
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!



Week 12

– Conclusions



Recap: 
Distributed algorithms
Algorithms for computer networks
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Recap: 
Distributed algorithms
Identical computers in an unknown network, 
all running the same algorithm
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Recap: 
Distributed algorithms
Initially each computer only aware of 
its immediate neighbourhood
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Recap: 
Distributed algorithms
Nodes can exchange messages 
with their neighbours to learn more…
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Recap: 
Distributed algorithms
Finally, each computer has to stop and 
produce its own local output
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Recap: 
Distributed algorithms
Focus on graph problems: 
network topology = input graph
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Recap: 
Distributed algorithms
Focus on graph problems: 
local outputs = solution  (here: graph colouring)

!!
!

!

!
!

!

!!
!

!
!

!
!

12
21
3

3
1

23 2

1 12
2
=



Recap: 
Distributed algorithms
Typical research question: 

“How fast can we solve graph problem X?” 

Time = number of communication rounds



What have we learned?
• Dealing with unknown systems 

• Dealing with partial information 

• Dealing with parallelism 

• Applications beyond distributed computing:  
fault tolerance, online, streaming, multicore…



Learning objectives
• Models 

• Algorithms 

• Lower bounds 

• Graph theory



Objective 1:  
Models of computing
• Precisely what is a “distributed algorithm” 

• In each of these models: 
• PN, LOCAL, CONGEST 
• deterministic, randomised



Objective 2:  
Algorithms
• Colouring paths:  LOCAL, O(log* n) 

• Colouring graphs:  LOCAL,  O(log n) w.h.p. 

• Gather everything:  LOCAL,  O(diam(G)) 

• Bipartite maximal matching:  PN,  O(Δ) 

• All-pairs shortest paths:  CONGEST,  O(n)



Algorithm P3CBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour)   
 i  = 2  (bits numbered 0, 1, 2, … from right)   
 b  = 0  (in my colour bit number i was 0)  

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234
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Algorithm P3CBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour)   
 i  = 2  (bits numbered 0, 1, 2, … from right)   
 b  = 0  (in my colour bit number i was 0)  

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1} 

• Active with probability 1/2 

• If active, pick a random free colour 
• not used by any neighbour that has stopped 

• Try again if conflicts…

Week 7



Algorithm P3CBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour)   
 i  = 2  (bits numbered 0, 1, 2, … from right)   
 b  = 0  (in my colour bit number i was 0)  

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours
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Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1} 

• Active with probability 1/2 

• If active, pick a random free colour 
• not used by any neighbour that has stopped 

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round 

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Week 5



Algorithm P3CBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour)   
 i  = 2  (bits numbered 0, 1, 2, … from right)   
 b  = 0  (in my colour bit number i was 0)  

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours
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Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1} 

• Active with probability 1/2 

• If active, pick a random free colour 
• not used by any neighbour that has stopped 

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round 

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one 
• using port numbers 

• Orange nodes accept 
the first proposal that they get 

• using port numbers to break ties
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Algorithm P3CBit: 
Fast colour reduction
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• Colour palette: {1, 2, …, Δ + 1} 

• Active with probability 1/2 

• If active, pick a random free colour 
• not used by any neighbour that has stopped 

• Try again if conflicts…

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round 

• send E(v, r) to all neighbours, take union
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Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one 
• using port numbers 

• Orange nodes accept 
the first proposal that they get 

• using port numbers to break ties
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Objective 2:  
Algorithms
• Reductions! 

• Graph colouring is a very useful subroutine



Objective 3:  
Lower bounds
• Covering maps: 

what cannot be solved at all in PN model 

• Local neighbourhoods:  
what cannot be solved fast in any model 

• Ramsey’s theorem: 
what cannot be solved in O(1) time



Objective 4:  
Graph theory
• Basic definitions 

• Connections between graph problems 
• e.g. maximal matching → small vertex covers 

• Ramsey’s theorem 
• at least for c = 2, k = 2



What else is studied in 
distributed computing?
• Fault-tolerance 

• Asynchrony 

• Shared memory 

• Physical models 

• Robot navigation 

• Nondeterminism 

• Complexity measures 

• High-performance 
computing 

• Practical aspects 
of networking …



What next?
• ICS-E4020 Programming Parallel Computers 

• 5th period, 5 credits, intensive course 
• programming modern parallel computers:  

multicore, GPU, memory hierarchies … 
• hands-on programming exercises 
• main goal: make it as fast as you can!



What next?
• Just ask if you want to do more! 

• master’s thesis topics? 
• summer internships? 
• doctoral studies?



Practicalities
• 2nd mid-term exam: 10 December 

• remember to register on time! 

• Course feedback: deadline 17 December 
• 1 extra point in grading



What to expect 
in the exam?
• See the learning objectives! 

• Do not think that you can safely forget 
what we learned during the 1st period! 

• Expect both algorithm design 
and lower bound proofs



Examples of old  
exam problems
• Prove: no deterministic PN-algorithm that 

finds a minimum vertex cover in cycle graphs, 
given a minimal vertex cover



Examples of old  
exam problems
• Prove: no deterministic PN-algorithm that 

finds a 6-colouring in cycle graphs 
given a maximal independent set



Examples of old  
exam problems
• Counting problem: all nodes output |V| 

• Prove: no deterministic 
PN-algorithm for cycle graphs 

• Prove: no o(n)-time deterministic  
LOCAL-algorithm for cycle graphs



Examples of old  
exam problems
• Prove: no deterministic PN-algorithm 

for maximal matching in arbitrary graphs



Examples of old  
exam problems
• Prove: no deterministic o(n)-time  

PN-algorithm for weak 2-colouring 
in paths of length ≥ 3



Examples of old  
exam problems
• Give an elementary proof that 

any graph with 6 nodes contains  
a clique with 3 nodes or 
an independent set with 3 nodes



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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