- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Mid-term exams

- Mid-term exams:
 - Thursday, 22 October 2015, 9:00am
 - Thursday, 10 December 2015, 9:00am
- Register on time (one week before) in Oodi

Week 5

 LOCAL model: unique identifiers

- Idea: nodes have unique names
- Names arbitrary but fairly short
- IPv4 addresses, IPv6 addresses,
 MAC addresses, IMEI numbers...

- LOCAL model =
 PN model + unique identifiers
- Assumption: unique identifiers are given as local inputs

 Algorithm has to work correctly for any port numbering and for any unique identifiers

Adversarial setting:

- you design algorithms
- adversary picks graph, port numbering, IDs

- Fixed constant c
- In a network with n nodes,
 identifiers are a subset of {1, 2, ..., n^c}
- Equivalently: unique identifiers can be encoded with O(log n) bits

PN vs. LOCAL

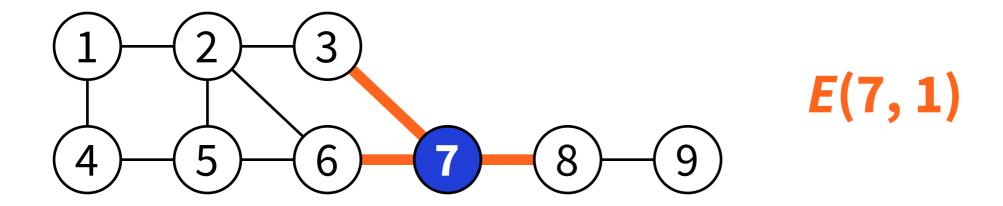
- PN: few problems can be solved
- LOCAL: all problems can be solved (on connected graphs)

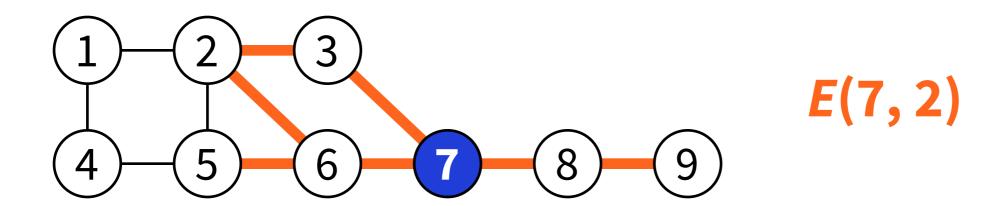
PN vs. LOCAL

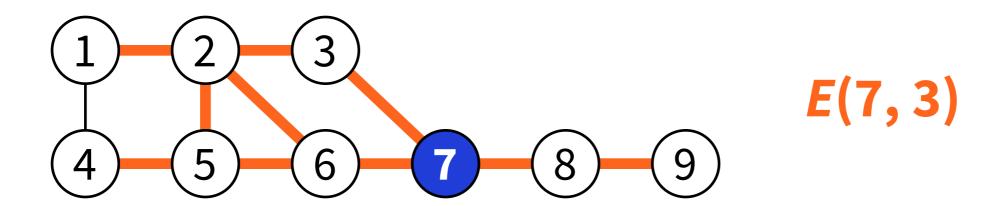
- PN: "what can be computed?"
- LOCAL: "what can be computed efficiently?"

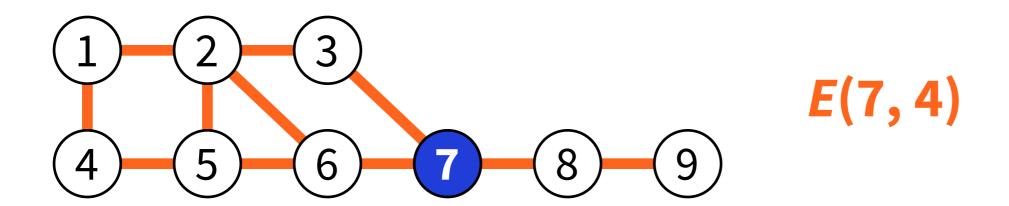
Solving everything

- All nodes learn everything about the graph
 - O(diam(G)) rounds
- All nodes solve the problem locally (e.g., by brute force)
 - 0 rounds

