- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Mid-term exams

- Mid-term exams:
 - Thursday, 23 October 2014, 9:00am
 - Thursday, 11 December 2014, 9:00am
- Register on time (one week before) in Oodi

Week 5

LOCAL model: unique identifiers

- Idea: nodes have unique names
- Names arbitrary but fairly short
- IPv4 addresses, IPv6 addresses, MAC addresses, IMEI numbers...

- LOCAL model = PN model + unique identifiers
- Assumption: unique identifiers are given as local inputs

- Algorithm has to work correctly for any port numbering and for any unique identifiers
- Adversarial setting:
 - you design algorithms
 - adversary picks graph, port numbering, IDs

- Fixed constant c
- In a network with n nodes,
 identifiers are a subset of {1, 2, ..., n^c}
- Equivalently: unique identifiers
 can be encoded with O(log n) bits

PN vs. LOCAL

- PN: few problems can be solved
- LOCAL: all problems can be solved (on connected graphs)

PN vs. LOCAL

- PN: "what can be computed?"
- LOCAL: "what can be computed efficiently?"

Solving everything

- All nodes learn everything about the graph
 - O(diam(G)) rounds
- All nodes solve the problem locally (e.g., by brute force)
 - 0 rounds

- Each node v can learn E(v, 1) in 1 round
 - send own ID to all neighbours

- Each node v can learn E(v, 1) in 1 round
 - send own ID to all neighbours

- Given E(v, r), we can learn E(v, r + 1) in 1 round
 - send *E*(*v*, *r*) to all neighbours, take union

- Given E(v, r), we can learn E(v, r + 1) in 1 round
 - send *E*(*v*, *r*) to all neighbours, take union

- One of the following holds:
 - $E(v, r) \neq E(v, r + 1)$: learn something new
 - E(v, r) = E(v, r + 1) = E: we can stop
- Proof idea:
 - if E(v, r) ≠ E, there are unseen edges adjacent to E(v, r), and they will be in E(v, r + 1)

Example: Graph colouring

- We can solve everything in O(diam(G)) time
- What can be solved much faster?
- Example: graph colouring with Δ + 1 colours
 - can be solved in $O(\Delta + \log^* n)$ rounds
 - today: how to do it in $O(\Delta^2 + \log^* n)$ rounds?

Example: Graph colouring

- Setting: LOCAL model, n nodes, any graph of maximum degree Δ
- We assume that n and Δ are known
 - if not known: guess some *n* and Δ , colour what you can, increase *n* and Δ , ...

Directed pseudoforest

- Directed graph, outdegree ≤ 1
- Each node has at most one "successor"
- Easy to 3-colour in time O(log* n), we will use this as subroutine

Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit...

Algorithm P3CBit: Fast colour reduction

- c₀ = 123 = 01111011₂ (my colour)
- **c**₁ = **47** = **00101111**₂ (successor's colour)
 - *i* = 2 (bits numbered 0, 1, 2, ... from right)
 - **b** = 0 (in my colour bit number *i* was 0)
 - **c** = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours

47

Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit:
 - nodes only look at their successor
 - my new colour ≠ successor's new colour
 - works equally well in directed pseudoforests!

Algorithm DPBit: Fast colour reduction

- **c**₀ = **123** = **01111011**₂ (my colour)
- **c**₁ = **47** = **00101111**₂ (successor's colour)
 - *i* = 2 (bits numbered 0, 1, 2, ... from right)
 - **b** = 0 (in my colour bit number *i* was 0)
 - **c** = **2**·**2** + **0** = **4** (my new colour)

k = 8, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours

Directed pseudoforests

- Unique identifiers = n^{O(1)} colours
- Iterate DPBit for O(log* n) steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps to reduce the number of colours to 3

Algorithm DPGreedy: Slow colour reduction

- **1.** Shift: predecessors have the same colour
- 2. Recolour local maxima

Directed pseudoforests

- Unique identifiers = n^{O(1)} colours
- Iterate DPBit for O(log* n) steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps to reduce the number of colours to 3

- Unique identifiers \rightarrow orientation
- Port numbers \rightarrow partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time O(log* n)
- Merge pseudoforests in time $O(\Delta^2)$

- Unique identifiers \rightarrow orientation
 - edges directed from smaller to larger ID

- Port numbers \rightarrow partition edges in Δ directed pseudoforests
 - *k*th outgoing edge \rightarrow *k*th pseudoforest

- 3-colour pseudoforests in time O(log* n)
 - all in parallel
 - each node has Δ roles

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add first forest: trivial

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add first forest: trivial

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add first forest: trivial

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce

- Merge pseudoforests in time $O(\Delta^2)$
 - maintain colouring with Δ + 1 colours
 - add one forest $\rightarrow 3(\Delta + 1)$ colours \rightarrow reduce
- Each merge + reduce takes $O(\Delta)$ rounds
- There are $O(\Delta)$ such steps

- Unique identifiers \rightarrow orientation
- Port numbers \rightarrow partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time O(log* n)
- Merge pseudoforests in time $O(\Delta^2)$

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
- What can be computed fast?
 - example: graph colouring

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
 - cheating with large messages
 - what if we can only use small messages?
 - this is covered next week...

- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap