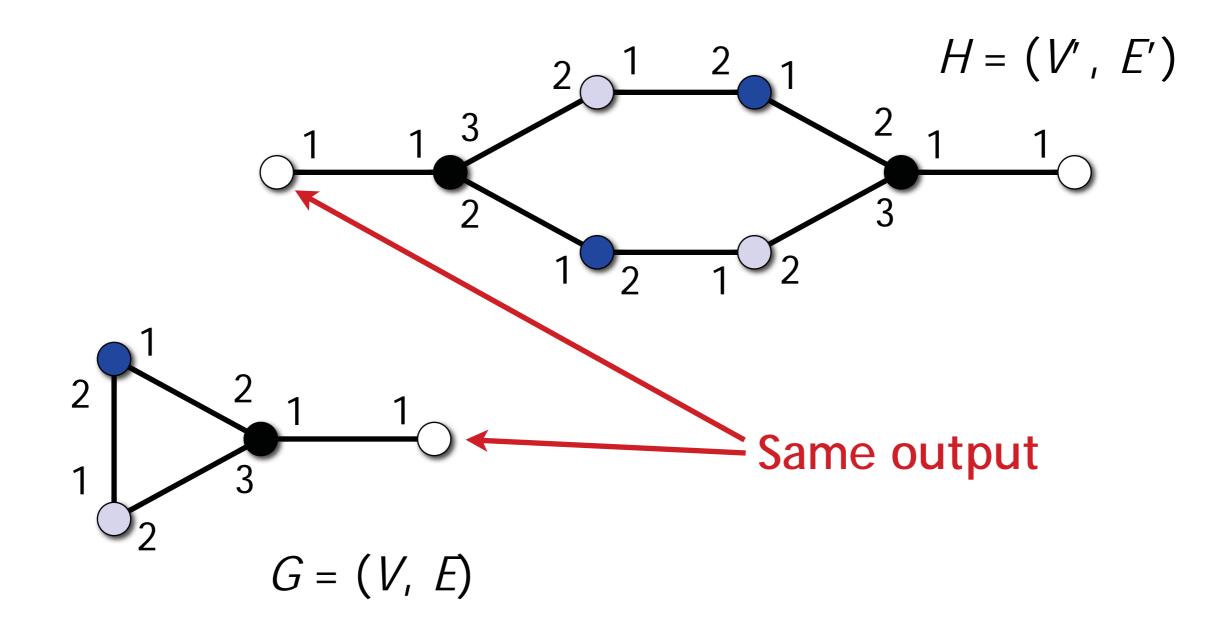


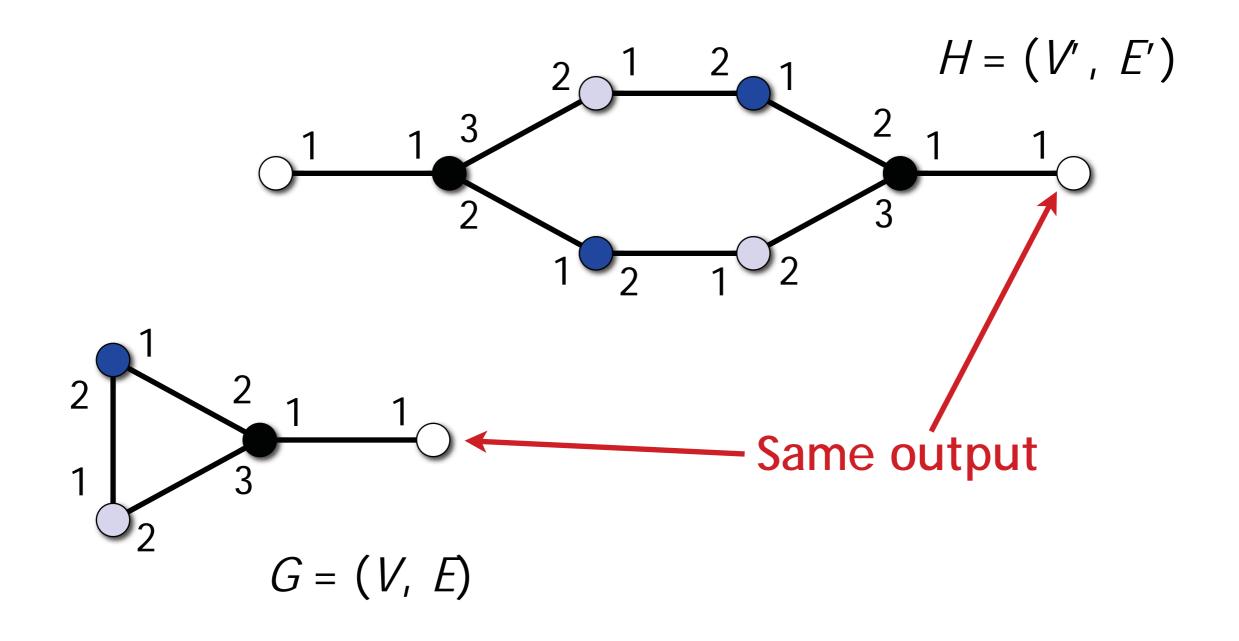


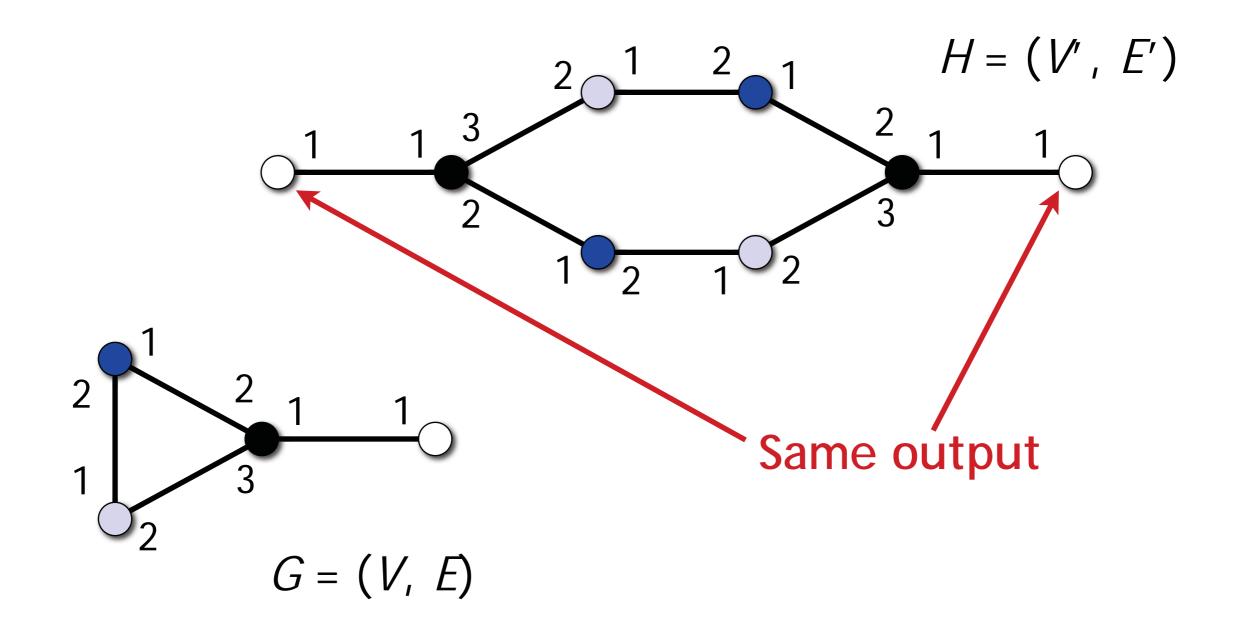
H is a **covering graph** of *G* if there is a covering map $f: V' \rightarrow V$

- Run the same algorithm in G and H
 - $v' \in V'$ and $f(v') \in V$ have the same input for all v'
- Then $V' \in V'$ and $f(V') \in V$:
 - have identical initial states
 - send and receive the same messages
 - have identical state transitions
 - produce identical local outputs!

