
• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Mid-term exams
• Mid-term exams:

• Thursday, 23 October 2014, 9:00am
• Thursday, 11 December 2014, 9:00am

• Register on time (one week before) in Oodi

Week 5

– LOCAL model:  
unique identifiers

LOCAL model
• Idea: nodes have unique names

• Names arbitrary but fairly short

• IPv4 addresses, IPv6 addresses, 
MAC addresses, IMEI numbers…

LOCAL model
• LOCAL model = 

PN model + unique identifiers

• Assumption: unique identifiers 
are given as local inputs

LOCAL model
• Algorithm has to work correctly 

for any port numbering and 
for any unique identifiers

• Adversarial setting:
• you design algorithms
• adversary picks graph, port numbering, IDs

LOCAL model
• Fixed constant c

• In a network with n nodes, 
identifiers are a subset of {1, 2, …, nc}

• Equivalently: unique identifiers 
can be encoded with O(log n) bits

PN vs. LOCAL
• PN: few problems can be solved

• LOCAL: all problems can be solved 
(on connected graphs)

PN vs. LOCAL
• PN: “what can be computed?”

• LOCAL: “what can be computed efficiently?”

Solving everything
• All nodes learn everything about the graph

• O(diam(G)) rounds

• All nodes solve the problem locally 
(e.g., by brute force)

• 0 rounds

Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9

321
E(7, 1)

Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9

321
E(7, 2)

Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9

321
E(7, 3)

Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9

321
E(7, 4)

Gathering everything
• Each node v can learn E(v, 1) in 1 round

• send own ID to all neighbours

6 854 7 9

321 E(7, 1) = { {3, 7}, {6, 7}, {7, 8} }

Gathering everything
• Each node v can learn E(v, 1) in 1 round

• send own ID to all neighbours

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)

Gathering everything
• One of the following holds:

• E(v, r) ≠ E(v, r + 1): learn something new
• E(v, r) = E(v, r + 1) = E: we can stop

• Proof idea:
• if E(v, r) ≠ E, there are unseen edges adjacent 

to E(v, r), and they will be in E(v, r + 1)

Example: 
Graph colouring
• We can solve everything in O(diam(G)) time

• What can be solved much faster?

• Example: graph colouring with Δ + 1 colours
• can be solved in O(Δ + log* n) rounds
• today: how to do it in O(Δ2 + log* n) rounds?

Example: 
Graph colouring
• Setting: LOCAL model, n nodes, 

any graph of maximum degree Δ

• We assume that n and Δ are known
• if not known: guess some n and Δ, 

colour what you can, increase n and Δ, …

Directed 
pseudoforest
• Directed graph, outdegree ≤ 1

• Each node has 
at most one “successor”

• Easy to 3-colour in time O(log* n), 
we will use this as subroutine

Directed 
pseudoforest
• Colouring directed pseudoforests 

almost as easy as colouring directed paths

• Recall path-colouring algorithm P3CBit…

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Directed 
pseudoforest
• Colouring directed pseudoforests 

almost as easy as colouring directed paths

• Recall path-colouring algorithm P3CBit:
• nodes only look at their successor
• my new colour ≠ successor’s new colour
• works equally well in directed pseudoforests!

Algorithm DPBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Directed 
pseudoforests
• Unique identifiers = nO(1) colours

• Iterate DPBit for O(log* n) steps  
to reduce the number of colours to 6

• Iterate DPGreedy for 3 steps  
to reduce the number of colours to 3

Algorithm DPGreedy: 
Slow colour reduction
1. Shift: predecessors have the same colour
2. Recolour local maxima

1

<

2

< <

Directed 
pseudoforests
• Unique identifiers = nO(1) colours

• Iterate DPBit for O(log* n) steps  
to reduce the number of colours to 6

• Iterate DPGreedy for 3 steps  
to reduce the number of colours to 3

Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation

• Port numbers → partition edges 
in Δ directed pseudoforests

• 3-colour pseudoforests in time O(log* n)

• Merge pseudoforests in time O(Δ2)

Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation

• edges directed from smaller to larger ID

9

5

2

7

9

5

2

7

Algorithm BDColour: 
Fast graph colouring
• Port numbers → partition edges 

in Δ directed pseudoforests
• kth outgoing edge → kth pseudoforest

9

5

2

7

9

5

2

7

9

5

2

7

9

5

2

7

Algorithm BDColour: 
Fast graph colouring
• 3-colour pseudoforests in time O(log* n)

• all in parallel
• each node has Δ roles

9

5

2

7

1

2

1

3

2

2

2

3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add first forest: trivial

1

2

1

3

1

2

1

3

2

2

2

3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add first forest: trivial

1

2

1

3

2

2

2

3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add first forest: trivial

1

2

1

3

2

2

2

3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours

1,2

2,2

1,2

3,3

1

2

1

3

2

2

2

3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours

1,2

2,2

1,2

3,3

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours → reduce

2

3

1

4

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours → reduce

2

3

1

4

1

2

2

2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours

2,1

3,2

1,2

4,2

1

2

2

2

2

3

1

4

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours

2,1

3,2

1,2

4,2

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours → reduce

1

3

2

4

Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2)

• maintain colouring with Δ + 1 colours
• add one forest → 3(Δ + 1) colours → reduce

• Each merge + reduce takes O(Δ) rounds

• There are O(Δ) such steps

Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation

• Port numbers → partition edges 
in Δ directed pseudoforests

• 3-colour pseudoforests in time O(log* n)

• Merge pseudoforests in time O(Δ2)

Summary:  
LOCAL model
• Unique identifiers

• Everything can be computed

• What can be computed fast?
• example: graph colouring

Summary:  
LOCAL model
• Unique identifiers

• Everything can be computed
• cheating with large messages
• what if we can only use small messages?
• this is covered next week…

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

