
• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Week 12

– Conclusions

Recap: 
Distributed algorithms
Algorithms for computer networks

!!
!

!

!
!

!

!!
!

!
!

!
!

Recap: 
Distributed algorithms
Identical computers in an unknown network, 
all running the same algorithm

!!
!

!

!
!

!

!!
!

!
!

!
!

Recap: 
Distributed algorithms
Initially each computer only aware of 
its immediate neighbourhood

!

!

!

! !

!
!

Recap: 
Distributed algorithms
Nodes can exchange messages 
with their neighbours to learn more…

!!
!

!

!
!

!

!!
!

!
!

!
!

Recap: 
Distributed algorithms
Finally, each computer has to stop and 
produce its own local output

!!
!

!

!
!

!

!!
!

!
!

!
!

12
21
3

3
1

23 2

1 12
2

Recap: 
Distributed algorithms
Focus on graph problems: 
network topology = input graph

!!
!

!

!
!

!

!!
!

!
!

!
!

=

Recap: 
Distributed algorithms
Focus on graph problems: 
local outputs = solution (here: graph colouring)

!!
!

!

!
!

!

!!
!

!
!

!
!

12
21
3

3
1

23 2

1 12
2
=

Recap: 
Distributed algorithms
Typical research question:

“How fast can we solve graph problem X?”

Time = number of communication rounds

What have we learned?
• Dealing with unknown systems

• Dealing with partial information

• Dealing with parallelism

• Applications beyond distributed computing:  
fault tolerance, online, streaming, multicore…

Learning objectives
• Models

• Algorithms

• Lower bounds

• Graph theory

Objective 1:  
Models of computing
• Precisely what is a “distributed algorithm”

• In each of these models:
• PN, LOCAL, CONGEST
• deterministic, randomised

Objective 2:  
Algorithms
• Colouring paths: LOCAL, O(log* n)

• Colouring graphs: LOCAL, O(log n) w.h.p.

• Gather everything: LOCAL, O(diam(G))

• Bipartite maximal matching: PN, O(Δ)

• All-pairs shortest paths: CONGEST, O(n)

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Week 1

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1}

• Active with probability 1/2

• If active, pick a random free colour
• not used by any neighbour that has stopped

• Try again if conflicts…

Week 7

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1}

• Active with probability 1/2

• If active, pick a random free colour
• not used by any neighbour that has stopped

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Week 5

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1}

• Active with probability 1/2

• If active, pick a random free colour
• not used by any neighbour that has stopped

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one
• using port numbers

• Orange nodes accept 
the first proposal that they get

• using port numbers to break ties

Week 4

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1}

• Active with probability 1/2

• If active, pick a random free colour
• not used by any neighbour that has stopped

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one
• using port numbers

• Orange nodes accept 
the first proposal that they get

• using port numbers to break ties

Algorithm APSP
1 473 5 2 6

wave

token

Week 6

Objective 2:  
Algorithms
• Reductions!

• Graph colouring is a very useful subroutine

Objective 3:  
Lower bounds
• Covering maps: 

what cannot be solved at all in PN model

• Local neighbourhoods:  
what cannot be solved fast in any model

• Ramsey’s theorem: 
what cannot be solved in O(1) time

Objective 4:  
Graph theory
• Basic definitions

• Connections between graph problems
• e.g. maximal matching → small vertex covers

• Ramsey’s theorem
• at least for c = 2, k = 2

What else is studied in 
distributed computing?
• Fault-tolerance

• Asynchrony

• Shared memory

• Physical models

• Robot navigation

• Nondeterminism

• Complexity measures

• High-performance 
computing

• Practical aspects 
of networking …

What next?
• ICS-E4020 Programming Parallel Computers

• 5th period, 5 credits, intensive course
• programming modern parallel computers:  

multicore, GPU, memory hierarchies …
• hands-on programming exercises
• main goal: make it as fast as you can!

What next?
• Just ask if you want to do more!

• master’s thesis topics?
• summer internships?
• doctoral studies?

Practicalities
• 2nd mid-term exam: 10 December

• remember to register on time!

• Course feedback: deadline 17 December
• 1 extra point in grading

What to expect 
in the exam?
• See the learning objectives!

• Do not think that you can safely forget 
what we learned during the 1st period!

• Expect both algorithm design 
and lower bound proofs

Examples of old  
exam problems
• Prove: no deterministic PN-algorithm that 

finds a minimum vertex cover in cycle graphs, 
given a minimal vertex cover

Examples of old  
exam problems
• Prove: no deterministic PN-algorithm that 

finds a 6-colouring in cycle graphs 
given a maximal independent set

Examples of old  
exam problems
• Counting problem: all nodes output |V|

• Prove: no deterministic 
PN-algorithm for cycle graphs

• Prove: no o(n)-time deterministic  
LOCAL-algorithm for cycle graphs

Examples of old  
exam problems
• Prove: no deterministic PN-algorithm 

for maximal matching in arbitrary graphs

Examples of old  
exam problems
• Prove: no deterministic o(n)-time  

PN-algorithm for weak 2-colouring 
in paths of length ≥ 3

Examples of old  
exam problems
• Give an elementary proof that 

any graph with 6 nodes contains  
a clique with 3 nodes or 
an independent set with 3 nodes

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

