
• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Week 2

– Warm-up: negative results

Locality
• Output of a node can only depend on  

what it knows

• After T time steps, a node can only 
know about things up to distance T

Locality
• Who knows that node 15 exists?

• initially, only node 15

• everyone else has to learn it 
by exchanging messages

15 273312 20 37 1342

Locality
• Who knows about node 15 at time T = 0?

• initial state, before we exchange 
any messages

15 273312 20 37 1342

Locality
• Who knows about node 15 at time T = 1?

• after 1 communication round

15 273312 20 37 1342

Locality
• Who knows about node 15 at time T = 2?

• after 2 communication rounds

15 273312 20 37 1342

Locality
• Who knows about node 15 at time T = 3?

• after 3 communication rounds

15 273312 20 37 1342

Locality
• After T communication rounds, only 

nodes up to distance T from node x 
can know anything about node x

• distance = “number of hops”

x

Locality
• After T communication rounds, 

node x can only know about other nodes  
that are within distance T from it

• distance = “number of hops”

x

Locality
• My state at time T only depends on:

• my state at time T − 1, and

• messages that I received on round T, 
which only depend on:

• the state of my neighbours at time T − 1

Locality
• State at time T only depends on 

initial information within distance T

T = 2

T = 1

T = 0

Locality
• Time = distance

• Fast algorithm = “local” algorithm

• outputs only depend on 
local neighbourhoods

Example: 3-colouring
• Recall: given 128-bit unique identifiers,  

3-colouring possible in 7 rounds

• Equivalently: each node can pick 
its colour based on what it sees 
in its radius-7 neighbourhood

Using locality to  
prove lower bounds
• Example: 2-colouring of a path

• Upper bound: possible in time O(n)

• Lower bound: not possible in time o(n)

1 121 2 2 21

Algorithm 
for 2-colouring
• Assumption: path, unique identifiers

• Two phases:

• find the endpoint with smaller identifier

• starting from this end, assign colours  
1, 2, 1, 2, …

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
12

13

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
12 12

13 13

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
12 12 12 12 12 12 12

13 13 13 13 13 13 13

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
1

1

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
1 2

1 2

Algorithm 
for 2-colouring
• Messages:

• “ID x” = there is an endpoint with identifier x

• “colour c” = my colour is c

15 273312 20 37 1342
1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

Algorithm 
for 2-colouring
• 2-colouring possible in O(n) rounds

• Goal: prove that this is optimal!

• there is no algorithm that finds 
a 2-colouring in time o(n)

• assumptions: path, unique identifiers

Lower bound 
for 2-colouring
• Assume: there is an o(n)-time algorithm A

• For large n, running time << n/2

• Idea: construct two possible worlds, 
show that A fails in one of them

Lower bound 
for 2-colouring
• Long paths with 2k and 2k+1 nodes, 

algorithm runs in ≤ k−1 rounds

3 421 7 5 6

3 521 4 6G:

H:

Lower bound 
for 2-colouring
• Same (k−1)-neighbourhood, same output

3 421 7 5 6

3 521 4 6G:

H:

Lower bound 
for 2-colouring
• Same (k−1)-neighbourhood, same output

3 421 7 5 6

3 521 4 6G:

H:

Lower bound 
for 2-colouring
• Contradiction — why?

3 421 7 5 6

3 521 4 6G:

H:

Lower bound 
for 2-colouring
• G: nodes 1 and 6 must have different colours
• H: nodes 1 and 6 must have the same colour

3 421 7 5 6

3 521 4 6G:

H:

Lower bound 
for 2-colouring
• Conclusion: there is no algorithm that  

finds a 2-colouring of a path in time o(n)

3 421 7 5 6

3 521 4 6G:

H:

Using locality to  
prove lower bounds
• Example: 3-colouring of a path

• Upper bound: possible in time O(log* n)

• Lower bound: not possible in time o(log* n)

1 221 3 1 23

Lower bound 
for 3-colouring
• Given: directed path with n nodes,  

identifiers are a permutation of {1, 2, …, n}

1 221 3 1 23

3 457 1 8 62

Lower bound 
for 3-colouring
• Given: directed path with n nodes,  

identifiers are a permutation of {1, 2, …, n}

• Assume: there is an algorithm A that 
finds a 3-colouring in time T

• Goal: prove that T ≥ ½ log*(n) − 1

Algorithm for 
3-colouring paths
• Running time T = output only depends on  

radius-T neighbourhood of the node

• Algorithm = k-ary function where k = 2T+1

A(29, 11, 46, 32, 77)

17 87 29 11 46 7732 89

T = 2

Algorithm for 
3-colouring paths

A(29, 11, 46, 32, 77)

A(87, 29, 11, 46, 32)

17 87 29 11 46 7732 89

A(87, 29, 11, 46, 32) ≠ A(29, 11, 46, 32, 77)

T = 2

Algorithm for 
c-colouring paths
• A(x1, …, xk) ∈ {1, …, c}  

for all distinct x1, …, xk ∈ {1, …, n}

• A(x1, …, xk) ≠ A(x2, …, xk+1) 
for all distinct x1, …, xk+1 ∈ {1, …, n}

Definition: “k-ary 
c-colouring function”
• f(x1, …, xk) ∈ {1, …, c} 

for all 1 ≤ x1 < … < xk ≤ n

• f(x1, …, xk) ≠ f(x2, …, xk+1) 
for all 1 ≤ x1 < … < xk+1 ≤ n

• We only care what happens 
with increasing identifiers

k-ary 
c-colouring function

f(29, 34, 46, 52, 77)

f(25, 29, 34, 46, 52)

17 25 29 34 46 7752 89

f(25, 29, 34, 46, 52) ≠ f(29, 34, 46, 52, 77)

k = 5

k-ary 
c-colouring function
• Assume: A is a distributed algorithm that finds 

a 3-colouring in directed n-cycles in time T

• Then: A is also a k-ary 3-colouring function  
for k = 2T + 1

• Plan: show that k + 1 ≥ log* n

Lemma 1
• If f is a 1-ary c-colouring function, then c ≥ n

• Intuition:
• you cannot do anything useful without 

some communication

Lemma 1
• If f is a 1-ary c-colouring function, then c ≥ n

• Proof:
• pigeonhole principle
• if c < n, there is a collision f(x) = f(y) 

for some 1 ≤ x < y ≤ n, contradiction

Lemma 2
• If f is a k-ary c-colouring function, then we can

construct a (k − 1)-ary 2c-colouring function g

• Intuition:
• we can always construct a faster algorithm, 

if we can use a larger colour palette

Lemma 2
• If f is a k-ary c-colouring function, then we can

construct a (k − 1)-ary 2c-colouring function g

• Proof:
• g’(x1, …, xk−1) = {f(x1, …, xk−1, y) : y > xk−1}
• g(x1, …, xk−1) = h(g’(x1, …, xk−1))
• h = bijection that maps sets to colours

Lemma 2 (continued)
• g’(x1, …, xk−1) = {f(x1, …, xk−1, y) : y > xk−1}
• g(x1,…, xk−1) = h(g’(x1, …, xk−1))
• h = bijection that maps sets to colours
• By construction: g(x1, …, xk−1) ∈ {1, …, 2c}
• Need to show: g(x1, …, xk−1) ≠ g(x2, …, xk) 

for all 1 ≤ x1 < … < xk ≤ n

Lemma 2 (continued)
• g’(x1, …, xk−1) = {f(x1, …, xk−1, y) : y > xk−1}
• g(x1,…, xk−1) = h(g’(x1, …, xk−1))
• h = bijection that maps sets to colours
• By construction: g(x1, …, xk−1) ∈ {1, …, 2c}
• Need to show: g’(x1, …, xk−1) ≠ g’(x2, …, xk) 

for all 1 ≤ x1 < … < xk ≤ n

Lemma 2 (continued)
• 1 ≤ x1 < x2 < … < xk ≤ n
• g’(x1, …, xk−1) = {f(x1, …, xk−1, y) : y > xk−1}
• g’(x2, …, xk) = {f(x2, …, xk, z) : z > xk}
• f(x1, …, xk−1, xk) ∈ g’(x1, …, xk−1)
• f(x1, …, xk−1, xk) ∉ g’(x2, …, xk)
• g’(x1, …, xk−1) ≠ g’(x2, …, xk)

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

1 3 4 5

Tree that contains all increasing
sequences of {1, 2, … n}

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

f(1, 2, 4)

Colour of a node = value of f

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

Colour of a node = value of f

f(2, 3, 5)

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

f(2, 3, 5)

f(3, 5, 6)

Colour of a node = value of f
(colouring function)

≠

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

Colour of a node = value of f
(colouring function)

f(1, 3, 4)

f(3, 4, 5)
≠

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

Colours of all children = value of g’
(another colouring function)

g’(1, 3) = {

g’(3, 4) = {

}

}

f(1, 3, 4) =
f(1, 3, 4) ∈ g’(1, 3)
f(1, 3, 4) ∉ g’(3, 4)

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

Colours of all children = value of g’
(another colouring function)

g’(1, 3) = {

g’(3, 4) = {

}

}

f(1, 3, 4) =
f(1, 3, 4) ∈ g’(1, 3)
f(1, 3, 4) ∉ g’(3, 4)

1

3

2

4

5

6

6

5

6

6

4

5

6

6

5

6

6

3

4

5

6

6

5

6

6

4

5

6

6

5

6

6

n = 6
k = 3

Colours of all children = value of g’
(another colouring function)

g’(1, 3) = {

g’(3, 4) = {

}

f(1, 3, 4) =
f(1, 3, 4) ∈ g’(1, 3)
f(1, 3, 4) ∉ g’(3, 4)

}

Lemma 2
• If f is a k-ary c-colouring function, then we can

construct a (k − 1)-ary 2c-colouring function g

• Proof:
• g’(x1, …, xk−1) = {f(x1, …, xk−1, y) : y > xk−1}
• g(x1, …, xk−1) = h(g’(x1, …, xk−1))
• h = bijection that maps sets to colours

Iterate 
Lemma 2
• k-ary 3-colouring function → 

k-ary 22-colouring function → 
(k − 1)-ary 32-colouring function → 
(k − 2)-ary 42-colouring function → 
(k − 3)-ary 52-colouring function → 
… 
1-ary k+12-colouring function

i2 = 22···
2
 (i twos)

Lemma 1 +  
Lemma 2
• Lemma 2:

• k-ary 3-colouring function → 
1-ary k+12-colouring function

• Lemma 1:
• k+12 ≥ n (that is, k + 1 ≥ log* n)

i2 = 22···
2
 (i twos)

Lower bound 
for 3-colouring
• Assume: A is a distributed algorithm that finds 

a 3-colouring in directed n-cycles in time T

• Then: A is also a k-ary 3-colouring function  
for k = 2T + 1

• Then: k + 1 ≥ log* n, 
therefore: T ≥ ½ log*(n) − 1

Conclusions:  
tight bounds
• 2-colouring paths:

• possible in time O(n)
• not possible in time o(n)

• 3-colouring paths:
• possible in time O(log* n)
• not possible in time o(log* n)

Assuming: 
directed path, 
unique IDs = 
{1, 2, …, n}

Conclusions:  
tight bounds
• 2-colouring paths:

• possible in time O(n)
• not possible in time o(n)

• 3-colouring paths:
• possible in time O(log* n)
• not possible in time o(log* n)

Richard Cole and  
Uzi Vishkin (1986)

Nathan Linial (1992)

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