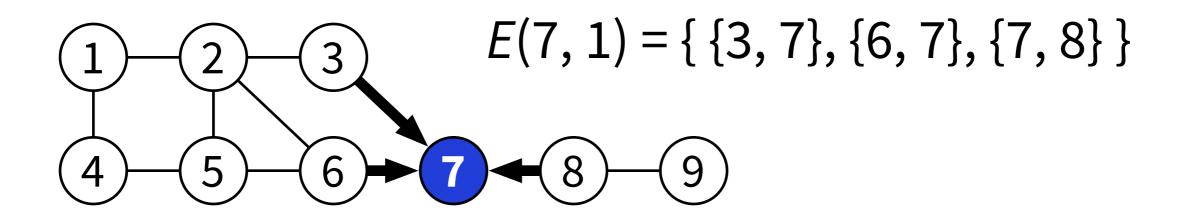




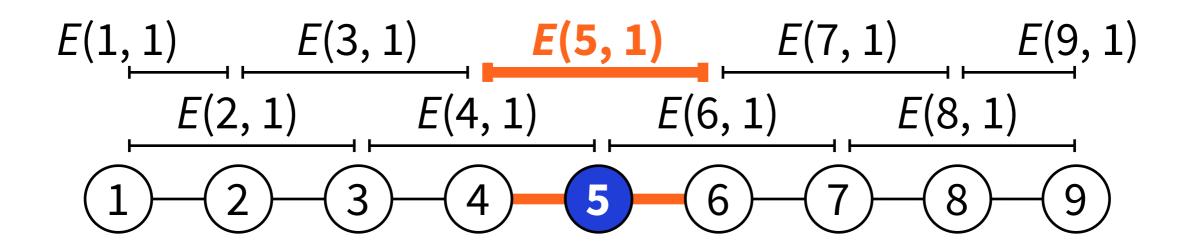




- Each node v can learn E(v, 1) in 1 round
 - send own ID to all neighbours



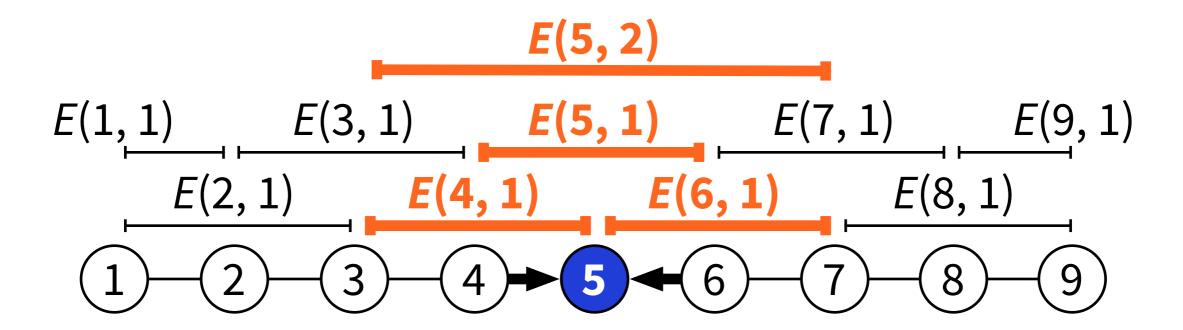
- Each node v can learn E(v, 1) in 1 round
 - send own ID to all neighbours



- Given E(v, r), we can learn E(v, r + 1) in 1 round
 - send *E*(*v*, *r*) to all neighbours, take union

$$E(1,1)$$
 $E(3,1)$ $E(5,1)$ $E(7,1)$ $E(9,1)$ $E(2,1)$ $E(4,1)$ $E(6,1)$ $E(8,1)$ $E(8,1)$

- Given E(v, r), we can learn E(v, r + 1) in 1 round
 - send *E*(*v*, *r*) to all neighbours, take union



One of the following holds:

- $E(v, r) \neq E(v, r + 1)$: learn something new
- E(v, r) = E(v, r + 1) = E: we can stop

Proof idea:

• if $E(v, r) \neq E$, there are unseen edges adjacent to E(v, r), and they will be in E(v, r + 1)

Example: Graph colouring

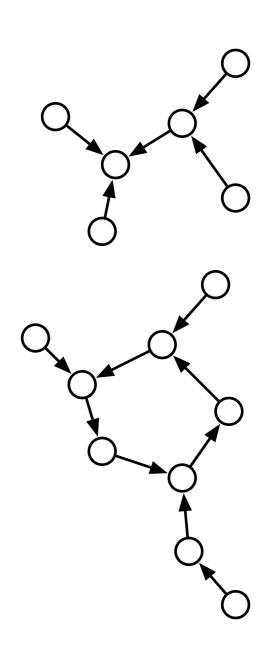
- We can solve everything in O(diam(G)) time
- What can be solved much faster?
- Example: graph colouring with $\Delta + 1$ colours
 - can be solved in $O(\Delta + \log^* n)$ rounds
 - today: how to do it in $O(\Delta^2 + \log^* n)$ rounds?

Example: Graph colouring

- Setting: LOCAL model, n nodes, any graph of maximum degree Δ
- We assume that n and Δ are known
 - if not known: guess some n and Δ , colour what you can, increase n and Δ , ...

Directed pseudoforest

- Directed graph, outdegree ≤ 1
- Each node has at most one "successor"
- Easy to 3-colour in time O(log* n),
 we will use this as subroutine



Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit...

Algorithm P3CBit: Fast colour reduction

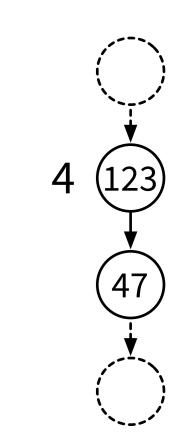
```
c_0 = 123 = 01111011_2 (my colour)
```

$$c_1 = 47 = 00101111_2$$
 (successor's colour)

$$i = 2$$
 (bits numbered 0, 1, 2, ... from right)

$$b = 0$$
 (in my colour bit number i was 0)

$$c = 2 \cdot 2 + 0 = 4$$
 (my new colour)



k = 8, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours

Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit:
 - nodes only look at their successor
 - my new colour ≠ successor's new colour
 - works equally well in directed pseudoforests!

Algorithm DPBit: Fast colour reduction

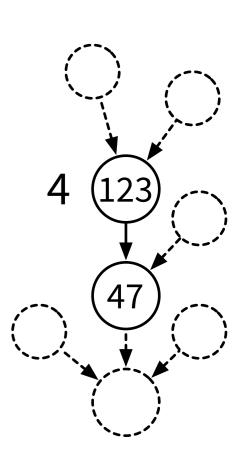
```
c_0 = 123 = 01111011_2 (my colour)
```

$$c_1 = 47 = 00101111_2$$
 (successor's colour)

i = 2 (bits numbered 0, 1, 2, ... from right)

b = 0 (in my colour bit number *i* was 0)

$$c = 2 \cdot 2 + 0 = 4$$
 (my new colour)



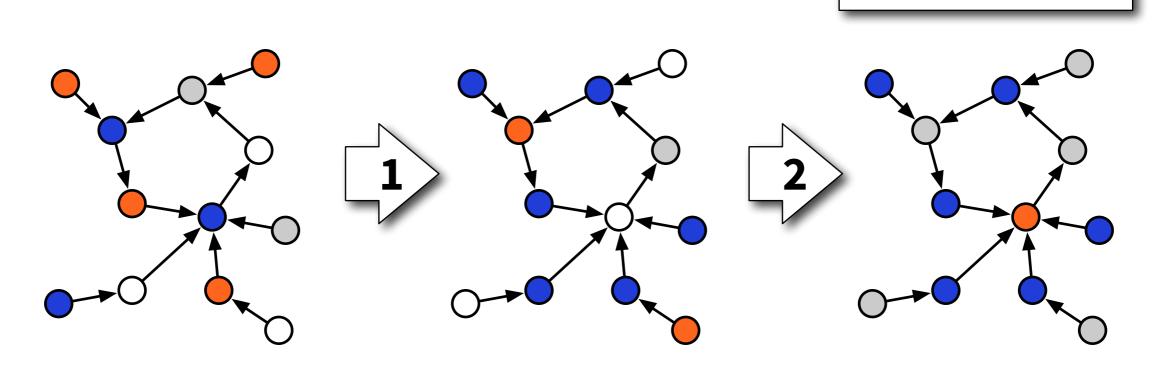
k = 8, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours

Directed pseudoforests

- Unique identifiers = $n^{O(1)}$ colours
- Iterate DPBit for O(log* n) steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps
 to reduce the number of colours to 3