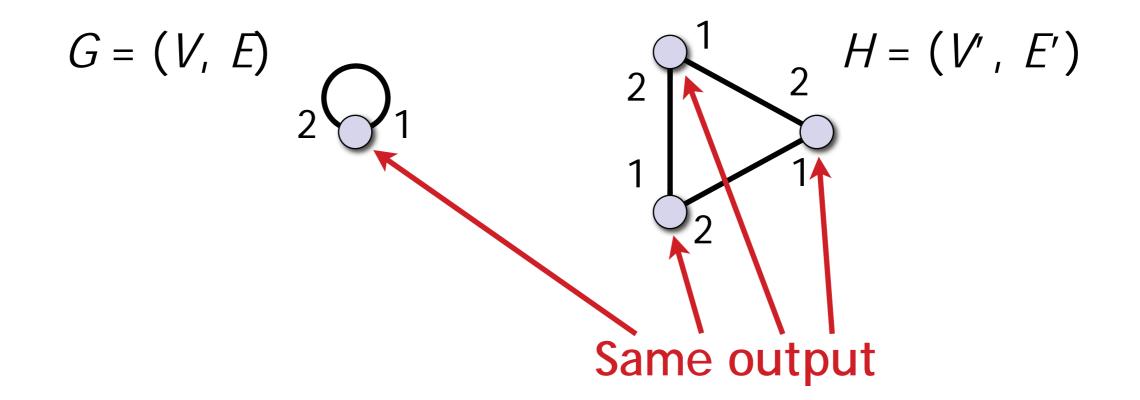




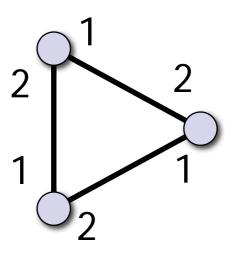




Symmetric cycles are a simple special case of covering maps



Computability in the port-numbering model

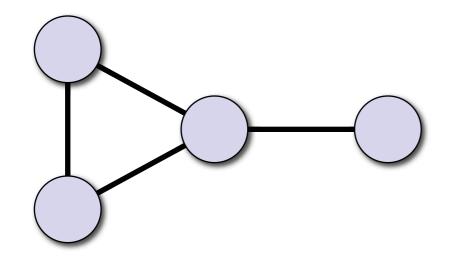


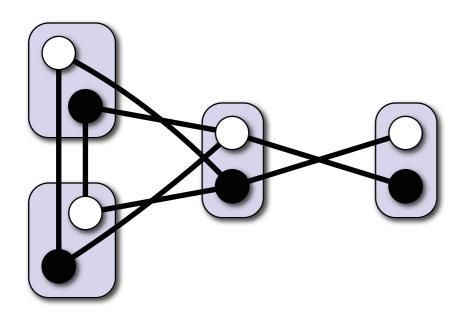
$$-1$$
 1

- Very limited model
 - in a cycle, we can only find a trivial solution: empty set, all nodes, ...
 - we can't even break symmetry in a 2-node network!
- What can be solved?

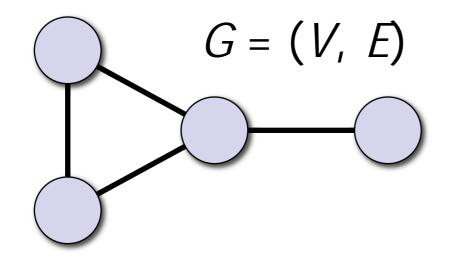
DDA 2010, lecture 1c: Algorithms in port-numbering model

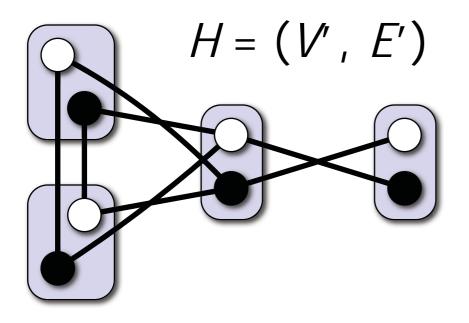
- Some problems *can* be solved in the port-numbering model...
 - and covering graphs can be used as an algorithm design technique, too!
- Example: vertex cover approximation



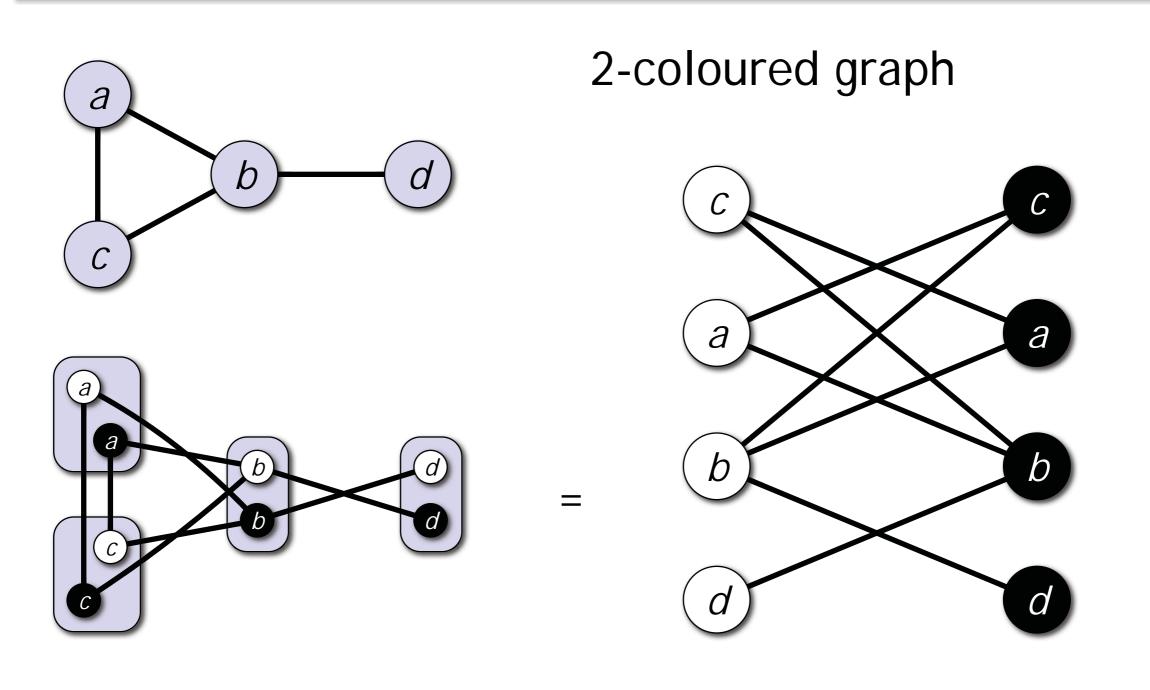


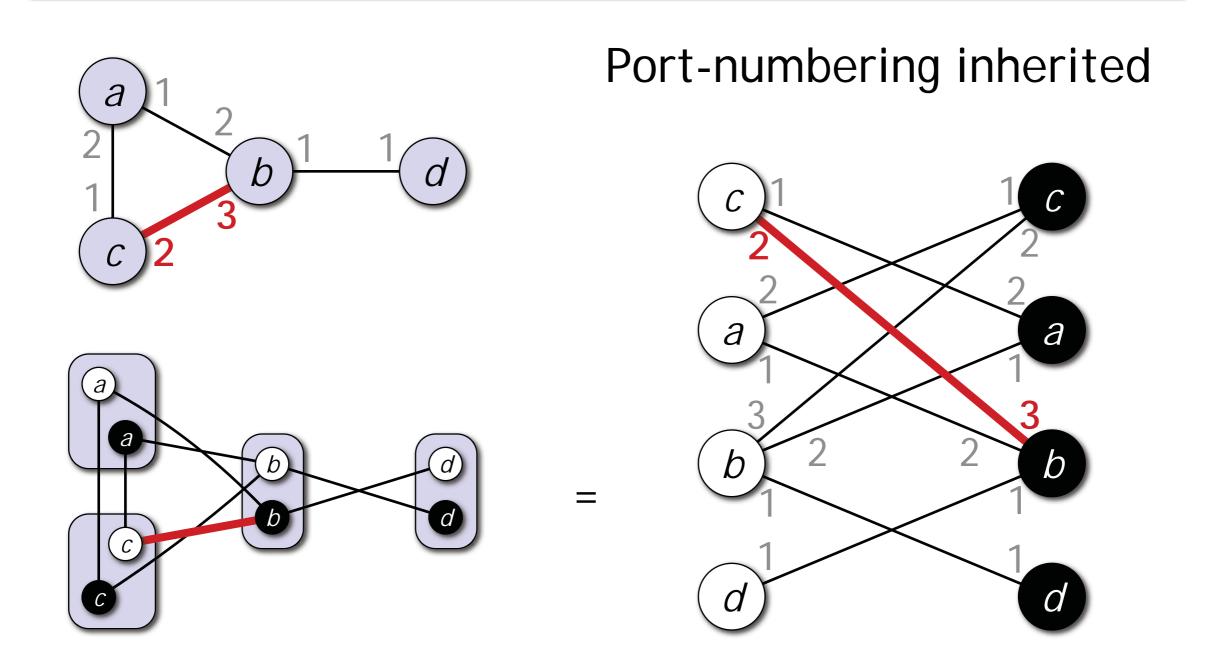
- Replace each node by two virtual nodes:
 black and white
 - original nodes
 simulate virtual nodes
 - each computers runs two programs in parallel: "black program" and "white program"
- Edges: black-to-white

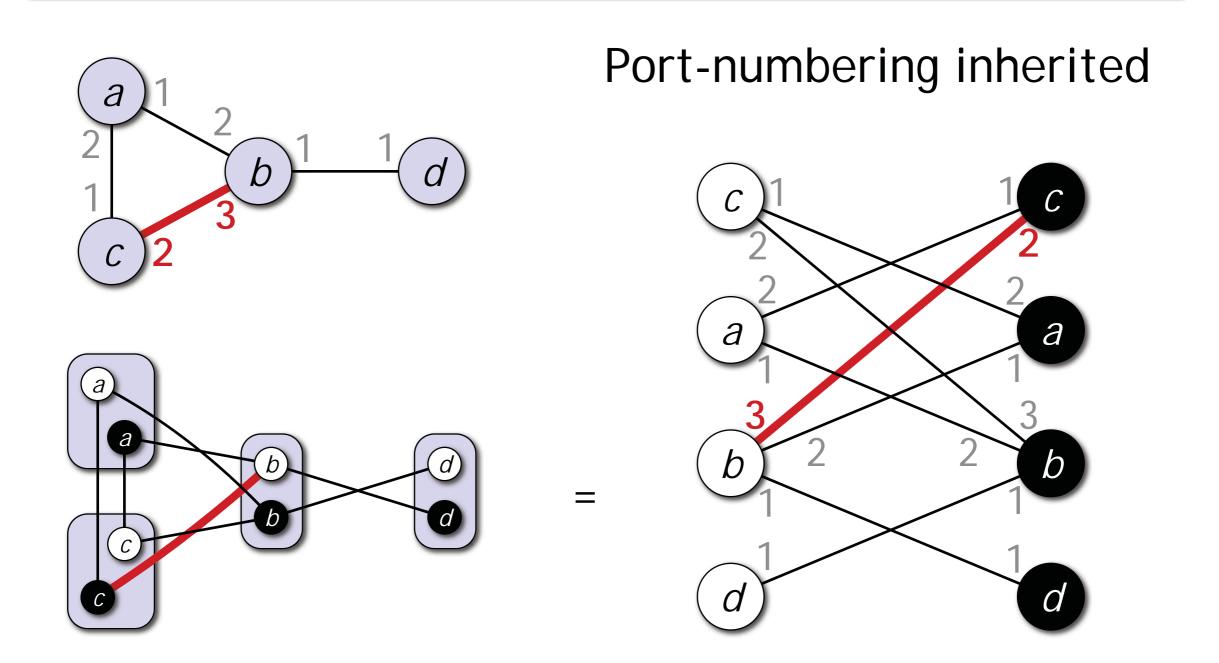


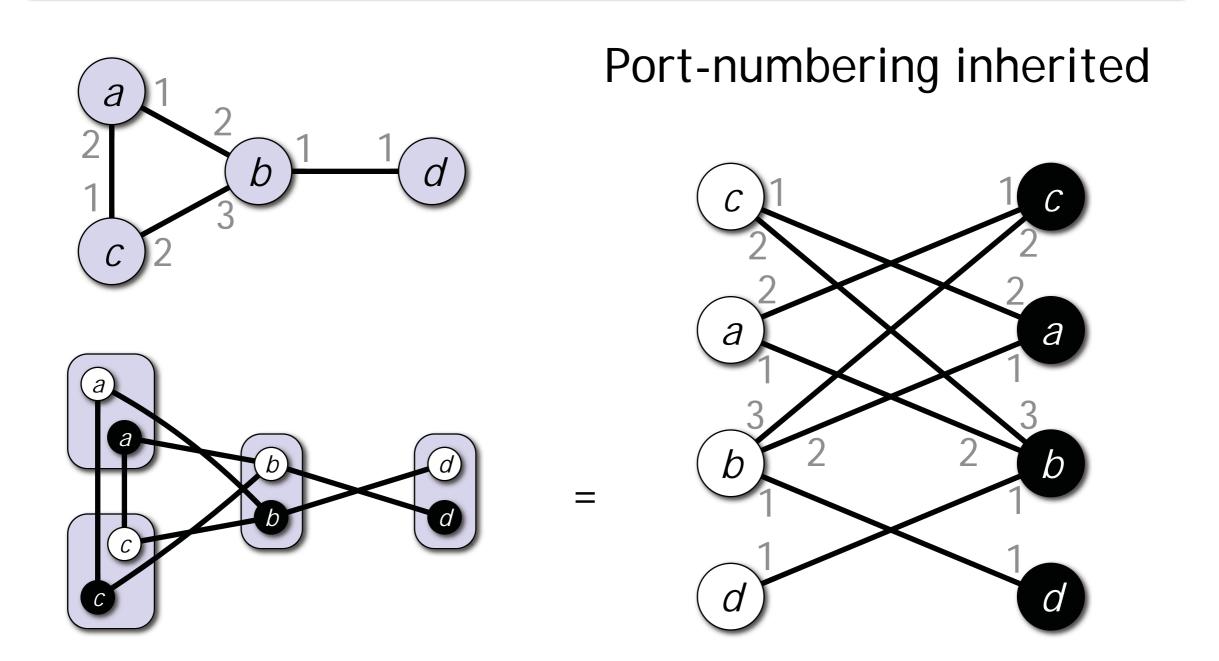


- Virtual graph *H* is a covering graph of *G*
- It is a double cover:
 2 nodes of H map
 to each node of G
- It is bipartite
 - and we have already coloured its two parts: black and white!

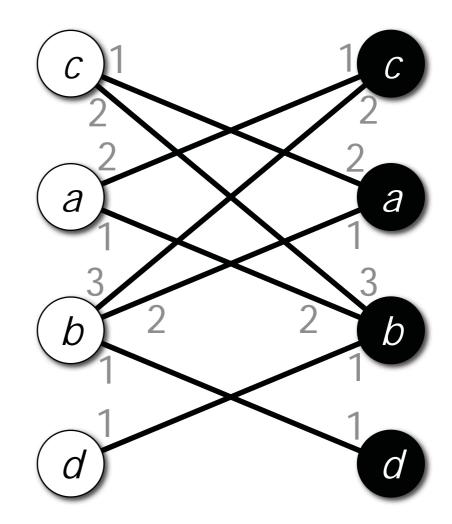




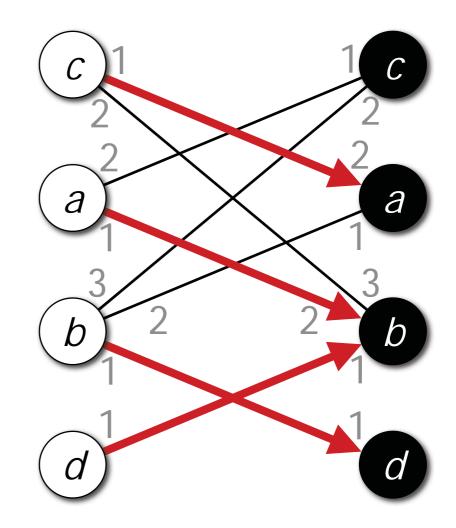




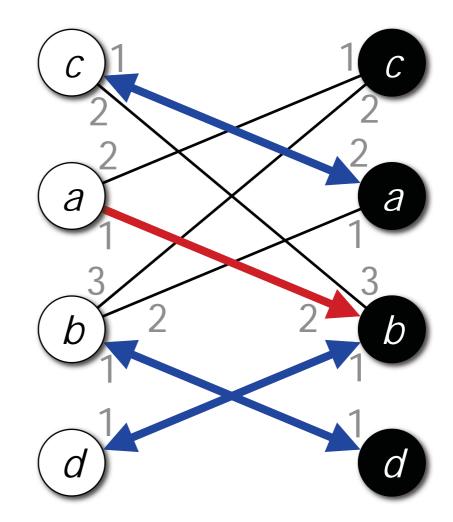
- Port-numbered graphs without colouring:
 - not possible to find a maximal matching (consider an even cycle)
- Port-numbered graphs with 2-colouring:
 - very easy to find a maximal matching!



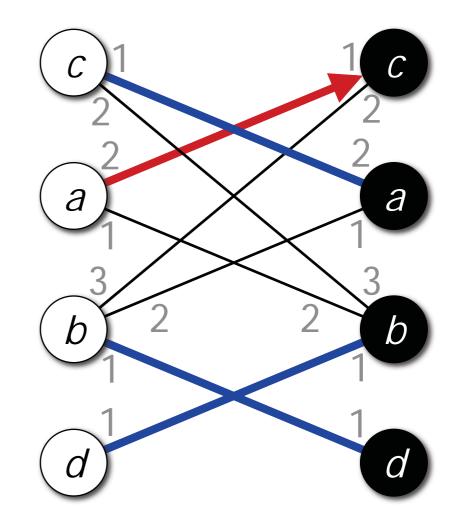
- Each white node sends proposals to its black neighbours
 - one by one, order by port numbers



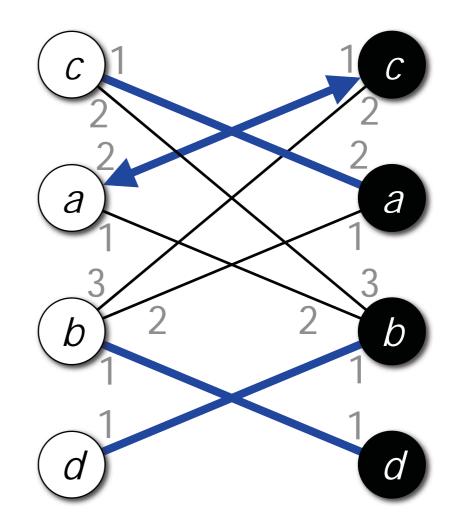
- Each white node sends proposals to its black neighbours
 - one by one, order by port numbers
- Each black node accepts the first proposal it gets
 - break ties using port numbers



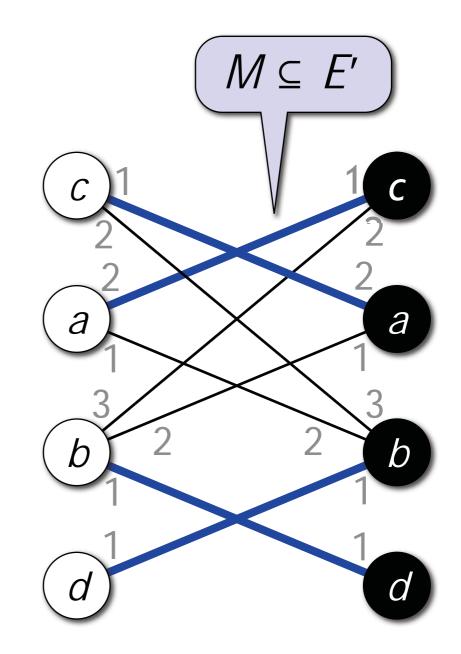
- Each white node sends proposals to its black neighbours
 - one by one, order by port numbers
 - until its proposal is accepted, or all neighbours have rejected



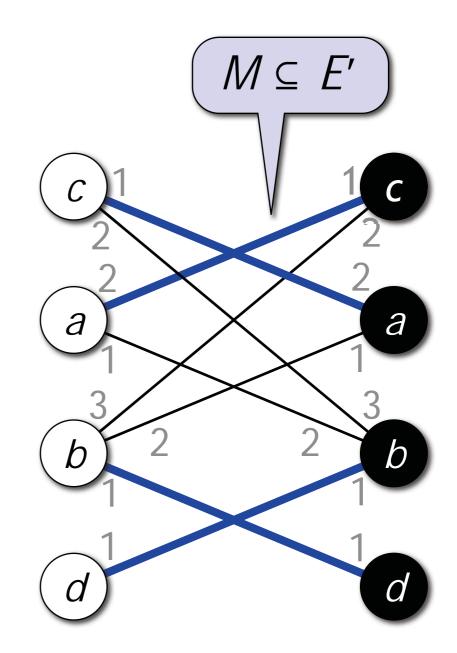
- Each white node sends proposals to its black neighbours
 - one by one, order by port numbers
- Each black node accepts the first proposal it gets
 - break ties using port numbers

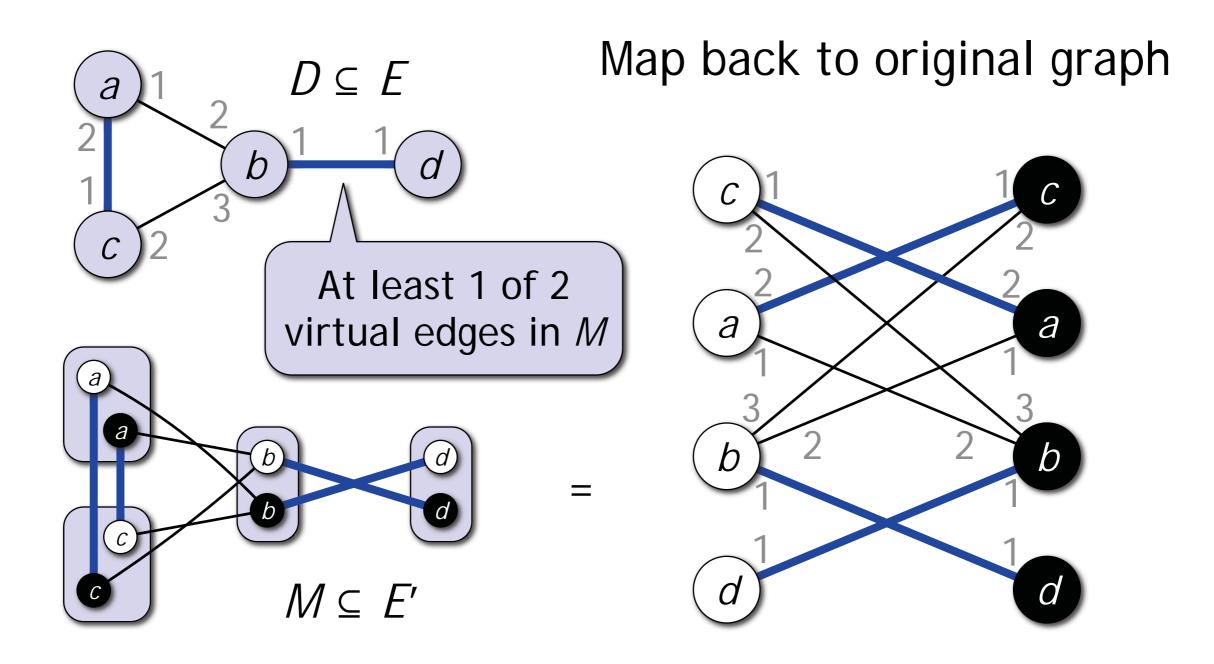


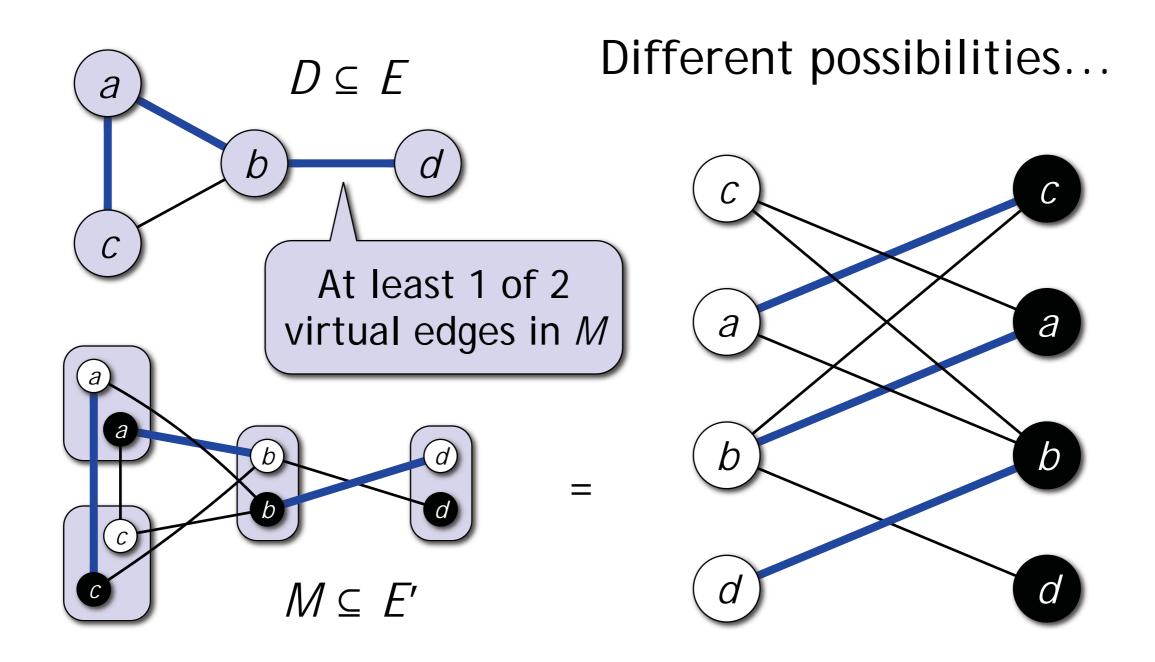
- Accepted proposals *M*: matching
 - white nodes don't propose after acceptance
 - black nodes don't accept more than once
 - all nodes incident to at most one edge

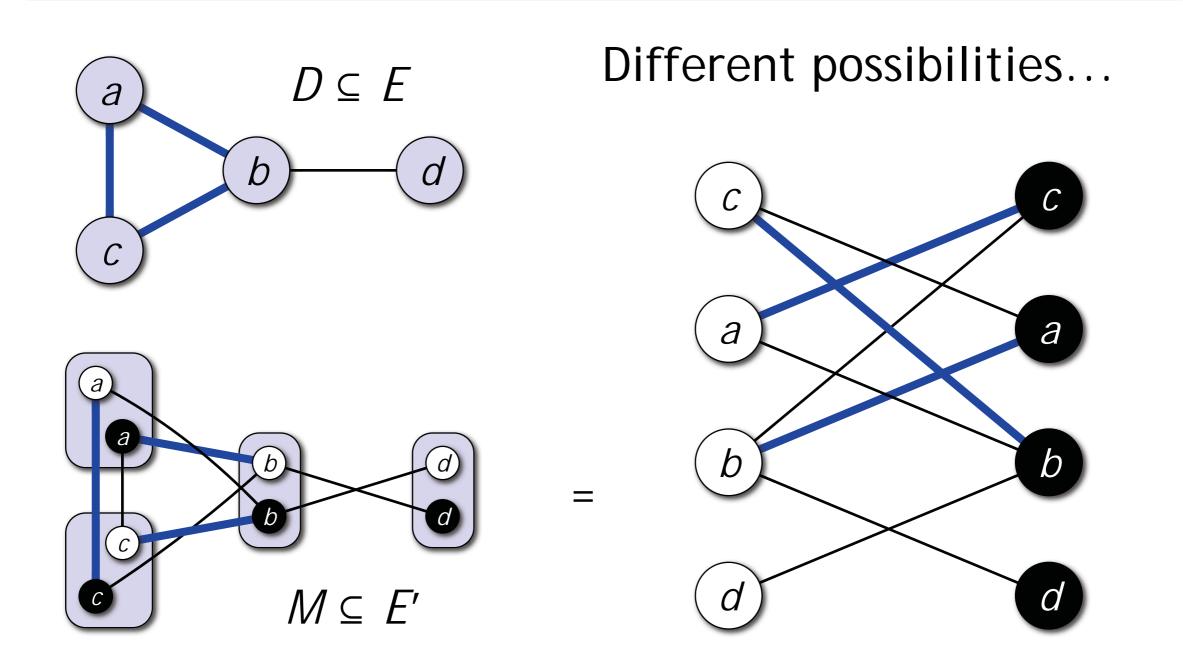


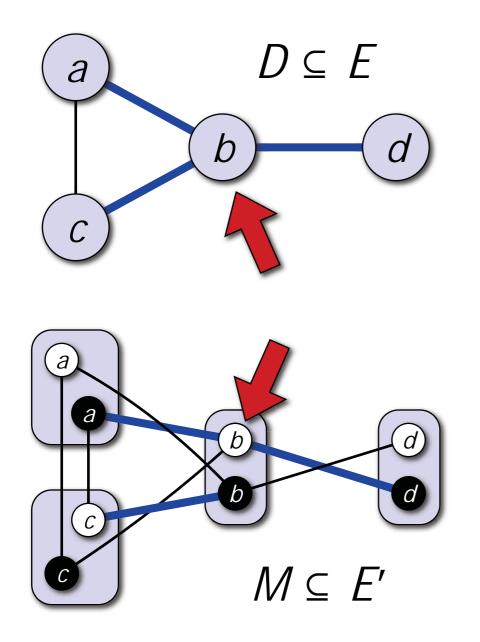
- Accepted proposals *M*: maximal matching!
 - assume $\{u, v\} \in E \setminus M$ u unmatched
 - then *u* has sent a proposal to *v* and *v* has rejected it
 - therefore v had already received another proposal, v is matched
 - can't add {u, v} to M



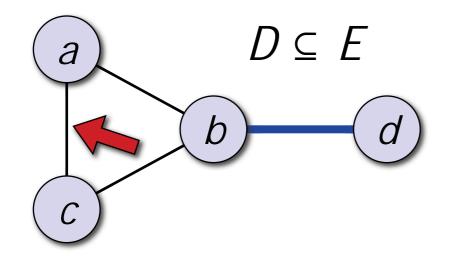


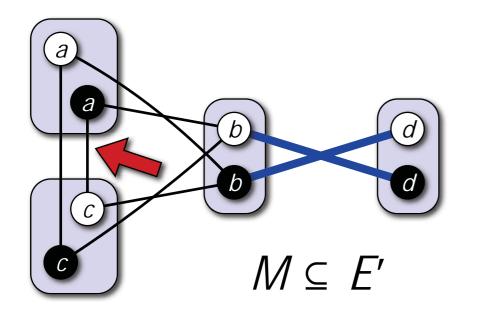




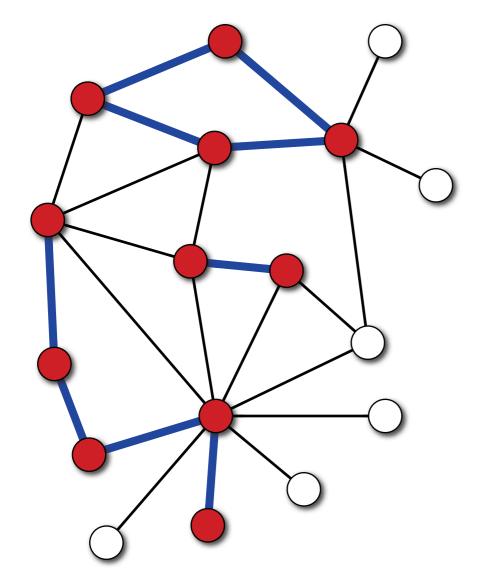


- However, this is not possible, because *M* is a matching
 - *M* induces a subgraph of *H* with max. degree **1**
 - therefore:
 D induces a subgraph of
 G with max. degree 2

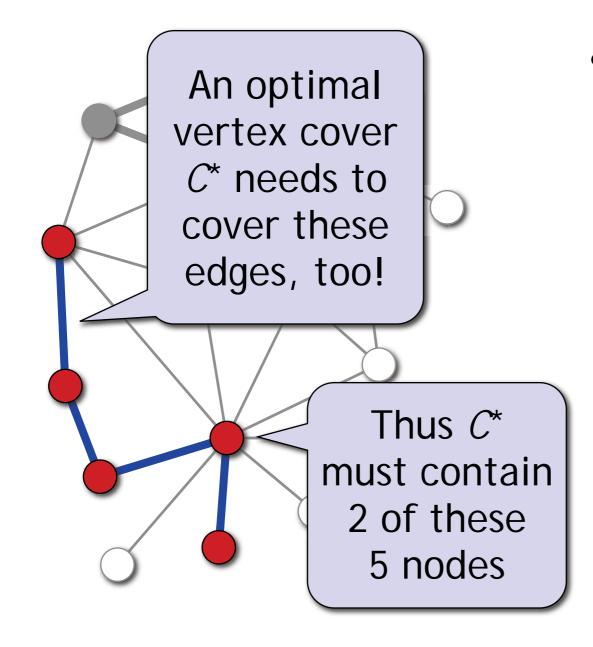




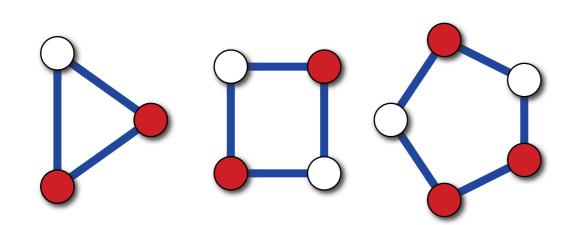
- And this is not possible, because *M* is maximal
 - each edge of H is in M or shares at least one endpoint with M
 - endpoints of *M* form a vertex cover in *H*
 - endpoints of *D* form a vertex cover in *G*!



- So we will find a set *D* of edges such that:
 - *D* induces a subgraph of maximum degree 2
 - *D* must consist of paths and cycles
 - endpoints of *D* form a vertex cover *C*
 - is it a small vertex cover?



- So we will find a set *D* of edges such that:
 - *D* induces a subgraph of maximum degree 2
 - *D* must consist of paths and cycles
 - endpoints of *D* form
 a vertex cover *C*
 - is it a small vertex cover?

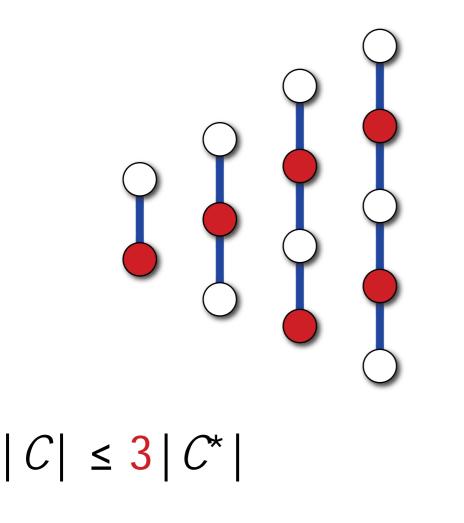


 $|C| \leq 2|C^*|$

• Different cases:

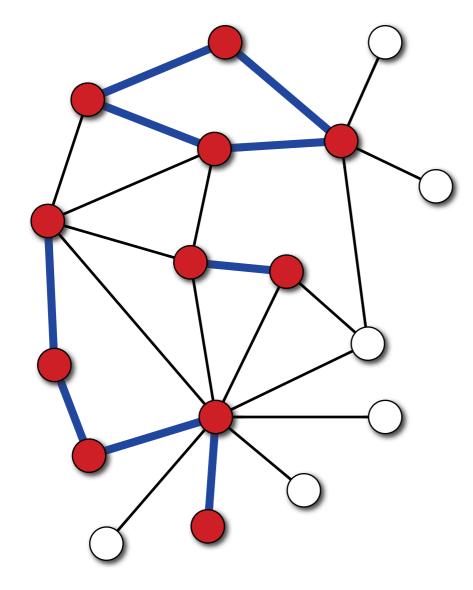
. . .

- Cycle with 3 edges: 3 nodes in C, ≥ 2 in C^*
- Cycle with 4 edges: 4 nodes in $C_1 \ge 2$ in C^*
- Cycle with 5 edges: 5 nodes in C, \ge 3 in C^*



- Different cases:
 - Path with 1 edge: 2 nodes in $C_1 \ge 1$ in C^*
 - Path with 2 edges: **3** nodes in $C_1 \ge 1$ in C^*
 - Path with 3 edges: 4 nodes in $C_1 \ge 2$ in C^*
 - Path with 4 edges: 5 nodes in $C_{, \geq} 2$ in C^*

. . .



- In each path or cycle:
 - C has at most 3 times as many nodes as C*
- Summing over all paths and cycles:
 - $|C| \leq \mathbf{3} |C^*|$
- The algorithm finds

 a 3-approximation of
 minimum vertex cover!

Finding a vertex cover: summary

- Vertex cover is a graph problem that *can* be solved reasonably well in the port-numbering model with a deterministic distributed algorithm
 - And the algorithm was simple and fast: $O(\Delta)$ rounds!

Finding a vertex cover: two very different worlds

- Centralised setting, polynomial-time algorithms:
 - trivial to find a *minimal vertex cover*: greedy algorithm
 - it requires more thought to find a good *approximation of minimum vertex cover*
- Distributed setting, port-numbering model:
 - impossible to find a *minimal vertex cover*: symmetry breaking issues
 - but we have seen that it is possible to find a good *approximation of minimum vertex cover*

Finding a vertex cover: symmetry breaking

- Vertex cover approximation does not require symmetry breaking
 - Proof: algorithm in the port-numbering model
- However, many interesting problems do...
- Let's study a stronger model of distributed computing