
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!



Week 8

– Covering maps



Covering map
• Networks N = (V, P, p) and N’ = (V’, P’, p’) 

• Surjection φ: V → V’ that preserves 
inputs, degrees, connections, port numbers 

• “Fools” any deterministic PN-algorithm:  
cannot distinguish between N and N’



N:

N’:

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Networks N and N’



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Covering map φ: V → V’



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Preserves degrees



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Preserves degrees



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Preserves connections & port numbers

11

1
1

1



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Preserves connections & port numbers

1

2

2

1



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Preserves connections & port numbers

1

2

2

1



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Theorem: preserves outputs!



Covering map
• φ covering map from N to N’,  
A deterministic PN-algorithm 

• Run A on N and N’ 

• Theorem: v and φ(v) always in the same state



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round 1: map φ preserves local states 
• during round 1: map φ preserves messages 
• after round 1: map φ preserves local states



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round 2: map φ preserves local states 
• during round 2: map φ preserves messages 
• after round 2: map φ preserves local states



Covering map
• Theorem: v and φ(v) always in the same state 

• Proof: by induction 
• before round t: map φ preserves local states 
• during round t: map φ preserves messages 
• after round t: map φ preserves local states



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

Before round t: local states agree



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

During round t: outgoing messages agree

11

1
1

1



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

During round t: incoming messages agree

11

1
1

1



N:

N’:

φ
1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

1
2

3
2
1

1
2

1

After round t: local states agree



Covering map
• φ covering map from N to N’,  
A deterministic PN-algorithm 

• Run A on N and N’ 

• Theorem: v and φ(v) always in the same state 

• Corollary: v and φ(v) have the same output



Application:  
Path graphs

G:



Application:  
Path graphs

N: N’:11 1

G:



Application:  
Path graphs

G:



Application:  
Path graphs

N: N’:11 1

G:

1
2

1
2

1
2



Application:  
Cycle graphs

G:



Application:  
Cycle graphs

N: N’:

G:

1
2

1
2 1

21
2

1
2



Application:  
Cycle graphs
• Cannot break symmetry in cycles 

• Deterministic PN algorithms cannot find: 
• vertex colouring, edge colouring 
• maximal independent set, maximal matching 
• 1.99-approximation of minimum vertex cover  

…



Covering maps 
and symmetry

N: N’:11 1

G:

1
2

1
2

1
2



Summary
• Covering map: preserves inputs, degrees, 

connections, port numbers 

• Fools any deterministic PN-algorithm 

• Can be used to prove that many problems 
cannot be solved at all in the PN model



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!