Algorithm DPGreedy: Slow colour reduction

- 1. Shift: predecessors have the same colour
- 2. Recolour local maxima



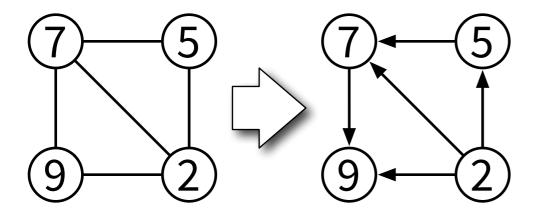
< 0 < 0 < 0

Directed pseudoforests

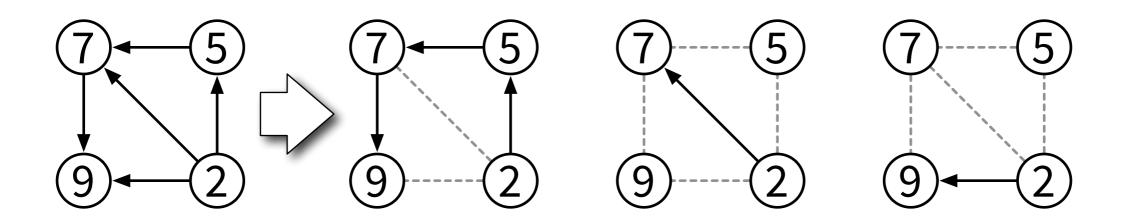
- Unique identifiers = $n^{O(1)}$ colours
- Iterate DPBit for O(log* n) steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps
 to reduce the number of colours to 3

- Unique identifiers → orientation
- Port numbers → partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time O(log* n)
- Merge pseudoforests in time $O(\Delta^2)$

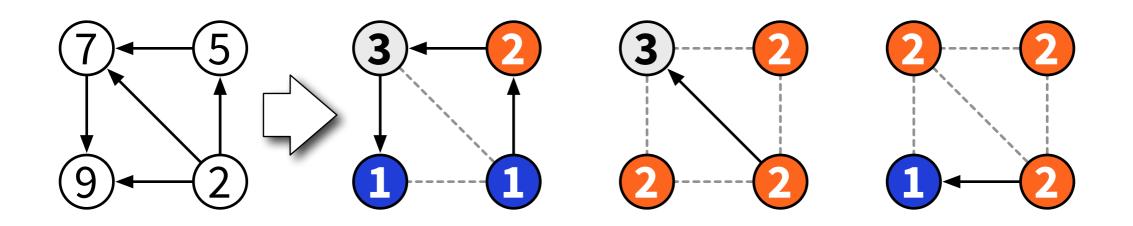
- Unique identifiers → orientation
 - edges directed from smaller to larger ID



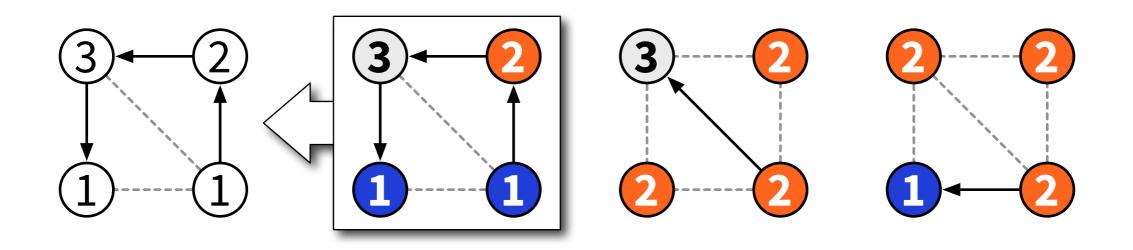
- Port numbers → partition edges in Δ directed pseudoforests
 - kth outgoing edge → kth pseudoforest



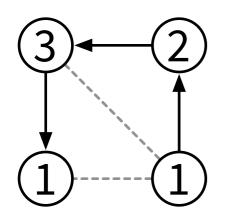
- 3-colour pseudoforests in time O(log* n)
 - all in parallel
 - each node has Δ roles

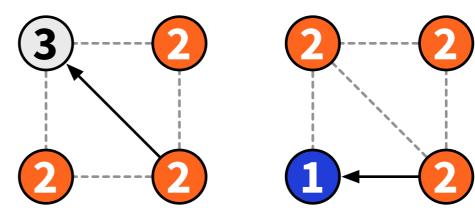


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add first forest: trivial

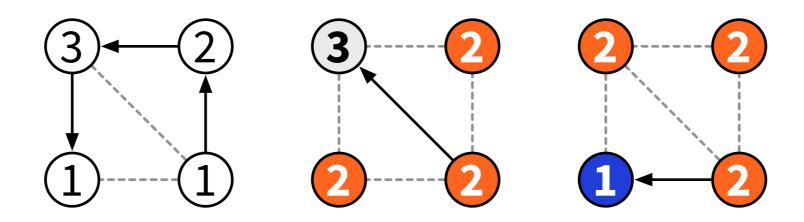


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add first forest: trivial

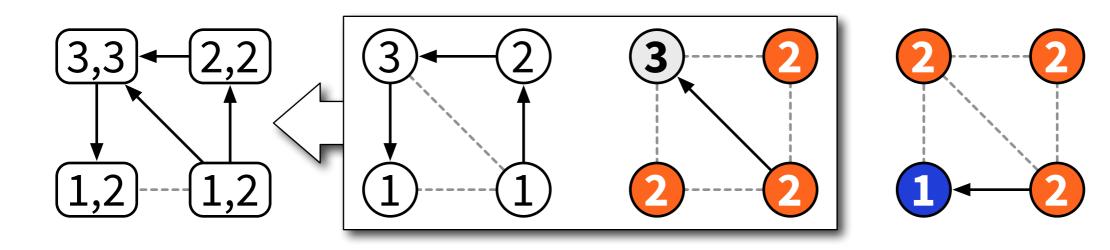




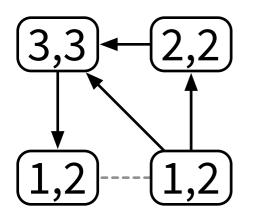
- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add first forest: trivial

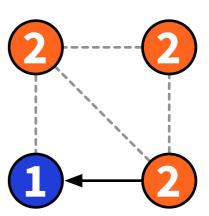


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

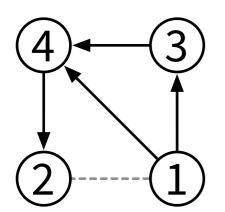


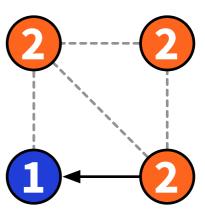
- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours



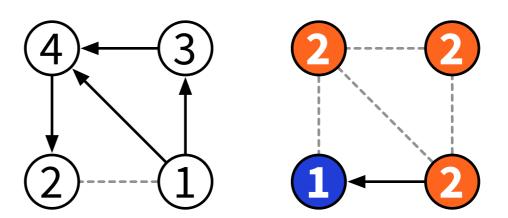


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce

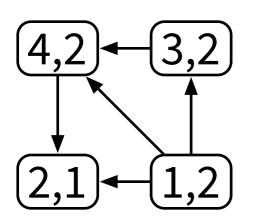


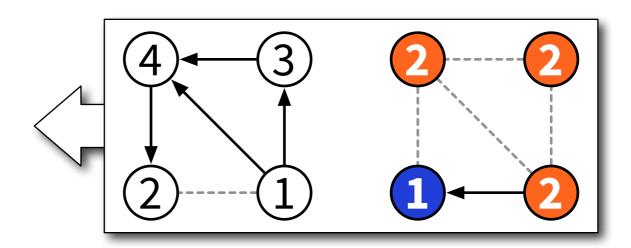


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce

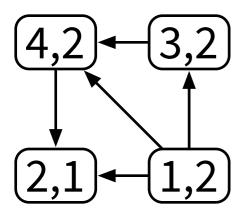


- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

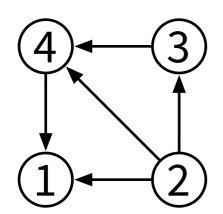




- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours



- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce



- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with $\Delta + 1$ colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce
- Each merge + reduce takes $O(\Delta)$ rounds
- There are $O(\Delta)$ such steps

- Unique identifiers → orientation
- Port numbers → partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time O(log* n)
- Merge pseudoforests in time $O(\Delta^2)$

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
- What can be computed fast?
 - example: graph colouring

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
 - cheating with large messages
 - what if we can only use small messages?
 - this is covered next week...

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap