
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!



Week 8

– Covering maps



Covering map
• Networks N = (V, P, p) and N’ = (V’, P’, p’) 

• Surjection φ: V → V’ that preserves 
inputs, degrees, connections, port numbers 

• “Fools” any deterministic PN-algorithm:  
cannot distinguish between N and N’
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Networks N and N’
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Covering map φ: V → V’
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Theorem: preserves outputs!



Covering map
• φ covering map from N to N’,  
A deterministic PN-algorithm 

• Run A on N and N’ 

• Theorem: v and φ(v) always in the same state



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round 1: map φ preserves local states 
• during round 1: map φ preserves messages 
• after round 1: map φ preserves local states



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round 2: map φ preserves local states 
• during round 2: map φ preserves messages 
• after round 2: map φ preserves local states



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round t: map φ preserves local states 
• during round t: map φ preserves messages 
• after round t: map φ preserves local states
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Before round t: local states agree
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After round t: local states agree



Covering map
• φ covering map from N to N’,  
A deterministic PN-algorithm 

• Run A on N and N’ 

• Theorem: v and φ(v) always in the same state 

• Corollary: v and φ(v) have the same output



Application:  
Path graphs

G:
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Application:  
Path graphs
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Application:  
Cycle graphs
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Application:  
Cycle graphs
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Application:  
Cycle graphs
• Cannot break symmetry in cycles 

• Deterministic PN algorithms cannot find: 
• vertex colouring, edge colouring 
• maximal independent set, maximal matching 
• 1.99-approximation of minimum vertex cover  

…



Covering maps 
and symmetry
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Summary
• Covering map: preserves inputs, degrees, 

connections, port numbers 

• Fools any deterministic PN-algorithm 

• Can be used to prove that many problems 
cannot be solved at all in the PN model



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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