
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · April 23, 2024

Chapter 4

LOCAL Model:
Unique Identifiers
In the previous chapter, we studied deterministic distributed algorithms
in port-numbered networks. In this chapter we will study a stronger
model: networks with unique identifiers—see Figure 4.1. Following the
standard terminology of the field, we will use the term “LOCAL model”
to refer to networks with unique identifiers.

4.1 Definitions

Throughout this chapter, fix a constant c > 1. An assignment of unique
identifiers for a port-numbered network N = (V, P, p) is an injection

id: V → {1,2, . . . , |V |c}.

That is, each node v ∈ V is labeled with a unique integer, and the labels
are assumed to be relatively small.

Formally, unique identifiers can be interpreted as a graph problemΠ′,
where each solution id ∈ Π′(N) is an assignment of unique identifiers
for network N . If a distributed algorithm A solves a problem Π on a
family F given Π′, we say that A solves Π on F given unique identifiers,
or equivalently, A solves Π on F in the LOCAL model.

1

https://jukkasuomela.fi/da2020/

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 4.1: A network with unique identifiers.

2

For the sake of convenience, when we discuss networks with unique
identifiers, we will identify a node with its unique identifier, i.e., v = id(v)
for all v ∈ V .

4.2 Gathering Everything

In the LOCAL model, if the underlying graph G = (V, E) is connected, all
nodes can learn everything about G in time O(diam(G)). In this section,
we will present a gathering algorithm that accomplishes this.

In the gathering algorithm, each node v ∈ V will construct sets
V (v, r) and E(v, r), where r = 1,2, For all v ∈ V and r ≥ 1, these
sets will satisfy

V (v, r) = ballG(v, r), (4.1)

E(v, r) =
�

{s, t} : s ∈ ballG(v, r), t ∈ ballG(v, r−1)
	

. (4.2)

Now define the graph

G(v, r) = (V (v, r), E(v, r)). (4.3)

See Figure 4.2 for an illustration.
The following properties are straightforward corollaries of (4.1)–

(4.3).

(a) Graph G(v, r) is a subgraph of G(v, r + 1), which is a subgraph
of G.

(b) If G is a connected graph, and r ≥ diam(G)+1, we have G(v, r) =
G.

(c) If Gv is the connected component of G that contains v, and r ≥
diam(Gv) + 1, we have G(v, r) = Gv .

(d) For a sufficiently large r, we have G(v, r) = G(v, r + 1).

(e) If G(v, r) = G(v, r + 1), we will also have G(v, r + 1) = G(v, r + 2).

3

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 4.2: Subgraph G(v, r) defined in (4.3), for v = 14 and r = 2.

4

(f) Graph G(v, r) for r > 1 can be constructed recursively as follows:

V (v, r) =
⋃

u∈V (v,1)

V (u, r − 1), (4.4)

E(v, r) =
⋃

u∈V (v,1)

E(u, r − 1). (4.5)

The gathering algorithm maintains the following invariant: after
round r ≥ 1, each node v ∈ V has constructed graph G(v, r). The
execution of the algorithm proceeds as follows:

(a) In round 1, each node u ∈ V sends its identity u to each of its ports.
Hence after round 1, each node v ∈ V knows its own identity and
the identities of its neighbors. Put otherwise, v knows precisely
G(v, 1).

(b) In round r > 1, each node u ∈ V sends G(u, r − 1) to each of its
ports. Hence after round r, each node v ∈ V knows G(u, r − 1)
for all u ∈ V (v, 1). Now v can reconstruct G(v, r) using (4.4) and
(4.5).

(c) A node v ∈ V can stop once it detects that the graph G(v, r) no
longer changes.

It is easy to extend the gathering algorithm so that we can discover
not only the underlying graph G = (V, E) but also the original port-
numbered network N = (V, P, p).

4.3 Solving Everything

Let F be a family of connected graphs, and let Π be a distributed
graph problem. Assume that there is a deterministic centralized (non-
distributed) algorithm A′ that solves Π on F . For example, A′ can be a
simple brute-force algorithm—we are not interested in the running time
of algorithm A′.

5

Now there is a simple distributed algorithm A that solves Π on F in
the LOCAL model. Let N = (V, P, p) be a port-numbered network with
the underlying graph G ∈ F . Algorithm A proceeds as follows.

(a) All nodes discover N using the gathering algorithm from Sec-
tion 4.2.

(b) All nodes use the centralized algorithm A′ to find a solution f ∈
Π(N). From the perspective of algorithm A, this is merely a state
transition; it is a local step that requires no communication at all,
and hence takes 0 communication rounds.

(c) Finally, each node v ∈ V switches to state f (v) and stops.

Clearly, the running time of the algorithm is O(diam(G)).
It is essential that all nodes have the same canonical representation

of network N (for example, V , P, and p are represented as lists that are
ordered lexicographically by node identifiers and port numbers), and
that all nodes use the same deterministic algorithm A′ to solve Π. This
way we are guaranteed that all nodes have locally computed the same
solution f , and hence the outputs f (v) are globally consistent.

4.4 Focus on Computational Complexity

So far we have learned the key difference between PN and LOCAL models:
while there are plenty of graph problems that cannot be solved at all
in the PN model, we know that all computable graph problems can be
easily solved in the LOCAL model.

Hence our focus shifts from computability to computational com-
plexity. While it is trivial to determine if a problem can be solved in the
LOCAL model, we would like to know which problems can be solved
quickly. In particular, we would like to learn which problems can be
solved in time that is much smaller than diam(G). It turns out that graph
coloring is an example of such a problem.

In the rest of this chapter, we will design an efficient distributed
algorithm that finds a graph coloring in the LOCAL model. The algorithm

6

will find a proper vertex coloring with ∆ + 1 colors in O(∆ + log∗ n)
communication rounds, for any graph with n = |V | nodes and maximum
degree∆. We will start with a simple greedy algorithm that we will later
use as a subroutine.

4.5 Greedy Color Reduction

Let x ∈ N. We present a greedy color reduction algorithm that reduces
the number of colors from x to

y =max{x − 1,∆+ 1},

where∆ is the maximum degree of the graph. That is, given a proper ver-
tex coloring with x colors, the algorithm outputs a proper vertex coloring
with y colors. The running time of the algorithm is one communication
round.

4.5.1 Algorithm

The algorithm proceeds as follows; here f is the x-coloring that we are
given as input and g is the y-coloring that we produce as output. See
Figure 4.3 for an illustration.

(a) In the first communication round, each node v ∈ V sends its color
f (v) to each of its neighbors.

(b) Now each node v ∈ V knows the set

C(v) = {i : there is a neighbor u of v with f (u) = i}.

We say that a node is active if f (v) > max C(v); otherwise it is
passive. That is, the colors of the active nodes are local maxima.
Let

C̄(v) = {1, 2, . . . } \ C(v)

be the set of free colors in the neighborhood of v.

7

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

1

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

1
1

1

2

1

1

Figure 4.3: Greedy color reduction. The active nodes have been high-
lighted. Note that in the original coloring f , the largest color was 99,
while in the new coloring, the largest color is strictly smaller than 99—we
have successfully reduced the number of colors in the graph.

(c) A node v ∈ V outputs

g(v) =

¨

f (v) if v is passive,

min C̄(v) if v is active.

Informally, a node whose color is a local maximum re-colors itself with
the first available free color.

8

4.5.2 Analysis

Lemma 4.1. The greedy color reduction algorithm reduces the number of
colors from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph.

Proof. Let us first prove that g(v) ∈ {1, 2, . . . , y} for all v ∈ V . As f is a
proper coloring, we cannot have f (v) =max C(v). Hence there are only
two possibilities.

(a) f (v)<max C(v). Now v is passive, and it is adjacent to a node u
such that f (v)< f (u). We have

g(v) = f (v)≤ f (u)− 1≤ x − 1≤ y.

(b) f (v)>max C(v). Now v is active, and we have

g(v) =min C̄(v).

There is at least one value i ∈ {1, 2, . . . , |C(v)|+ 1} with i /∈ C(v);
hence

min C̄(v)≤ |C(v)|+ 1≤ degG(v) + 1≤∆+ 1≤ y.

Next we will show that g is a proper vertex coloring of G. Let
{u, v} ∈ E. If both u and v are passive, we have

g(u) = f (u) ̸= f (v) = g(v).

Otherwise, w.l.o.g., assume that u is active. Then we must have f (u)>
f (v). It follows that f (u) ∈ C(v) and f (v) ≤ max C(v); therefore
v is passive. Now g(u) /∈ C(u) while g(v) = f (v) ∈ C(u); we have
g(u) ̸= g(v).

The key observation is that the set of active nodes forms an in-
dependent set. Therefore all active nodes can pick their new colors
simultaneously in parallel, without any risk of choosing colors that might
conflict with each other.

9

4.5.3 Remarks

The greedy color reduction algorithm does not need to know the number
of colors x or the maximum degree∆; we only used them in the analysis.
We can take any graph, blindly apply greedy color reduction, and we
are guaranteed to reduce the number of colors by one—provided that
the number of colors was larger than ∆+ 1. In particular, we can apply
the greedy color reduction repeatedly until we get stuck, at which point
we have a (∆+ 1)-coloring of G—we will formalize and generalize this
idea in Exercise 4.3.

4.6 Efficient (∆+ 1)-coloring

In the remaining sections we will describe two coloring algorithms that,
together with the greedy algorithm from the previous section, can be
used to (∆+ 1)-color graphs of maximum degree ∆.

On a high level, the (∆+ 1)-coloring algorithm is composed of the
following subroutines:

(a) Algorithm from Section 4.8: Using unique identifiers as input,
compute an O(∆2)-coloring x in O(log∗ n) rounds.

(b) Algorithm from Section 4.7: Given x as input, compute an O(∆)-
coloring y in O(∆) rounds.

(c) Algorithm from Section 4.5: Given y as input, compute a (∆+ 1)-
coloring z in O(∆) rounds.

We have already seen the greedy algorithm that we will use in the final
step; we will proceed in the reverse order and present next the algorithm
that turns an O(∆2)-coloring into an O(∆)-coloring. In what follows,
we will assume that the nodes are given the values of ∆ and n as input;
these assumptions will simplify the algorithms significantly.

10

Figure 4.4: Two clocks for q = 7. The blue hand moves 2 steps per time
unit, and the orange hand 3 steps. Hands moving at different speeds meet
again after q moves, but not before.

4.7 Additive-Group Coloring

Consider two clocks with q steps, for any prime q; see Figure 4.4. The
first clock moves its hand a steps in each time unit, and the second clock
moves its hand b ̸= a steps in each time unit. Starting from the same
position, when are the two hands in the same position again?

It is a fundamental property of finite fields that they are in the same
position again after exactly q steps. We recap definitions and facts about
finite fields in Section 4.15.

Building on this observation, we construct an algorithm where each
node behaves like a clock with one hand, turning its hand with some
constant speed. We will use the input coloring to ensure that clocks with
the same starting position turn their hands at different speeds. Then we
will simply wait until a clock is in a position not shared by any of the
neighbors, and this position becomes the final color of the node. If we
do not have too many neighbors, each node will eventually find such a
position, leading to a proper coloring.

4.7.1 Algorithm

Let q be a prime number with q > 2∆. We assume that we are given a
coloring with q2 colors, and we will show how to construct a coloring

11

with q colors in O(q) rounds. Put otherwise, we can turn a coloring with
O(∆2) colors into a coloring with O(∆) colors in O(∆) rounds, as long
as we choose our prime number q in a suitable manner.

If we have an input coloring with q2 colors, we can represent the
color of node v as a pair f (v) = 〈 f1(v), f2(v)〉 where f1(v) and f2(v) are
integers between 0 and q− 1.

Using the clock analogue, v can be seen as a clock with the hand
at position f2(v), turning at speed f1(v). In the algorithm we will stop
clocks by setting f1(v) = 0 whenever this is possible in a conflict-free
manner. When all clocks have stopped, all nodes have colors of the form
〈0, f2(v)〉 where f2(v) is between 0 and q− 1, and hence we have got a
proper coloring with q colors.

We say that two colors 〈a1, a2〉 and 〈b1, b2〉 are in conflict if a2 = b2.
The algorithm repeatedly performs the following steps:

• Each node sends its current colors to each neighbor.
• For each node v, if f (v) is in conflict with any neighbor, set

f (v)←

f1(v), (f1(v) + f2(v))mod q
�

.

Otherwise, set

f (v)←

0, f2(v)
�

.

In essence, we stop non-conflicting clocks and keep moving all other
clocks at a constant rate. We say that a node v is stopped when f1(v) = 0;
otherwise it is running; note a stopped node will not change its color
any more.

We show that after O(q) iterations of this loop, all nodes will be
stopped, and they form a proper coloring—assuming we started with a
proper coloring.

4.7.2 Correctness

First, we show that in each iteration a proper coloring remains proper. In
what follows, we use f to denote the coloring before one iteration and

12

g to denote the coloring after the iteration. Consider a fixed node v and
an arbitrary neighbor u. We show by a case analysis that f (v) ̸= f (u)
implies g(v) ̸= g(u).

(1) Assume that v is stopped after this round; then g(v) = 〈0, f2(v)〉.

(a) If f1(u) = 0, then u has stopped and g(u) = f (u). By assump-
tion f (v) ̸= f (u) and therefore g(v) ̸= g(u).

(b) If f1(u) ̸= 0 and f (u) is not in conflict with its neighbors,
then g(u) = 〈0, f2(u)〉. As there are no conflicts with v, we
must have f2(v) ̸= f2(u), and therefore g(v) ̸= g(u).

(c) Otherwise f1(u) ̸= 0 and f (u) is in conflict with a neighboring
color. Then g1(u) = f1(u) ̸= 0 = g1(v), and therefore g(v) ̸=
g(u).

(2) Otherwise we have g(v) = 〈 f1(v), (f1(v) + f2(v))mod q〉, where
f1(v) ̸= 0.

(a) If u has stopped, then g1(u) = 0, and therefore g(v) ̸= g(u).

(b) Otherwise u is running. Then

g(u) = 〈 f1(u), (f1(u) + f2(u))mod q〉.

If f1(v) ̸= f1(u), we will have g1(v) ̸= g1(u) and therefore
g(v) ̸= g(u). Otherwise f1(v) = f1(u) but then by assumption
we must have f2(v) ̸= f2(u), which implies g2(v) ̸= g2(u)
and therefore g(v) ̸= g(u).

4.7.3 Running Time

Next we analyze the running time. Assume that we start with a proper
coloring f . We want to show that after a sufficient number of iterations
of the additive-group algorithm, each node must have had an iteration
in which its color did not conflict with color of its neighbors, and hence
got an opportunity to stop.

13

Let f 0 denote the initial coloring before the first iteration and let f i

denote the coloring after iteration i = 1,2, The following lemma
shows that two running nodes do not conflict too often during the
execution.

Lemma 4.2. Consider t consecutive iterations of the additive-group color-
ing algorithm, for t ≤ q. Let u and v be adjacent nodes such that both of
them are still running before iteration t. Then there is at most one iteration
i = 0,1, . . . , t − 1 with a conflict f i

2(u) = f i
2(v).

Proof. Assume that for some i we have f i(u) = 〈a, b〉 and f i(v) = 〈a′, b〉
with a ̸= a′. In the subsequent iterations j = i + 1, i + 2, . . . , we have

f j
2 (u)− f j

2 (v)≡ (a− a′)(j − i) mod q.

Assume that for some j we have another conflict f j
2 (u) = f j

2 (v), implying
that (a− a′)(j − i)≡ 0 mod q. If a prime divides a product x y of two
integers x and y , then it also divides x or y (Euclid’s Lemma). But a−a′

cannot be a multiple of q, since a ≠ a′ and 0≤ a, a′ < q, and j− i cannot
be a multiple of q, either, since 0≤ i < j < q.

We also need to show that a node is not in conflict with a stopped
node too often.

Lemma 4.3. Consider t consecutive iterations of the additive-group color-
ing algorithm, for t ≤ q. Let u and v be adjacent nodes such that u is still
running before iteration t but v was stopped before iteration 1. Then there
is at most one iteration i = 0, 1, . . . , t − 1 with a conflict f i

2(u) = f i
2(v).

Proof. The same argument as in the proof of Lemma 4.2 works, this time
with a′ = 0.

It remains to show that, based on Lemmas 4.2 and 4.3, the algorithm
finishes fast.

Consider a sequence of consecutive q > 2∆ iterations of the additive-
group coloring algorithm starting with any initial coloring f . Consider
an arbitrary node u that does not stop during any of these rounds. Let v

14

be a neighbor of u. No matter if and when v stops, the color of v will
conflict with color of u at most twice during the q rounds:

• Consider the rounds (if any) in which v is running. There are at
most q such rounds. By Lemma 4.2, u conflicts with v at most
once during these rounds.

• Consider the remaining rounds (if any) in which v is stopped.
There are at most q such rounds. By Lemma 4.3, u conflicts with
v at most once during these rounds.

So for each neighbor v of u, there are at most 2 rounds among q rounds
such that the color of v conflicts with the color of u. As there are at most
∆ neighbors, there are at most 2∆ rounds among q rounds such that
the color of some neighbor of u conflicts with the current color of u. But
q > 2∆, so there has to be at least one round after which none of the
neighbors are in conflict with u—and hence there will be an opportunity
for u to stop.

4.8 Fast O(∆2)-coloring

The additive-group coloring algorithm assumes that we start with an
O(∆2)-coloring of the network. In this section we present an algorithm
that computes an O(∆2)-coloring in O(log∗ n) communication rounds.

The algorithm proceeds in two phases. In the first phase, the coloring
given by the unique identifiers is iteratively reduced to an O(∆2 log2∆)-
coloring. In the second phase, a final color reduction step yields an
O(∆2) coloring.

Both phases are based on the same combinatorial construction, called
a cover-free set family. We begin by describing the construction for the
first phase.

4.8.1 Cover-Free Set Families

The coloring algorithm is based on the existence of non-covering families
of sets. Intuitively, these are families of sets such that any two sets do

15

1
2
3
4
5
6
7

1
2
3 3

4
5 5

6
7

1

4

7

2

4

6

1
2
3 3

4
5 5

6
7

1

4

7

2

4

6

X J

Figure 4.5: A 2-cover-free set family J of 5 subsets of a base set X on 7
elements. No two sets cover a third distinct set.

not have a large overlap: then no small collection of sets contains all
elements in another set. Therefore, if each node is assigned such a set,
it can find an element that is not in the sets of its neighbors, and pick
that element as its new color.

A family J of n subsets of {1, . . . , m} is k-cover-free if for every S ∈ J
and every collection of k sets S1, . . . , Sk ∈ J distinct from S we have that

S ⊈ k
⋃

i=1

Si .

See Figure 4.5 for an example.

4.8.2 Constructing Cover-Free Set Families

Cover-free set families can be constructed using polynomials over finite
fields. The example of finite fields we are interested in is GF(q) for
a prime q, which is simply modular arithmetic of integers modulo q.
We consider polynomials over such a field. A brief recap is given in
Section 4.15.

A basic result about polynomials states that two distinct polynomials
evaluate to the same value at a bounded number of points

16

Lemma 4.4. Let f , g be two distinct polynomials of degree d over a finite
field GF(q), for some prime q. Then f (x) = g(x) holds for at most d
elements x ∈ GF(q).

Proof. See Section 4.15.

Now fix a prime q. Our base set will be X = GF(q)×GF(q). Thus we
have that |X |= m= q2.

For a positive natural number d, consider Poly(d, q), the set of poly-
nomials of degree d over GF(q). For each polynomial g ∈ Poly(d, q), fix
the set

Sg =
�

(a, g(a))
�

� a ∈ GF(q)
	

that is associated with this polynomial. Note that each Sg contains
exactly q elements: one for each element of GF(q). Then we can define
the family

J = Jd,q =
�

Sg

�

� g ∈ Poly(d, q)
	

.

Consider any two distinct polynomials f and g in Poly(d, q): by
Lemma 4.4 there are at most d elements a such that f (a) = g(a).
Therefore |S f ∩ Sg | ≤ d, and J is a ⌊q/d⌋-cover-free set family.

Any polynomial is uniquely defined by its coefficients. Therefore the
set Jd,q has size qd+1, as it consists of a set of pairs for each polynomial
of degree d.

By choosing parameters q and d we can construct a ∆-cover free
family that can be used to color efficiently.

Lemma 4.5. For all integers x, ∆ such that x > ∆ ≥ 2, there exists a
∆-cover-free family J of x subsets from a base set of m≤ 4(∆+ 1)2 log2 x
elements.

Proof. We begin by choosing a prime q such that
�

(∆+ 1) log x
�

≤ q ≤ 2 ·
�

(∆+ 1) log x
�

.

By the Bertrand–Chebyshev theorem such a prime must always exist. Set
d = ⌊log x⌋. By the previous observation, the family Jd,q, for the above

17

parameter settings, is a ⌊q/d⌋-cover-free family, where

⌊q/d⌋ ≥
�⌊(∆+ 1) log x⌋

⌊log x⌋

�

≥
�

(∆+ 1) log x − 1
log x

�

≥∆.

There are at least
qd+1 ≥ (∆ log x)log x > x

sets in Jd,q, so we can choose x of them. The base set has

q2 ≤ 4(∆+ 1)2 log2 x

elements.

4.8.3 Efficient Color Reduction

Using ∆-cover-free sets we can construct an algorithm that reduces the
number of colors from x to y ≤ 4(∆+ 1)2 log2 x in one communication
round, as long as x >∆.

Let f denote the input x-coloring and g the output y-coloring. As-
sume that J is a∆-cover-free family of x sets on a base set of y elements,
as in Lemma 4.5, that is ordered as S1, S2, . . . , Sx . The algorithm func-
tions as follows.

(a) Each node v ∈ V sends its current color f (v) to each of its neigh-
bors.

(b) Each node receives the colors f (u) of its neighbors u ∈ N(v). Then
it constructs the set S f (v), and the sets S f (u) for all u ∈ N(v). Since
f (v) ̸= f (u) for all u ∈ N(v), and J is a ∆-cover-free family, we
have that

S f (v) ⊈ ⋃
u∈N(v)

S f (u).

In particular, there exists at least one c ∈ S f (v)\∪u∈N(v)S f (u). Node
v sets g(v) = c for the smallest such c.

18

Now assume that f is a proper coloring, that is, f (v) ̸= f (u) for all
neighbors v and u. This implies that for each node v, each of its neighbors
u selects a set that is different from S f (v); overall, the neighbors will
select at most∆ distinct sets. Since J is a∆-cover-free family, each node
v can find an element c ∈ S f (v) that is not in the sets of its neighbors.
Therefore setting g(v) = c forms a proper coloring. Finally, since the
sets S ∈ J are subsets of {1, . . . , y}, for y ≤ 4(∆+ 1)2(log x)2, we have
that g is a y-coloring.

4.8.4 Iterated Color Reduction

By a repeated application of the color reduction algorithm it is possible
to reduce the number of colors down to O(∆2 log2∆). Assuming we
start with an input x-coloring, this will take O(log∗ x) rounds.

We will now show that O(log∗ x) iterations of the color reduction
algorithm will reduce the number of colors from x to O(∆2 log2∆). We
assume that in the beginning, both x and ∆ are known. Therefore after
each iteration, all nodes know the total number of colors.

Assume that x > 4(∆+ 1)2 log2∆. Repeated iterations of the color
reduction algorithm reduce the number of colors as follows:

x0 7→ x1 ≤ 4(∆+ 1)2 log2 x ,

x1 7→ x2 ≤ 4(∆+ 1)2 log2(4(∆+ 1)2 log2 x)

= 4(∆+ 1)2
�

log 4+ 2 log(∆+ 1) + 2 log log x
�2

.

If log log x ≥ log 4+ 2 log(∆+ 1), we have that

x2 ≤ 4(∆+ 1)2(3 log log x)2

=
�

6(∆+ 1) log log x
�2

.

In the next step, we reduce colors as follows:

x2 7→ x3 ≤ 4(∆+ 1)2 log2
�

36(∆+ 1)2(log log x)2
�

= 4(∆+ 1)2
�

log 36+ 2 log(∆+ 1) + 2 log log log x
�2

.

19

If log log log x ≥ log36+ 2 log(∆+ 1), we have that

x3 ≤ 4(∆+ 1)2(3 log log log x)2

=
�

6(∆+ 1) log log log x
�2

.

Now we can see the pattern: as long as

log(i) x ≥ log 36+ 2 log(∆+ 1),

where log(i) x is the i times iterated logarithm of x , we reduce colors
from (6(∆+ 1) log(i−1) x)2 to (6(∆+ 1) log(i) x)2 in the ith step.

Once log(i) x ≥ log36 + 2 log(∆ + 1) no longer holds, we have a
coloring with at most

c∆ = 4(∆+ 1)2
�

3(log36+ 2 log(∆+ 1))
�2

colors. We can numerically verify that for all ∆≥ 2, we have that

4(∆+ 1)2
�

3(log 36+ 2 log(∆+ 1))
�2 ≤ (11(∆+ 1))3.

We will use this observation in the next step.
It remains to calculate how many color reduction steps are required.

By definition, after T = log∗ x iterations we have that log(T) x ≤ 1. Thus,
after at most log∗ x iterations of the color reduction algorithm we have
a coloring with at most c∆ colors.

4.8.5 Final Color Reduction Step

In the last step, we will reduce the coloring to an O(∆2)-coloring. We will
use another construction of ∆-cover-free families based on polynomials.

Lemma 4.6. For all ∆, there exists a ∆-cover-free family J of x subsets
from a base set of m≤ (22(∆+ 1))2 elements for x ≤ (11(∆+ 1))3.

This immediately gives us the following color reduction algorithm.

20

Corollary 4.7. There is a distributed algorithm that, given a (11(∆+1))3-
coloring as an input, in one round computes a (22(∆+ 1))2-coloring.

Proof of Lemma 4.6. Our base set will be X with |X | = m = q2, for a
prime q. Again it is useful to see X = GF(q)×GF(q) as pairs of elements
from the finite field over q elements.

Now consider polynomials Poly(2, q) of degree 2 over GF(q). For
each such polynomial g ∈ Poly(2, q), let

Sg =
�

(a, g(a))
�

� a ∈ GF(q)
	

be the pairs defined by the valuations of the polynomial g at each element
of GF(q). We have that |Sg |= q for all g.

Now we can construct the family

J = J2,q =
�

Sg

�

� g ∈ Poly(2, q)
	

as the collection of point sets defined by all polynomials of degree 2.
We have that |J |= q3 since a polynomial is uniquely determined by its
coefficients.

By Lemma 4.4, we have that |S f ∩Sg | ≤ 2 for any distinct polynomials
f , g ∈ P(2, q). Therefore covering any set Sg requires at least ⌈q/2⌉ other
sets (distinct from Sg) from J .

We are now ready to prove that J is a∆-cover-free family for suitable
parameter settings. Since each set Sg contains q elements, and the
intersection between the sets of distinct polynomials is at most 2, we
want to find q such that 2∆≤ q− 1 and q3 is large enough. Using the
Bertrand–Chebyshev theorem we know that there exists a prime q such
that

11(∆+ 1)≤ q ≤ 22(∆+ 1).

Any value q from this range is large enough. The base set X has size

m= q2 ≤ (22(∆+ 1))2.

The family J has size
|J | ≥ (11(∆+ 1))3.

Finally, since we choose q ≥ 2∆+1, we have that no collection of ∆ sets
S = {S1, S2, . . . , S∆} ⊆ J can cover a set S /∈ S .

21

4.9 Putting Things Together

It remains to show how to use the three algorithms we have seen so far
together.

Theorem 4.8. Assume that we know parameters ∆ and n, and some
polynomial bound nc on the size of the unique identifiers. Graphs on n
vertices with maximum degree ∆ can be (∆+ 1)-colored in O(∆+ log∗ n)
rounds in the LOCAL model.

Proof. We begin with the unique identifiers, and treat them as an initial
coloring with nc colors.

(a) In the first phase we run the efficient color reduction algorithm
from Section 4.8.3 for T1 = log∗(nc) = O(log∗ n) rounds to produce
a coloring y1 with at most (11(∆+ 1))3 colors.

(b) In the second phase, after T1 rounds have passed, each vertex can
apply the final color reduction step from Section 4.8.5 to compute a
coloring y2. This reduces colors from (11(∆+1))3 to (22(∆+1))2.

(c) After T1 + 1 rounds, we have computed an O(∆2)-coloring y2.
Now each vertex runs the additive-group coloring algorithm from
Section 4.7, applying it with y2 as input. For a parameter q ≤
2
p

(22(∆+ 1))2 = 44∆+ 44, this algorithm runs for T2 = q steps
and computes a q-coloring y3.

(d) In the last phase, after T1+1+T2 rounds, we apply the greedy color
reduction algorithm from Section 4.5 iteratively T3 = 43∆+ 43
times. Each iteration requires one round and reduces the maximum
color by one.

After a total of

T1 + 1+ T2 + T3 ≤ log∗(nc) + 87∆+ 88

= O(∆+ log∗ n)

rounds, we have computed a (∆+ 1)-coloring.

22

4.10 Quiz

Consider the algorithm from Section 4.7.1 in the following setting:

• The network is a complete graph with n = 4 nodes; hence the
maximum degree is ∆= 3, and we can choose q = 7> 2∆.

• We are given a coloring with q2 = 49 colors; we can represent the
possible input colors as pairs (0,0), (0,1), . . . , (6, 6).

Give an example of an input coloring such that we need to do exactly 6
iterations of the algorithm until all nodes have reached their final colors,
i.e., colors of the form (0, x).

Please give the answer by listing the four original color pairs of the
nodes in any order; for example, if we asked for a coloring in which you
need exactly 3 iterations, this would be a correct answer: (2,3), (3,2),
(3,6), (4,6).

4.11 Exercises

Exercise 4.1 (applications). Let∆ be a known constant, and letF be the
family of graphs of maximum degree at most ∆. Design fast distributed
algorithms that solve the following problems on F in the LOCAL model.

(a) Maximal independent set.

(b) Maximal matching.

(c) Edge coloring with O(∆) colors.

You can assume that all nodes get the value of n (the number of nodes)
as input; also the parameter c in the identifier space is a known constant,
so all nodes know the range of unique identifiers.

Exercise 4.2 (vertex cover). Let F consist of cycle graphs. Design a
fast distributed algorithm that finds a 1.1-approximation of a minimum
vertex cover on F in the LOCAL model.

▷ hint A

23

Exercise 4.3 (iterated greedy). Design a color reduction algorithm A
with the following properties: given any graph G = (V, E) and any proper
vertex coloring f , algorithm A outputs a proper vertex coloring g such
that for each node v ∈ V we have g(v)≤ degG(v) + 1.

Let ∆ be the maximum degree of G, let n = |V | be the number of
nodes in G, and let x be the number of colors in coloring f . The running
time of A should be at most

min{n, x}+O(1).

Note that the algorithm does not know n, x , or ∆. Also note that we
may have either x ≤ n or x ≥ n.

▷ hint B

Exercise 4.4 (distance-2 coloring). Let G = (V, E) be a graph. A distance-
2 coloring with k colors is a function f : V → {1,2, . . . , k} with the fol-
lowing property:

distG(u, v)≤ 2 implies f (u) ̸= f (v) for all nodes u ̸= v.

Let ∆ be a known constant, and let F be the family of graphs of
maximum degree at most ∆. Design a fast distributed algorithm that
finds a distance-2 coloring with O(∆2) colors for any graph G ∈ F in
the LOCAL model.

You can assume that all nodes get the value of n (the number of
nodes) as input; also the parameter c in the identifier space is a known
constant, so all nodes know the range of unique identifiers.

▷ hint C

⋆ Exercise 4.5 (numeral systems). The fast color reduction algorithm
from Section 1.4 is based on the idea of identifying a digit that differs
in the binary encodings of the colors. Generalize the idea: design an
analogous algorithm that finds a digit that differs in the base-k encodings
of the colors, for an arbitrary k, and analyze the running time of the
algorithm (cf. Exercise 1.6). Is the special case of k = 2 the best possible
choice?

24

⋆ Exercise 4.6 (from bits to sets). The fast color reduction algorithm
from Section 1.4 can reduce the number of colors from 2x to 2x in
one round in any directed pseudoforest, for any positive integer x . For
example, we can reduce the number of colors as follows:

2128→ 256→ 16→ 8→ 6.

One of the problems is that an iterated application of the algorithm slows
down and eventually “gets stuck” at x = 3, i.e., at six colors.

In this exercise we will design a faster color reduction algorithm that
reduces the number of colors from

h(x) =
�

2x
x

�

to 2x in one round, for any positive integer x . For example, we can
reduce the number of colors as follows:

184756→ 20→ 6→ 4.

Here

184756= h(10),

2 · 10= 20= h(3),

2 · 3= 6= h(2).

In particular, the algorithm does not get stuck at six colors; we can use
the same algorithm to reduce the number of colors to four. Moreover, at
least in this case the algorithm seems to be much more efficient—it can
reduce the number of colors from 184756 to 6 in two rounds, while the
prior algorithm requires three rounds to achieve the same reduction.

The basic structure of the new algorithm follows the fast color re-
duction algorithm—in particular, we use one communication round to
compute the values s(v) for all nodes v ∈ V . However, the technique for
choosing the new color is different: as the name suggests, we will not
interpret colors as bit strings but as sets.

25

To this end, let H(x) consist of all subsets

X ⊆ {1, 2, . . . , 2x}

with |X |= x . There are precisely h(x) such subsets, and hence we can
find a bijection

L : {1, 2, . . . , h(x)} → H(x).

We have f (v) ̸= s(v). Hence L(f (v)) ̸= L(s(v)). As both L(f (v))
and L(s(v)) are subsets of size x , it follows that

L(f (v)) \ L(s(v)) ̸=∅.

We choose the new color g(v) of a node v ∈ V as follows:

g(v) =min
�

L(f (v)) \ L(s(v))
�

.

Prove that this algorithm works correctly. In particular, show that
g : V → {1, 2, . . . , 2x} is a proper graph coloring of the directed pseudo-
forest G.

Analyze the running time of the new algorithm and compare it with
the old algorithm. Is the new algorithm always faster? Can you prove a
general result analogous to the claim of Exercise 1.6?

⋆ Exercise 4.7 (dominating set approximation). Let ∆ be a known
constant, and let F be the family of graphs of maximum degree at
most ∆. Design an algorithm that finds an O(log∆)-approximation of a
minimum dominating set on F in the LOCAL model.

▷ hint D

4.12 Bibliographic Notes

The model of computing is from Linial’s [6] seminal paper, and the
name LOCAL is from Peleg’s [7] book. The additive-group coloring
algorithm is due to Barenboim et al. [3]. The effective color reduction
algorithm is from Linial [6], and the construction of cover-free families

26

from Barenboim and Elkin [2]. The algorithm of Exercise 4.7 is from
Friedman and Kogan [5]. The Bertrand–Chebyshev theorem was first
proven by Chebyshev [4]. The proof of Lemma 4.4 follows the proofs of
Abraham [1].

4.13 Bibliography

[1] Ittai Abraham. Decentralized thoughts: The marvels of polynomi-
als over a field, 2020. URL: https://decentralizedthoughts.github.io/
2020-07-17-the-marvels-of-polynomials-over-a-field/.

[2] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring:
Fundamentals and Recent Developments. Morgan & Claypool, 2013.
doi:10.2200/S00520ED1V01Y201307DCT011.

[3] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-
iterative distributed (∆+ 1)-coloring below Szegedy-Vishwanathan
barrier, and applications to self-stabilization and to restricted-
bandwidth models. In Proc. 37th ACM Symposium on Principles
of Distributed Computing (PODC 2018), 2018. arXiv:1712.00285,
doi:10.1145/3212734.3212769.

[4] Pafnuty Chebyshev. Mémoire sur les nombres premiers. Journal de
mathématiques pures et appliquées, 17(1):366–390, 1852.

[5] Roy Friedman and Alex Kogan. Deterministic dominating set con-
struction in networks with bounded degree. In Proc. 12th Interna-
tional Conference on Distributed Computing and Networking (ICDCN
2011), 2011. doi:10.1007/978-3-642-17679-1_6.

[6] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[7] David Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications. Soci-
ety for Industrial and Applied Mathematics, 2000.

27

https://decentralizedthoughts.github.io/2020-07-17-the-marvels-of-polynomials-over-a-field/
https://decentralizedthoughts.github.io/2020-07-17-the-marvels-of-polynomials-over-a-field/
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://arxiv.org/abs/1712.00285
https://doi.org/10.1145/3212734.3212769
https://doi.org/10.1007/978-3-642-17679-1_6
https://doi.org/10.1137/0221015

[8] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

4.14 Hints

A. Solve small problem instances by brute force and focus on the
case of long cycles. In a long cycle, use a graph coloring algorithm
to find a 3-coloring, and then use the 3-coloring to construct a
maximal independent set. Observe that a maximal independent
set partitions the cycle into short fragments (with 2–3 nodes in
each fragment).

Apply the same approach recursively: interpret each fragment as
a “supernode” and partition the cycle that is formed by the supern-
odes into short fragments, etc. Eventually, you have partitioned
the original cycle into long fragments, with dozens of nodes in
each fragment.

Find an optimal vertex cover within each fragment. Make sure
that the solution is feasible near the boundaries, and prove that
you are able to achieve the required approximation ratio.

B. Adapt the basic idea of the greedy color reduction algorithm—
find local maxima and choose appropriate colors for them—but
pay attention to the stopping conditions and low-degree nodes.
One possible strategy is this: a node becomes active if its current
color is a local maximum among those neighbors that have not
yet stopped; once a node becomes active, it selects an appropriate
color and stops.

C. Given a graph G ∈ F , construct a virtual graph G2 = (V, E′) as
follows: {u, v} ∈ E′ if u ̸= v and distG(u, v) ≤ 2. Prove that the
maximum degree of G2 is O(∆2). Simulate a fast graph coloring
algorithm on G2.

D. First, design (or look up) a greedy centralized algorithm achieves
an approximation ratio of O(log∆) on F . The following idea will

28

work: repeatedly pick a node that dominates as many new nodes
as possible—here a node v ∈ V is said to dominate all nodes in
ballG(v, 1). For more details, see a textbook on approximation
algorithms, e.g., Vazirani [8].

Second, show that you can simulate the centralized greedy algo-
rithm in a distributed setting. Use the algorithm of Exercise 4.4 to
construct a distance-2 coloring. Prove that the following strategy
is a faithful simulation of the centralized greedy algorithm:

– For each possible value i =∆+ 1,∆, . . . , 2, 1:

– For each color j = 1, 2, . . . ,O(∆2):

– Pick all nodes v ∈ V that are of color j and that
dominate i new nodes.

The key observation is that if u, v ∈ V are two distinct nodes
of the same color, then the set of nodes dominated by u and
the set of nodes dominated by v are disjoint. Hence it does not
matter whether the greedy algorithm picks u before v or v before u,
provided that both of them are equally good from the perspective
of the number of new nodes that they dominate. Indeed, we can
equally well pick both u and v simultaneously in parallel.

4.15 Appendix: Finite Fields

For our purposes, finite field of size q can be seen as the set {0, . . . , q−1}
equipped with modular arithmetic, for any prime q. Fields support
addition, subtraction, multiplication, and division with the usual rules.
We denote the finite field with q elements (also known as a Galois field)
by GF(q).

Our proofs will use the following two properties of finite fields.

(a) Each element a of the field has a unique multiplicative inverse
element, denoted by a−1, such that a · a−1 = 1.

29

(b) The product ab of two elements is zero if and only if a = 0 or
b = 0.

We can define polynomials over GF(q). A polynomial f [X] of degree
d can be represented as

f0 + f1X + f2X 2 + · · ·+ fd X d ,

where the coefficients fi are elements of GF(q). A polynomial is non-
trivial if there exists some fi ̸= 0. An element a ∈ GF(q) is a zero of a
polynomial f if f (a) = 0.

Proof of Lemma 4.4. We will prove the lemma by proving a related state-
ment: any non-trivial polynomial of degree d has at most d zeros. Since
f (x)− g(x) is a polynomial of degree at most d, Lemma 4.4 follows.

The proof is by induction on d. Let f [X] = f0 + f1X denote an
arbitrary polynomial of degree 1 over some finite field of size q. Since
each element a of a field has a unique inverse a−1, there is a unique zero
of f [X]: X = −(f0)(f1)−1.

Now assume that d ≥ 2 and that the claim holds for smaller degrees.
If polynomial f has no zeros, the claim holds. Therefore assume that
f has at least one zero a ∈ GF(q). We will show that there exists a
polynomial g of degree d − 1 such that f = (X − a)g. By the induction
hypothesis g has at most d − 1 zeros, X − a has one zero, and we know
that the product equals zero if and only if either X − a = 0 or g[X] = 0.

We show that g exists by induction. If d = 1, we can select a =
−(f0)(f1)−1 and g = f1 to get f [X] = (X + (f0)(f1)−1) f1.

For d ≥ 2, we again make the induction assumption. Define

f ′ = f − fd X d−1(X − a),

where fd is the dth coefficient of f . This polynomial has degree less than
d, since the terms of degree d cancel out. We also have that f ′(a) = 0
since f (a) = 0 by assumption. By induction hypothesis there exists a g ′

such that f ′ = (X −a)g ′ and degree of g ′ is at most d−2. By substituting
f ′ = (X − a)g ′ we get

f = (X − a)g ′ + (X − a) fd X d−1 = (X − a)(g ′ + fd X d−1).

30

Therefore f = (X−a)g for the polynomial g = g ′+ fd X d−1, a polynomial
of degree at most d − 1.

31

	Definitions
	Gathering Everything
	Solving Everything
	Focus on Computational Complexity
	Greedy Color Reduction
	Algorithm
	Analysis
	Remarks

	Efficient (Δ+1)-coloring
	Additive-Group Coloring
	Algorithm
	Correctness
	Running Time

	Fast O(Δ²)-coloring
	Cover-Free Set Families
	Constructing Cover-Free Set Families
	Efficient Color Reduction
	Iterated Color Reduction
	Final Color Reduction Step

	Putting Things Together
	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints
	Appendix: Finite Fields

