- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Week 8

- Networks N = (V, P, p) and N' = (V', P', p')
- Surjection φ: V → V' that preserves inputs, degrees, connections, port numbers
- "Fools" any deterministic PN-algorithm: cannot distinguish between N and N'

Networks N and N'

N':

Covering map $\phi: V \rightarrow V'$

Preserves degrees

Preserves degrees

Preserves connections & port numbers

Preserves connections & port numbers

Preserves connections & port numbers

Theorem: preserves outputs!

- φ covering map from N to N',
 A deterministic PN-algorithm
- Run A on N and N'
- Theorem: v and $\varphi(v)$ always in the same state

- Theorem: v and $\varphi(v)$ always in the same state
- Proof: by induction
 - before round 1: map ϕ preserves local states
 - during round 1: map φ preserves messages
 - after round 1: map φ preserves local states

- Theorem: v and $\varphi(v)$ always in the same state
- Proof: by induction
 - before round 2: map φ preserves local states
 - during round 2: map φ preserves messages
 - after round 2: map φ preserves local states

- Theorem: v and $\varphi(v)$ always in the same state
- Proof: by induction
 - before round t: map φ preserves local states
 - during round t: map φ preserves messages
 - after round t: map φ preserves local states

Before round t: local states agree

During round t: outgoing messages agree

During round t: incoming messages agree

After round t: local states agree

- φ covering map from N to N',
 A deterministic PN-algorithm
- Run A on N and N'
- Theorem: v and $\varphi(v)$ always in the same state
- Corollary: v and $\varphi(v)$ have the same output

G: \circ

G:
$$\circ$$

G: 0—0—0

Application: Cycle graphs

Application: Cycle graphs

Application: Cycle graphs

- Cannot break symmetry in cycles
- Deterministic PN algorithms cannot find:
 - vertex colouring, edge colouring
 - maximal independent set, maximal matching
 - 1.99-approximation of minimum vertex cover

• • •

Covering maps and symmetry

Summary

- Covering map: preserves inputs, degrees, connections, port numbers
- Fools any deterministic PN-algorithm
- Can be used to prove that many problems cannot be solved at all in the PN model

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap