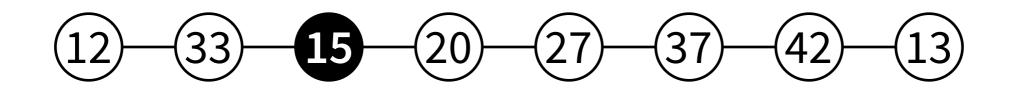
- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Week 2

- Warm-up: negative results

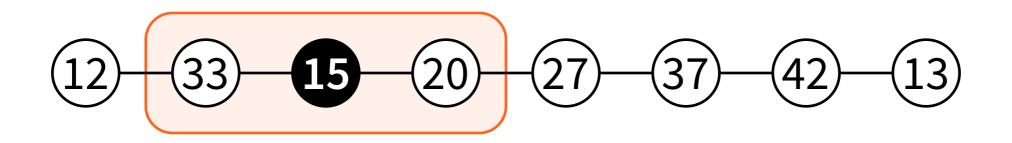
- Output of a node can only depend on what it knows
- After *T* time steps, a node can only know about things up to distance *T*

- Who knows that node 15 exists?
 - initially, only node 15
 - everyone else has to learn it by exchanging messages



- Who knows about node 15 at time T = 0?
 - initial state, before we exchange any messages

- Who knows about node 15 at time T = 1?
 - after 1 communication round



- Who knows about node 15 at time T = 2?
 - after 2 communication rounds

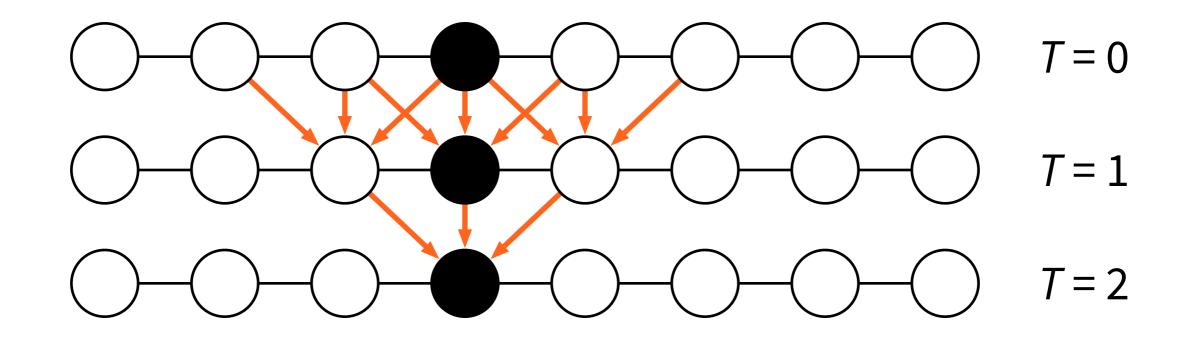
- Who knows about node 15 at time T = 3?
 - after 3 communication rounds

- After *T* communication rounds, only nodes up to distance *T* from node *x* can know anything about node *x*
 - distance = "number of hops"

- After *T* communication rounds, node *x* can only know about other nodes that are within distance *T* from it
 - distance = "number of hops"

- My state at time *T* only depends on:
 - my state at time *T* − 1, and
 - messages that I received on round T, which only depend on:
 - the state of my neighbours at time T-1

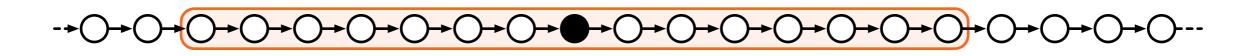
• State at time *T* only depends on initial information within distance *T*



- Time = distance
- Fast algorithm = "local" algorithm
 - outputs only depend on local neighbourhoods

Example: 3-colouring

- Recall: given 128-bit unique identifiers,
 3-colouring possible in 7 rounds
- Equivalently: each node can pick its colour based on what it sees in its radius-7 neighbourhood



Using locality to prove lower bounds

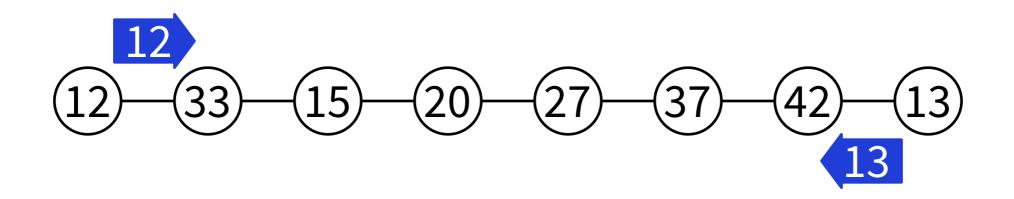
- Example: 2-colouring of a path
- Upper bound: possible in time O(n)
- Lower bound: not possible in time o(n)

- Assumption: path, unique identifiers
- Two phases:
 - find the endpoint with smaller identifier
 - starting from this end, assign colours
 1, 2, 1, 2, ...

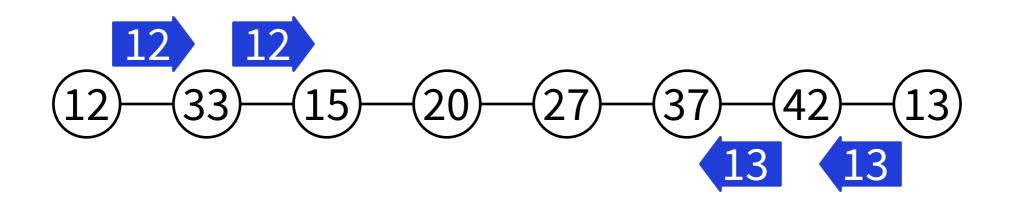
- Messages:
 - "ID x" = there is an endpoint with identifier x
 - "colour c" = my colour is c

$$(12) - (33) - (15) - (20) - (27) - (37) - (42) - (13)$$

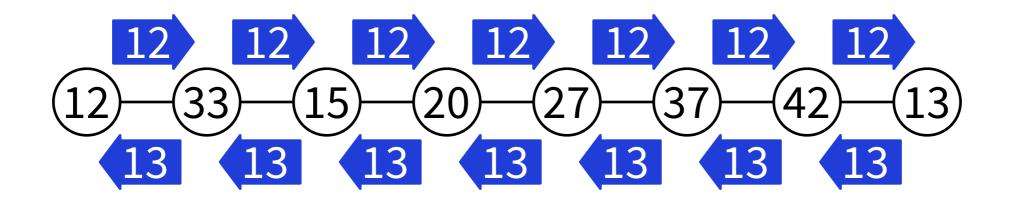
- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



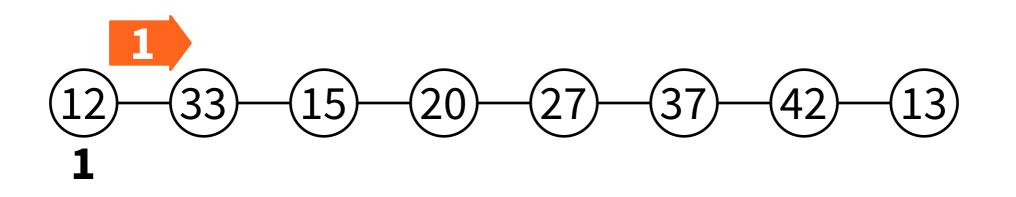
- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



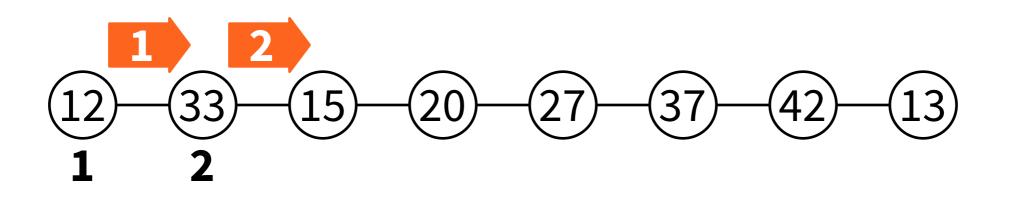
- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



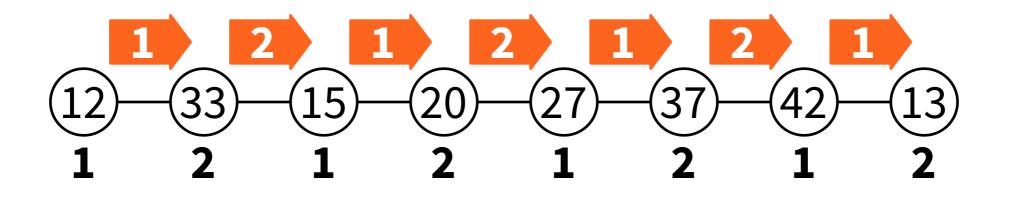
- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



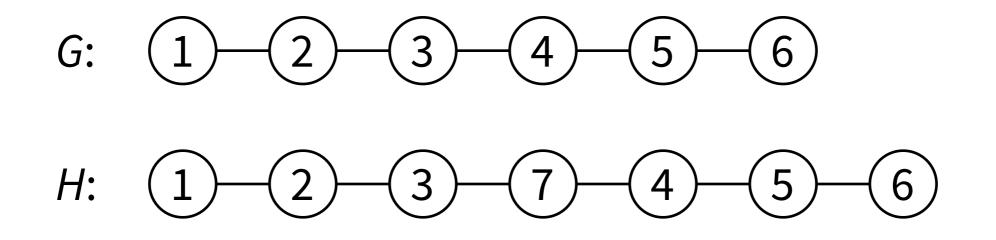
- Messages:
 - "**ID** *x*" = there is an endpoint with identifier *x*
 - "colour c" = my colour is c



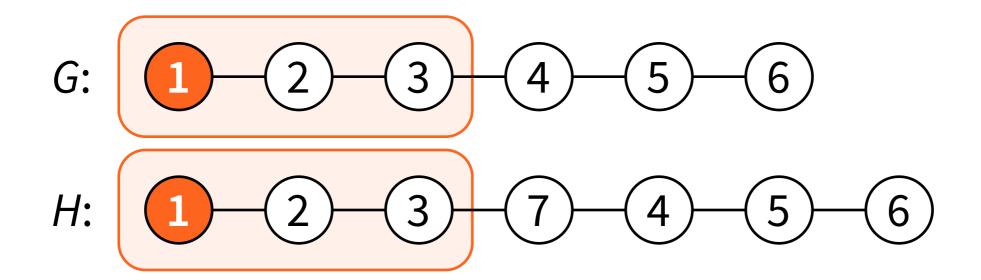
- 2-colouring possible in O(n) rounds
- Goal: prove that this is optimal!
 - there is no algorithm that finds a 2-colouring in time o(n)
 - assumptions: path, unique identifiers

- Assume: there is an *o*(*n*)-time algorithm *A*
- For large *n*, running time << *n*/2
- Idea: construct two possible worlds, show that A fails in one of them

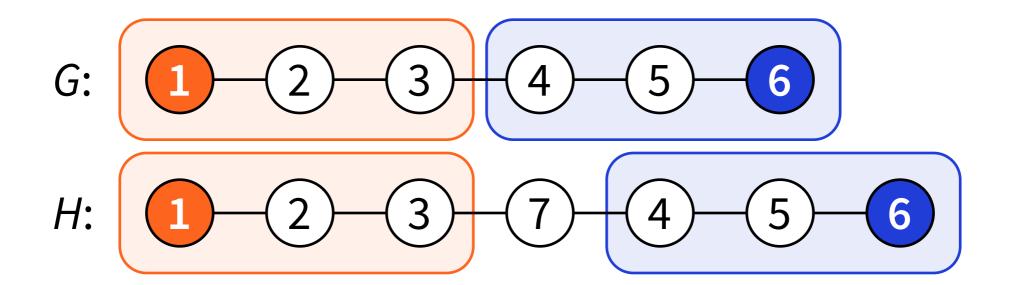
 Long paths with 2k and 2k+1 nodes, algorithm runs in ≤ k-1 rounds



