- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Mid-term exams

- Mid-term exams:
- Thursday, 23 October 2014, 9:00am
- Thursday, 11 December 2014, 9:00am
- Register on time (one week before) in Oodi

Week 5

- LOCAL model: unique identifiers

LOCAL model

- Idea: nodes have unique names
- Names arbitrary but fairly short
- IPv4 addresses, IPv6 addresses, MAC addresses, IMEI numbers...

LOCAL model

- LOCAL model = PN model + unique identifiers
- Assumption: unique identifiers are given as local inputs

LOCAL model

- Algorithm has to work correctly for any port numbering and for any unique identifiers
- Adversarial setting:
- you design algorithms
- adversary picks graph, port numbering, IDs

LOCAL model

- Fixed constant c
- In a network with n nodes, identifiers are a subset of $\left\{1,2, \ldots, n^{c}\right\}$
- Equivalently: unique identifiers can be encoded with $O(\log n)$ bits

PN vs. LOCAL

- PN: few problems can be solved
- LOCAL: all problems can be solved (on connected graphs)

PN vs. LOCAL

- PN: "what can be computed?"
- LOCAL: "what can be computed efficiently?"

Solving everything

- All nodes learn everything about the graph
- O(diam(G)) rounds
- All nodes solve the problem locally (e.g., by brute force)
- 0 rounds

Gathering everything

- $E(v, r)=$ "edges within distance r from v "
$=$ one endpoint at distance at most $r-1$ from v

$$
E(7,1)
$$

Gathering everything

- $E(v, r)=$ "edges within distance r from v "
$=$ one endpoint at distance at most $r-1$ from v

$$
E(7,2)
$$

Gathering everything

- $E(v, r)=$ "edges within distance r from v "
$=$ one endpoint at distance at most $r-1$ from v

$$
E(7,3)
$$

Gathering everything

- $E(v, r)=$ "edges within distance r from v "
$=$ one endpoint at distance at most $r-1$ from v

$E(7,4)$

Gathering everything

- Each node v can learn $E(v, 1)$ in 1 round
- send own ID to all neighbours

Gathering everything

- Each node v can learn $E(v, 1)$ in 1 round
- send own ID to all neighbours

Gathering everything

- Given $E(v, r)$, we can learn $E(v, r+1)$ in 1 round
- send $E(v, r)$ to all neighbours, take union

Gathering everything

- Given $E(v, r)$, we can learn $E(v, r+1)$ in 1 round
- send $E(v, r)$ to all neighbours, take union

$$
\begin{aligned}
& E(5,2)
\end{aligned}
$$

Gathering everything

- One of the following holds:
- $E(v, r) \neq E(v, r+1)$: learn something new
- $E(v, r)=E(v, r+1)=E$: we can stop
- Proof idea:
- if $E(v, r) \neq E$, there are unseen edges adjacent to $E(v, r)$, and they will be in $E(v, r+1)$

Example:
 Graph colouring

- We can solve everything in $O(\operatorname{diam}(G))$ time
- What can be solved much faster?
- Example: graph colouring with $\Delta+1$ colours
- can be solved in $O\left(\Delta+\log ^{\star} n\right)$ rounds
- today: how to do it in $O\left(\Delta^{2}+\log ^{*} n\right)$ rounds?

Example:
 Graph colouring

- Setting: LOCAL model, n nodes, any graph of maximum degree Δ
- We assume that \boldsymbol{n} and $\boldsymbol{\Delta}$ are known
- if not known: guess some n and Δ, colour what you can, increase n and Δ, \ldots

Directed pseudoforest

- Directed graph, outdegree ≤ 1
- Each node has at most one "successor"
- Easy to 3-colour in time $O\left(\log ^{*} n\right)$, we will use this as subroutine

Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit...

Algorithm P3CBit: Fast colour reduction

$c_{0}=123=01111011_{2}$ (my colour)
$c_{1}=47=00101111_{2}$ (successor's colour)
$i=2$ (bits numbered $0,1,2, \ldots$ from right)
$\boldsymbol{b}=0$ (in my colour bit number i was 0)
$\boldsymbol{c}=\mathbf{2} \cdot \mathbf{2} \mathbf{+ 0} \mathbf{=} \mathbf{4}$ (my new colour)
$k=8$, reducing from $2^{8}=256$ to $2 \cdot 8=16$ colours

Directed pseudoforest

- Colouring directed pseudoforests almost as easy as colouring directed paths
- Recall path-colouring algorithm P3CBit:
- nodes only look at their successor
- my new colour \neq successor's new colour
- works equally well in directed pseudoforests!

Algorithm DPBit: Fast colour reduction

$c_{0}=123=01111011_{2}$ (my colour)
$\boldsymbol{c}_{1}=47=00101111_{2}$ (successor's colour)
$i=2$ (bits numbered $0,1,2, \ldots$ from right)
$\boldsymbol{b}=0$ (in my colour bit number i was 0)
$\boldsymbol{c}=\mathbf{2} \cdot \mathbf{2}+\mathbf{0}=\mathbf{4}$ (my new colour)

$k=8$, reducing from $2^{8}=256$ to $2 \cdot 8=16$ colours

Directed pseudoforests

- Unique identifiers $=\boldsymbol{n}^{\boldsymbol{0 (1)}}$ colours
- Iterate DPBit for $O\left(\log ^{*} n\right)$ steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps to reduce the number of colours to 3

Algorithm DPGreedy: Slow colour reduction

1. Shift: predecessors have the same colour
2. Recolour local maxima

$$
0<0<0<0
$$

Directed pseudoforests

- Unique identifiers $=\boldsymbol{n}^{\boldsymbol{0 (1)}}$ colours
- Iterate DPBit for $O\left(\log ^{*} n\right)$ steps to reduce the number of colours to 6
- Iterate DPGreedy for 3 steps to reduce the number of colours to 3

Algorithm BDColour: Fast graph colouring

- Unique identifiers \rightarrow orientation
- Port numbers \rightarrow partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time $O\left(\log ^{*} n\right)$
- Merge pseudoforests in time $O\left(\Delta^{2}\right)$

Algorithm BDColour: Fast graph colouring

- Unique identifiers \rightarrow orientation
- edges directed from smaller to larger ID

Algorithm BDColour: Fast graph colouring

- Port numbers \rightarrow partition edges in Δ directed pseudoforests
- k th outgoing edge $\rightarrow k$ th pseudoforest

Algorithm BDColour: Fast graph colouring

- 3-colour pseudoforests in time $O\left(\log ^{*} n\right)$
- all in parallel
- each node has Δ roles

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add first forest: trivial

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add first forest: trivial

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add first forest: trivial

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours \rightarrow reduce

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours \rightarrow reduce

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours \rightarrow reduce

Algorithm BDColour: Fast graph colouring

- Merge pseudoforests in time $O\left(\Delta^{\mathbf{2}}\right)$
- maintain colouring with $\Delta+1$ colours
- add one forest $\rightarrow 3(\Delta+1)$ colours \rightarrow reduce
- Each merge + reduce takes $O(\Delta)$ rounds
- There are $O(\Delta)$ such steps

Algorithm BDColour: Fast graph colouring

- Unique identifiers \rightarrow orientation
- Port numbers \rightarrow partition edges in Δ directed pseudoforests
- 3-colour pseudoforests in time $O\left(\log ^{*} n\right)$
- Merge pseudoforests in time $O\left(\Delta^{2}\right)$

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
- What can be computed fast?
- example: graph colouring

Summary: LOCAL model

- Unique identifiers
- Everything can be computed
- cheating with large messages
- what if we can only use small messages?
- this is covered next week...
- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

