- Weeks 1-2: informal introduction
- network = path

- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Week 12

- Conclusions

Recap: Distributed algorithms

Algorithms for computer networks

Recap: Distributed algorithms

Identical computers in an unknown network, all running the same algorithm

Recap: Distributed algorithms

Initially each computer only aware of its immediate neighbourhood

Recap: Distributed algorithms

Nodes can exchange messages with their neighbours to learn more...

Recap: Distributed algorithms

Finally, each computer has to stop and produce its own local output

Recap:
 Distributed algorithms

Focus on graph problems:
network topology = input graph

Recap:
 Distributed algorithms

Focus on graph problems:
local outputs = solution (here: graph colouring)

Recap: Distributed algorithms

Typical research question:
"How fast can we solve graph problem X?"
Time = number of communication rounds

What have we learned?

- Dealing with unknown systems
- Dealing with partial information
- Dealing with parallelism
- Applications beyond distributed computing: fault tolerance, online, streaming, multicore...

Learning objectives

- Models
- Algorithms
- Lower bounds
- Graph theory

Objective 1: Models of computing

- Precisely what is a "distributed algorithm"
- In each of these models:
- PN, LOCAL, CONGEST
- deterministic, randomised

Objective 2: Algorithms

- Colouring paths: LOCAL, $O\left(\log ^{*} n\right)$
- Colouring graphs: LOCAL, $O(\log n)$ w.h.p.
- Gather everything: LOCAL, $O(\operatorname{diam}(G))$
- Bipartite maximal matching: $\mathrm{PN}, \mathrm{O}(\Delta)$
- All-pairs shortest paths: CONGEST, $O(n)$

Algorithm P3CBit: Fast colour reduction

$$
c_{0}=123=01111011_{2} \text { (my colour) }
$$

$$
c_{1}=47=00101111_{2} \text { (successor's colour) }
$$

$\boldsymbol{i}=2$ (bits numbered $0,1,2, \ldots$ from right)
$\boldsymbol{b}=0$ (in my colour bit number i was 0)
$\boldsymbol{c}=\mathbf{2 \cdot 2} \mathbf{+ 0} \mathbf{= \mathbf { 4 }}$ (my new colour)

Objective 2:
 Algorithms

- Reductions!
- Graph colouring is a very useful subroutine

Objective 3: Lower bounds

- Covering maps: what cannot be solved at all in PN model
- Local neighbourhoods: what cannot be solved fast in any model
- Ramsey's theorem: what cannot be solved in $O(1)$ time

Objective 4:
 Graph theory

- Basic definitions
- Connections between graph problems
- e.g. maximal matching \rightarrow small vertex covers
- Ramsey's theorem
- at least for $c=2, k=2$

What else is studied in distributed computing?

- Fault-tolerance
- Asynchrony
- Shared memory
- Physical models
- Robot navigation
- Nondeterminism
- Complexity measures
- High-performance computing
- Practical aspects of networking ...

What next?

- ICS-E4020 Programming Parallel Computers
- 5th period, 5 credits, intensive course
- programming modern parallel computers: multicore, GPU, memory hierarchies ...
- hands-on programming exercises
- main goal: make it as fast as you can!

What next?

- Just ask if you want to do more!
- master's thesis topics?
- summer internships?
- doctoral studies?

Practicalities

- 2nd mid-term exam: 10 December
- remember to register on time!
- Course feedback: deadline 17 December
- 1 extra point in grading

What to expect in the exam?

- See the learning objectives!
- Do not think that you can safely forget what we learned during the 1st period!
- Expect both algorithm design and lower bound proofs

Examples of old exam problems

- Prove: no deterministic PN-algorithm that finds a minimum vertex cover in cycle graphs, given a minimal vertex cover

Examples of old exam problems

- Prove: no deterministic PN-algorithm that finds a 6-colouring in cycle graphs given a maximal independent set

Examples of old exam problems

- Counting problem: all nodes output |V|
- Prove: no deterministic PN-algorithm for cycle graphs
- Prove: no o(n)-time deterministic LOCAL-algorithm for cycle graphs

Examples of old exam problems

- Prove: no deterministic PN-algorithm for maximal matching in arbitrary graphs

Examples of old exam problems

- Prove: no deterministic o(n)-time PN-algorithm for weak 2-colouring in paths of length ≥ 3

Examples of old exam problems

- Give an elementary proof that any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes
- Weeks 1-2: informal introduction
- network = path

- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