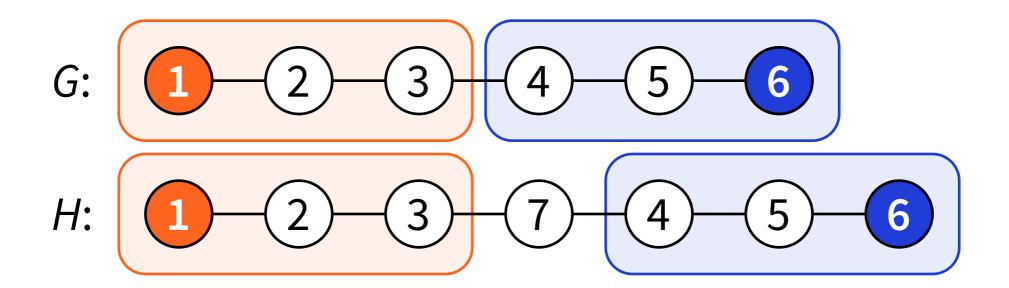
• Same (k-1)-neighbourhood, same output



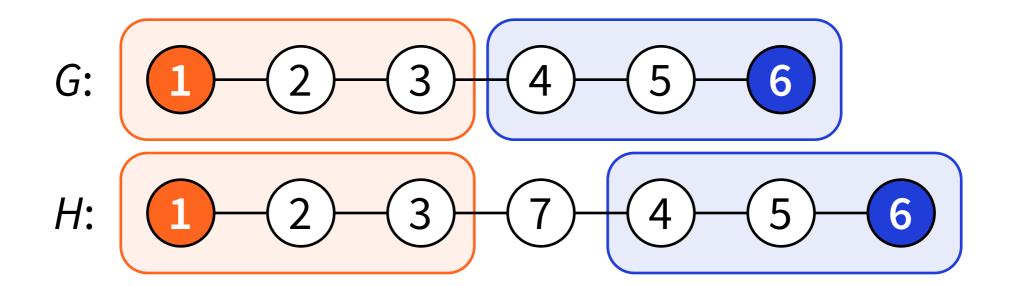
• Same (k-1)-neighbourhood, same output



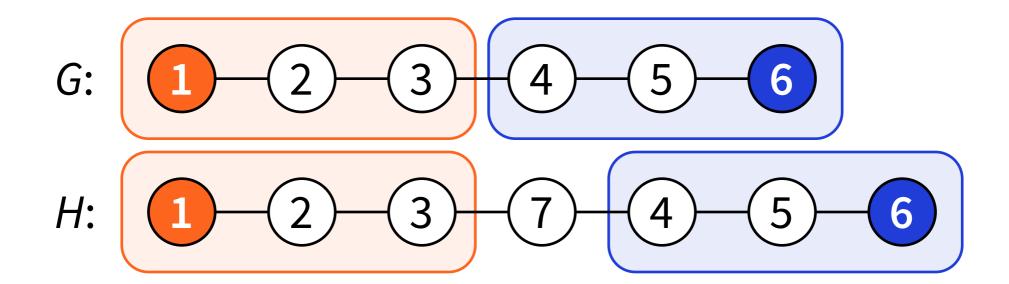
Contradiction — why?



- G: nodes 1 and 6 must have different colours
- *H*: nodes 1 and 6 must have the same colour



 Conclusion: there is no algorithm that finds a 2-colouring of a path in time o(n)

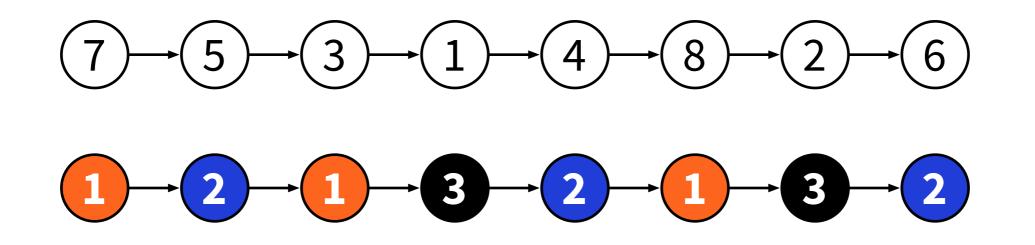


Using locality to prove lower bounds

- Example: 3-colouring of a path
- Upper bound: possible in time O(log* n)
- Lower bound: not possible in time o(log* n)

1 - 2 - 1 - 3 - 2 - 1 - 3 - 2

Given: directed path with *n* nodes,
 identifiers are a permutation of {1, 2, ..., *n*}



- Given: directed path with *n* nodes,
 identifiers are a permutation of {1, 2, ..., *n*}
- Assume: there is an algorithm A that finds a 3-colouring in time T
- Goal: prove that $T \ge \frac{1}{2} \log^*(n) 1$

Algorithm for 3-colouring paths

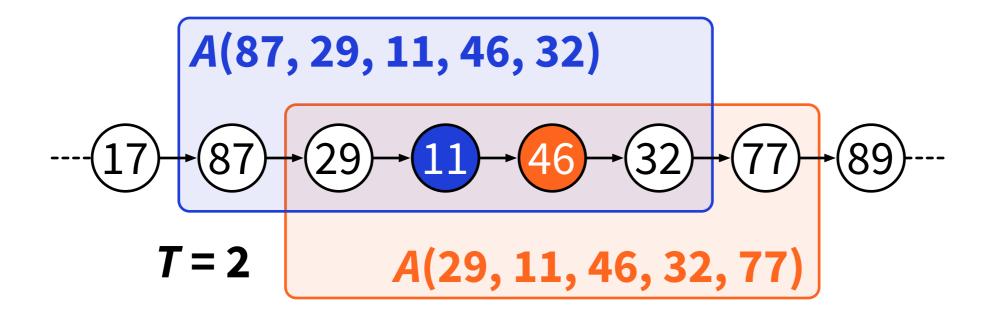
- Running time T = output only depends on radius-T neighbourhood of the node
- Algorithm = k-ary function where k = 2T+1

$$T = 2$$

$$A(29, 11, 46, 32, 77)$$

Algorithm for 3-colouring paths

$A(87, 29, 11, 46, 32) \neq A(29, 11, 46, 32, 77)$



Algorithm for c-colouring paths

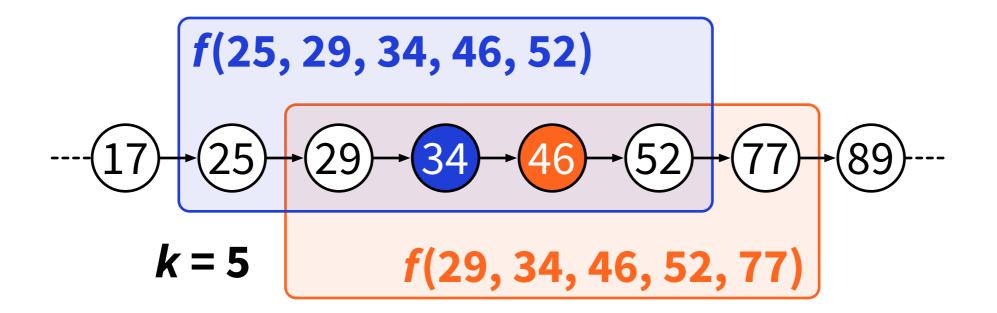
- $A(x_1, ..., x_k) \in \{1, ..., c\}$ for all distinct $x_1, ..., x_k \in \{1, ..., n\}$
- $A(x_1, ..., x_k) \neq A(x_2, ..., x_{k+1})$ for all distinct $x_1, ..., x_{k+1} \in \{1, ..., n\}$

Definition: "k-ary c-colouring function"

- $f(x_1, ..., x_k) \in \{1, ..., c\}$ for all $1 \le x_1 \le ... \le x_k \le n$
- $f(x_1, ..., x_k) \neq f(x_2, ..., x_{k+1})$ for all $1 \leq x_1 < ... < x_{k+1} \leq n$
- We only care what happens with increasing identifiers

k-ary c-colouring function

$f(25, 29, 34, 46, 52) \neq f(29, 34, 46, 52, 77)$



k-ary c-colouring function

- Assume: A is a distributed algorithm that finds a 3-colouring in directed *n*-cycles in time *T*
- Then: A is also a k-ary 3-colouring function
 for k = 2T + 1
- Plan: show that $k + 1 \ge \log^* n$

- If f is a 1-ary c-colouring function, then $c \ge n$
- Intuition:
 - you cannot do anything useful without some communication

- If f is a 1-ary c-colouring function, then $c \ge n$
- Proof:
 - pigeonhole principle
 - if c < n, there is a collision f(x) = f(y)for some $1 \le x < y \le n$, contradiction

- If f is a k-ary c-colouring function, then we can construct a (k 1)-ary 2^c-colouring function g
- Intuition:
 - we can always construct a *faster* algorithm, if we can use a *larger colour palette*

- If f is a k-ary c-colouring function, then we can construct a (k 1)-ary 2^c-colouring function g
- Proof:
 - $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
 - $g(x_1, ..., x_{k-1}) = h(g'(x_1, ..., x_{k-1}))$
 - *h* = bijection that maps sets to colours

Lemma 2 (continued)

- $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
- $g(x_1,...,x_{k-1}) = h(g'(x_1,...,x_{k-1}))$
- *h* = bijection that maps sets to colours
- **By construction:** $g(x_1, ..., x_{k-1}) \in \{1, ..., 2^c\}$
- Need to show: $g(x_1, ..., x_{k-1}) \neq g(x_2, ..., x_k)$ for all $1 \le x_1 < ... < x_k \le n$

Lemma 2 (continued)

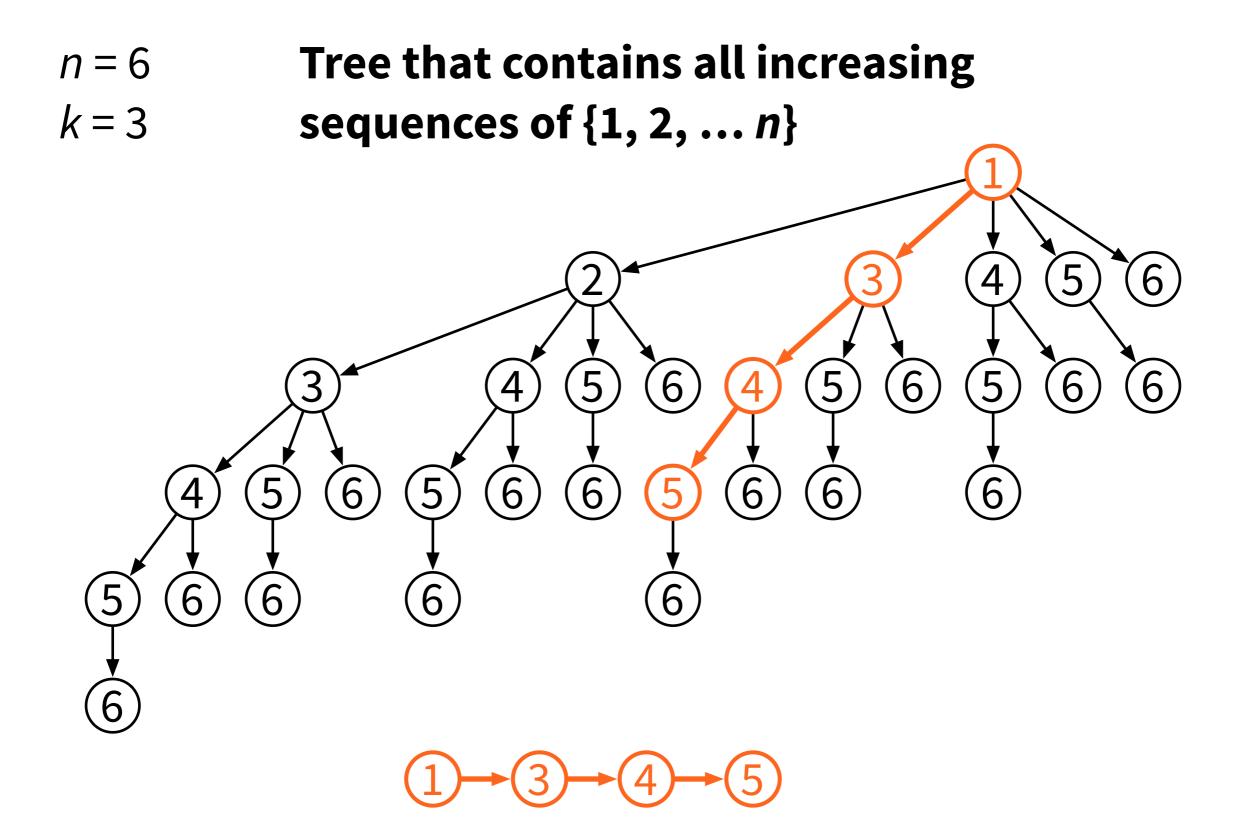
• $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$

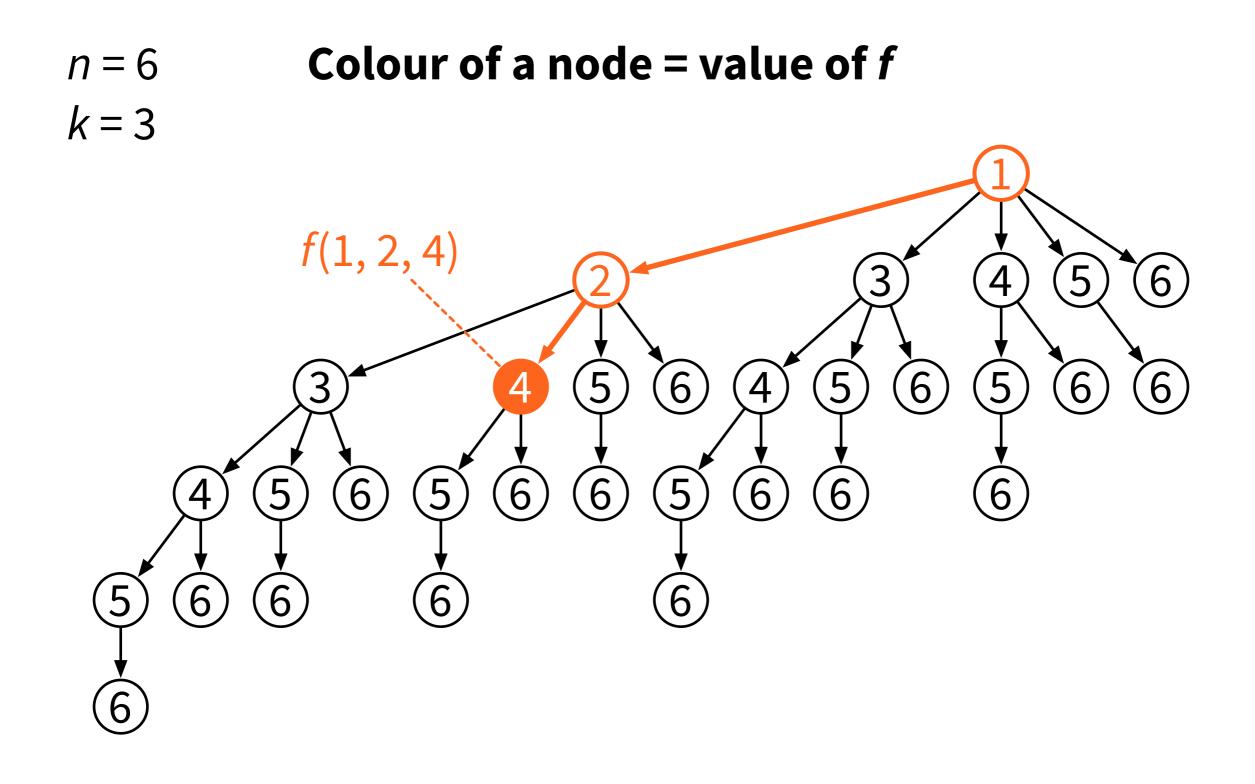
• Need to show: $g'(x_1, ..., x_{k-1}) \neq g'(x_2, ..., x_k)$ for all $1 \le x_1 < ... < x_k \le n$

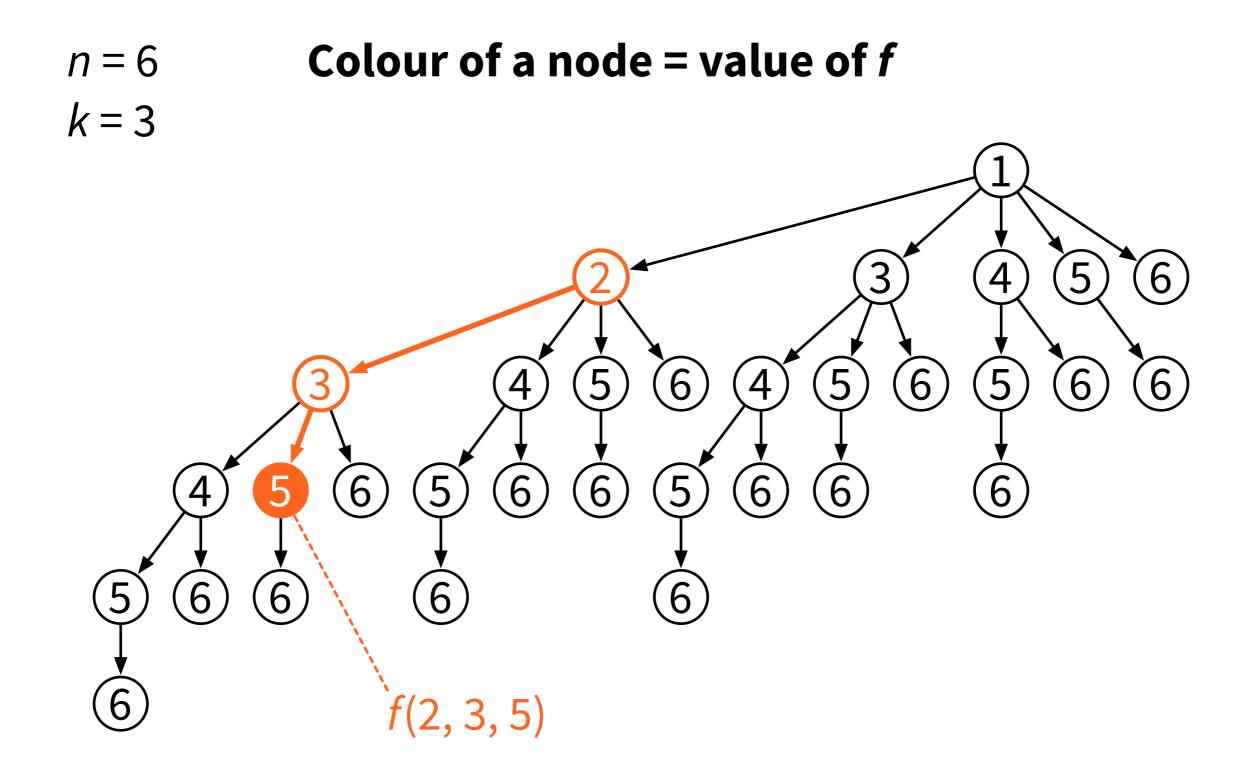
Lemma 2 (continued)

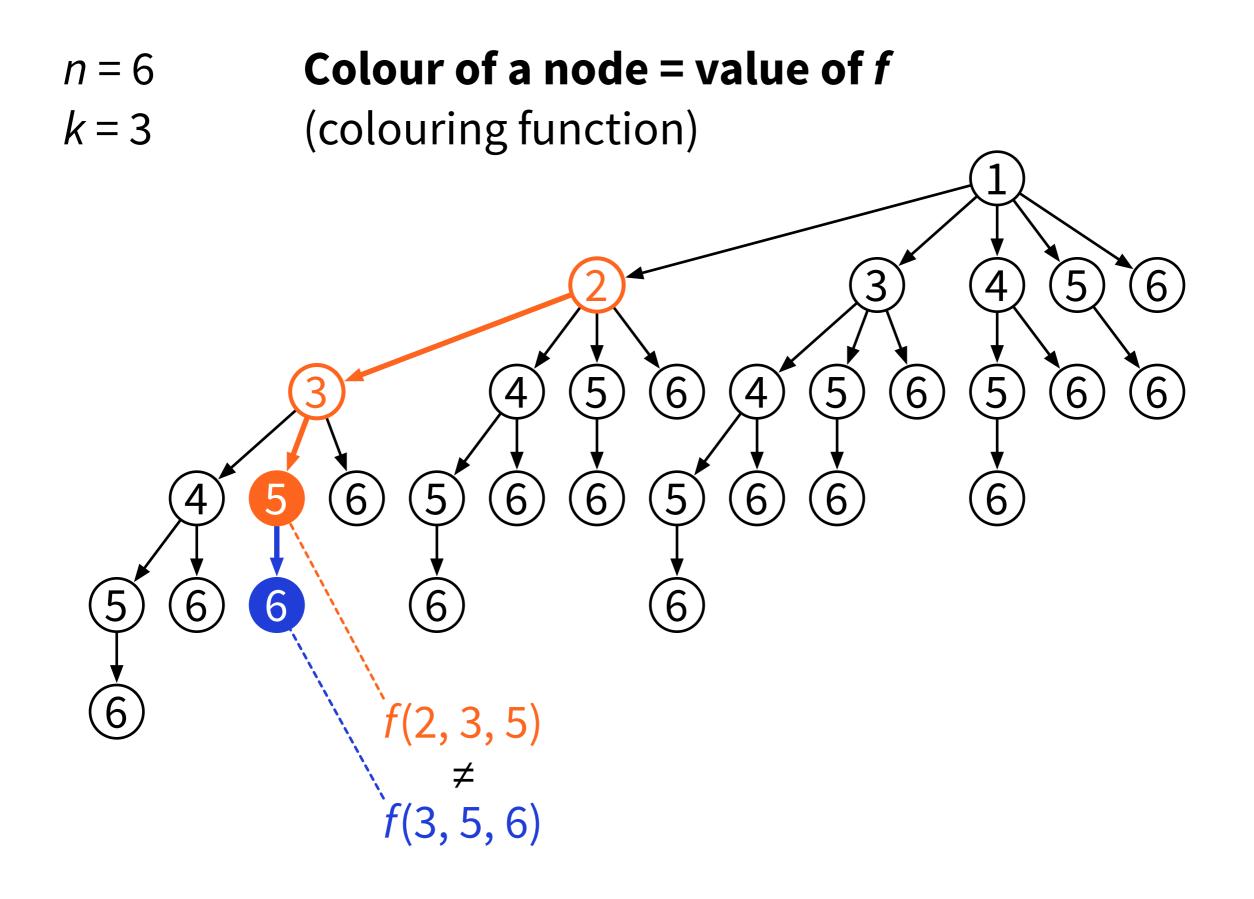
•
$$1 \leq x_1 < x_2 < \ldots < x_k \leq n$$

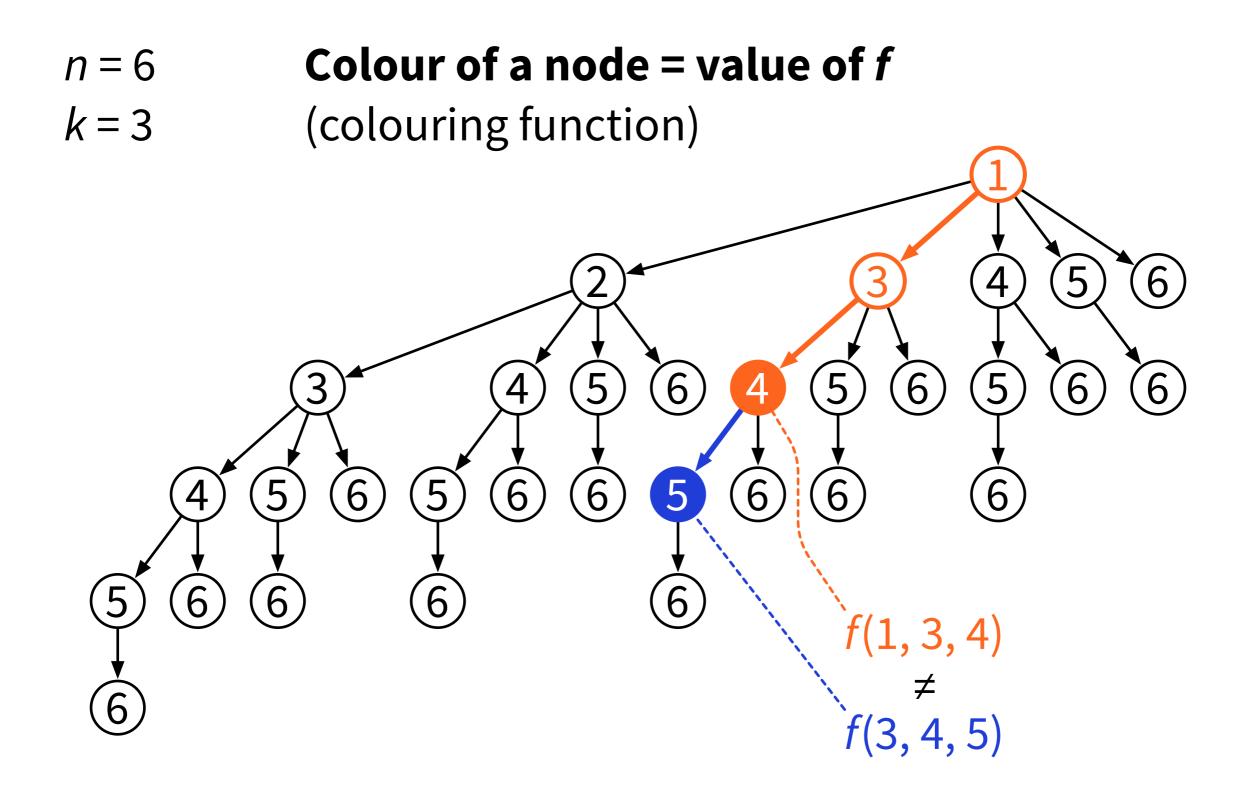
- $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
- $g'(x_2, ..., x_k) = \{f(x_2, ..., x_k, z) : z > x_k\}$
- $f(x_1, ..., x_{k-1}, x_k) \in g'(x_1, ..., x_{k-1})$
- $f(x_1, ..., x_{k-1}, x_k) \notin g'(x_2, ..., x_k)$
- $g'(x_1, ..., x_{k-1}) \neq g'(x_2, ..., x_k)$

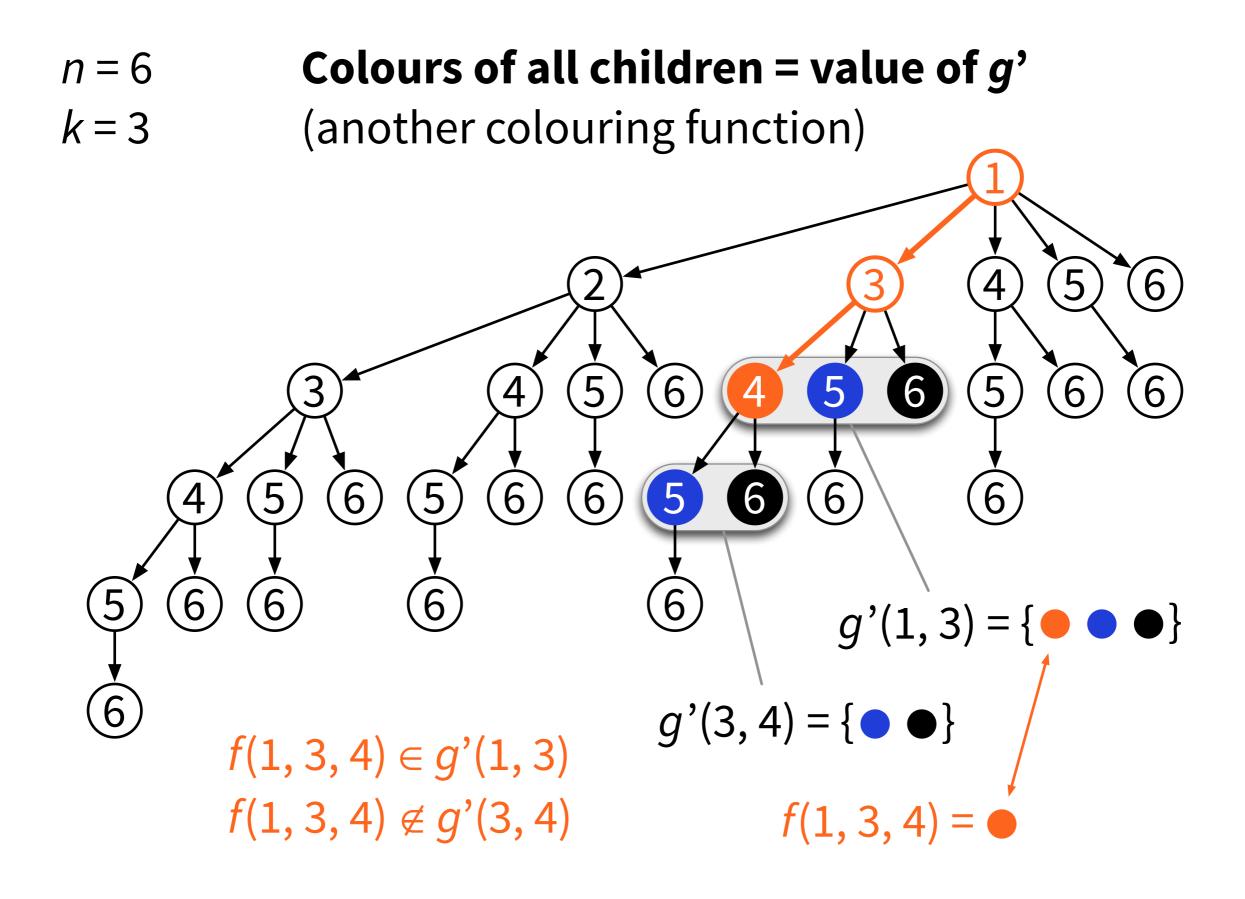


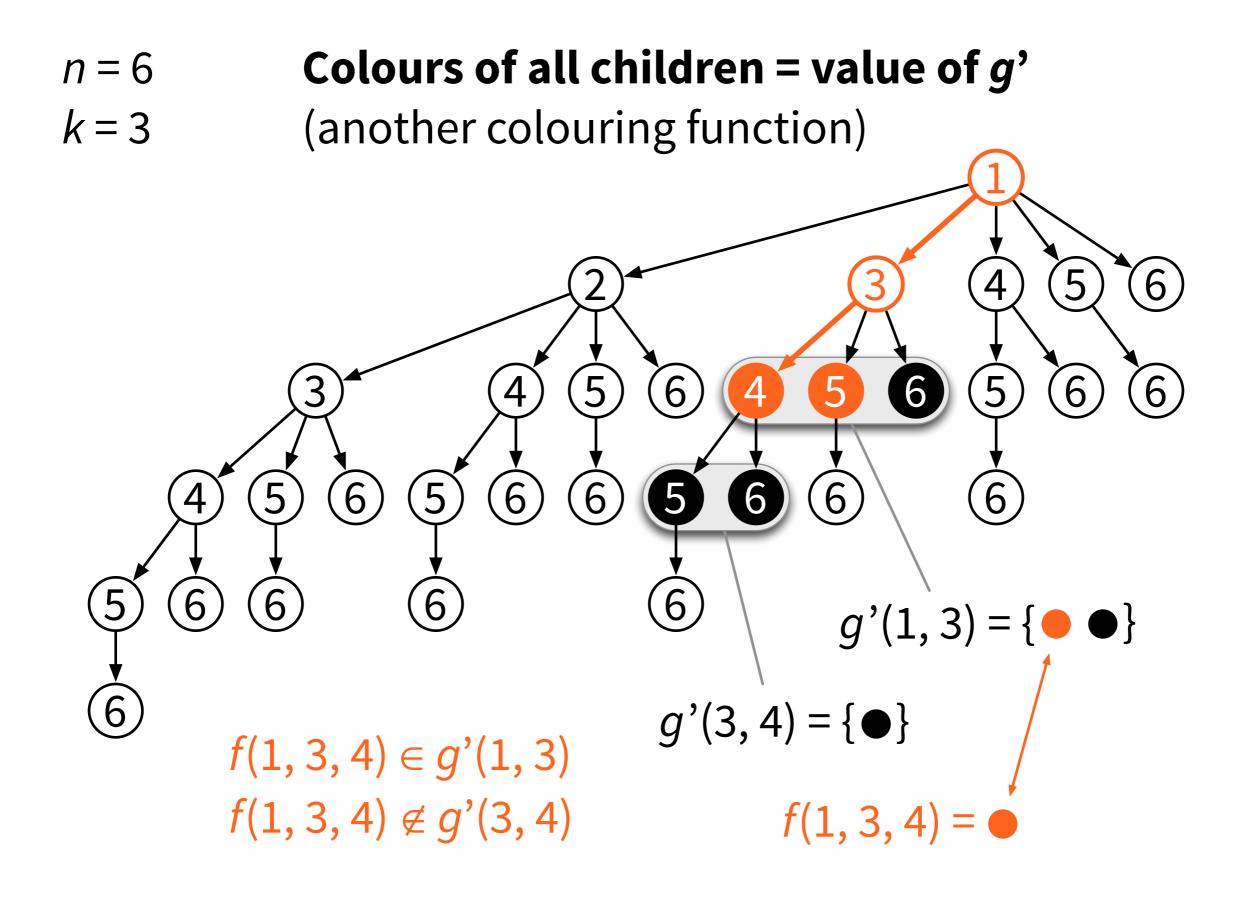


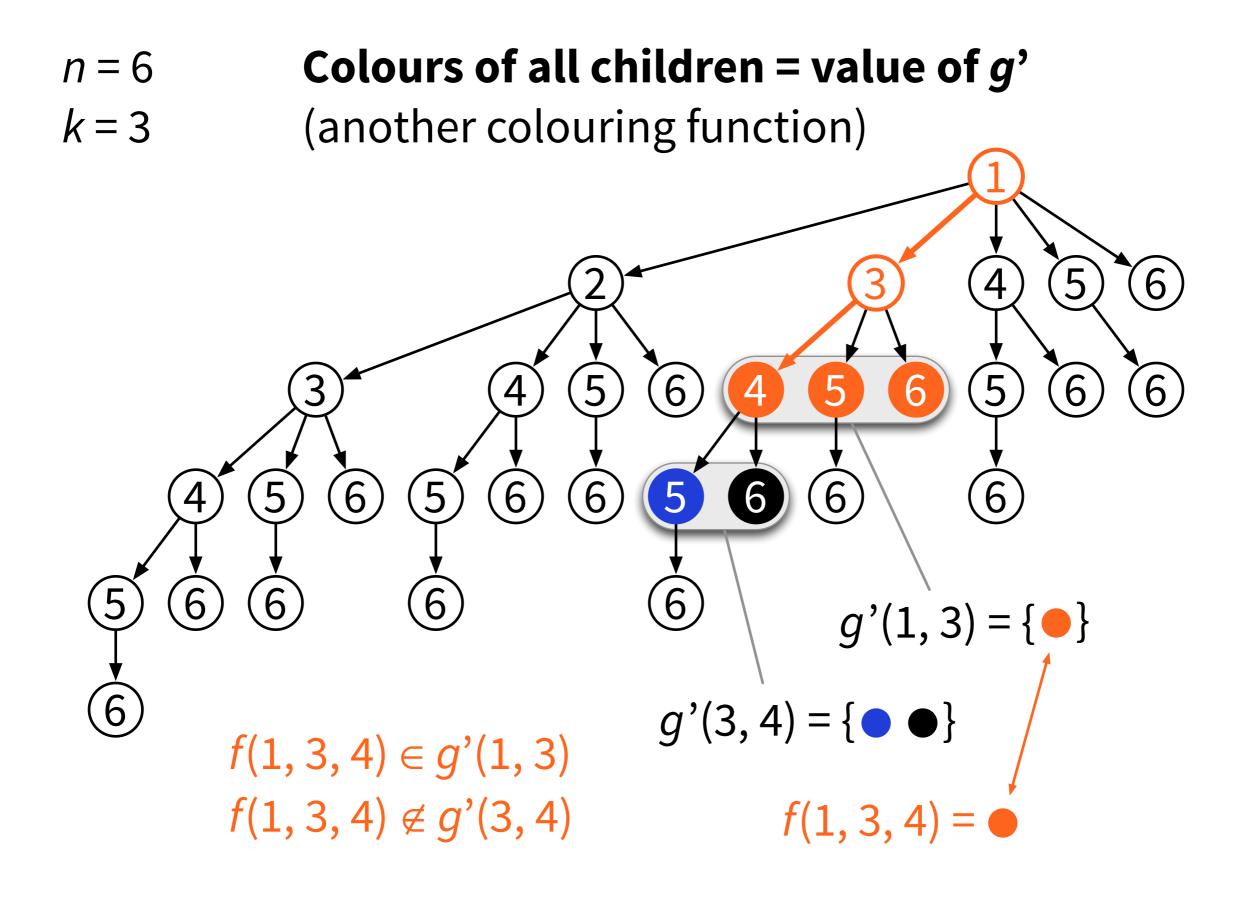












- If f is a k-ary c-colouring function, then we can construct a (k 1)-ary 2^c-colouring function g
- Proof:
 - $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
 - $g(x_1, ..., x_{k-1}) = h(g'(x_1, ..., x_{k-1}))$
 - *h* = bijection that maps sets to colours

Iterate Lemma 2

$$i^{2} = 2^{2^{\cdot}} (i \text{ twos})$$

k-ary 3-colouring function →
 k-ary ²2-colouring function →
 (k - 1)-ary ³2-colouring function →
 (k - 2)-ary ⁴2-colouring function →
 (k - 3)-ary ⁵2-colouring function →

• • •

Lemma 1 + Lemma 2

 $i^{2} = 2^{2} (i \text{ twos})$

• Lemma 2:

- k-ary 3-colouring function →
 1-ary ^{k+1}2-colouring function
- Lemma 1:
 - $^{k+1}2 \ge n$ (that is, $k+1 \ge \log^* n$)

Lower bound for 3-colouring

- Assume: A is a distributed algorithm that finds a 3-colouring in directed n-cycles in time T
- Then: A is also a k-ary 3-colouring function
 for k = 2T + 1
- Then: k + 1 ≥ log* n, therefore: T ≥ ½ log*(n) - 1

Conclusions: tight bounds

- 2-colouring paths:
 - possible in time O(n)
 - not possible in time o(n)
- 3-colouring paths:
 - possible in time O(log* n)
 - not possible in time o(log* n)

Assuming: directed path, unique IDs = {1, 2, ..., *n*}

Conclusions: tight bounds

- 2-colouring paths:
 - possible in time O(n)
 - not possible in time o(n)
- 3-colouring paths:
 - possible in time $O(\log^* n)$ \smile Uzi Vishkin (1986)

Richard Cole and

• not possible in time $o(\log^* n) < Nathan Linial (1992)$

- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap