- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Week 2

- Warm-up: negative results

Locality

- Output of a node can only depend on what it knows
- After T time steps, a node can only know about things up to distance T

Locality

- Who knows that node 15 exists?
- initially, only node 15
- everyone else has to learn it by exchanging messages

Locality

- Who knows about node 15 at time $T=0$?
- initial state, before we exchange any messages

Locality

- Who knows about node 15 at time $T=1$?
- after 1 communication round

Locality

- Who knows about node 15 at time $T=2$?
- after 2 communication rounds

Locality

- Who knows about node 15 at time $T=3$?
- after 3 communication rounds

Locality

- After T communication rounds, only nodes up to distance T from node \boldsymbol{x} can know anything about node \boldsymbol{x}
- distance = "number of hops"

Locality

- After T communication rounds, node x can only know about other nodes that are within distance T from it
- distance = "number of hops"

Locality

- My state at time T only depends on:
- my state at time $T-1$, and
- messages that I received on round T, which only depend on:
- the state of my neighbours at time T - 1

Locality

- State at time T only depends on initial information within distance T

Locality

- Time = distance
- Fast algorithm = "local" algorithm
- outputs only depend on local neighbourhoods

Example: 3-colouring

- Recall: given 128 -bit unique identifiers, 3 -colouring possible in 7 rounds
- Equivalently: each node can pick its colour based on what it sees in its radius-7 neighbourhood
$\rightarrow \mathrm{O} \rightarrow \mathrm{O}$

Using locality to prove lower bounds

- Example: 2-colouring of a path
- Upper bound: possible in time $O(n)$
- Lower bound: not possible in time o(n)

Algorithm for 2-colouring

- Assumption: path, unique identifiers
- Two phases:
- find the endpoint with smaller identifier
- starting from this end, assign colours $1,2,1,2, \ldots$

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- Messages:
- "ID x " = there is an endpoint with identifier x
- "colour c" = my colour is c

Algorithm for 2-colouring

- States: "I have have received ID x from left and next I will need to send it to right", ...
- Running time: $O(n)$ rounds

Algorithm for 2-colouring

- 2-colouring possible in $O(n)$ rounds
- Goal: prove that this is optimal!
- there is no algorithm that finds a 2-colouring in time $o(n)$
- assumptions: path, unique identifiers

Lower bound for 2-colouring

- Assume: there is an o(n)-time algorithm A
- For large n, running time $\ll \boldsymbol{n} / 2$
- Idea: construct two possible worlds, show that A fails in one of them

Lower bound for 2-colouring

- Long paths with $2 k$ and $\mathbf{2 k + 1}$ nodes, algorithm runs in $\leq \boldsymbol{k} \mathbf{- 1}$ rounds

Lower bound for 2-colouring

- Same (k-1)-neighbourhood, same output

Lower bound for 2-colouring

- Same (k-1)-neighbourhood, same output

Lower bound for 2-colouring

- Contradiction - why?

Lower bound for 2-colouring

- G: nodes 1 and 6 must have different colours
- H: nodes 1 and 6 must have the same colour

Lower bound for 2-colouring

- Conclusion: there is no algorithm that finds a 2 -colouring of a path in time on)

Using locality to prove lower bounds

- Example: 3-colouring of a path
- Upper bound: possible in time $O\left(\log ^{\star} n\right)$
- Lower bound: not possible in time $o\left(\log ^{*} n\right)$

Lower bound for 3-colouring

- Given: directed path with n nodes, identifiers are a permutation of $\{1,2, \ldots, n\}$

Lower bound for 3-colouring

- Given: directed path with n nodes, identifiers are a permutation of $\{1,2, \ldots, n\}$
- Assume: there is an algorithm A that finds a 3-colouring in time T
- Goal: prove that $T \geq 1 / 2 \log *(n)-1$

Algorithm for 3-colouring paths

- Running time $T=$ output only depends on radius- T neighbourhood of the node
- Algorithm $=\boldsymbol{k}$-ary function where $\boldsymbol{k}=\mathbf{2 T + 1}$

Algorithm for 3-colouring paths

$A(87,29,11,46,32) \neq A(29,11,46,32,77)$

Algorithm for c-colouring paths

- $A\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, c\}$ for all distinct $x_{1}, \ldots, x_{k} \in\{1, \ldots, n\}$
- $A\left(x_{1}, \ldots, x_{k}\right) \neq A\left(x_{2}, \ldots, x_{k+1}\right)$ for all distinct $x_{1}, \ldots, x_{k+1} \in\{1, \ldots, n\}$

Definition: ${ }^{\mathbf{6} \boldsymbol{k}-\mathbf{a r y}}$ c-colouring function"

- $f\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, c\}$
for all $1 \leq x_{1}<\ldots<x_{k} \leq \boldsymbol{n}$
- $f\left(x_{1}, \ldots, x_{k}\right) \neq f\left(x_{2}, \ldots, x_{k+1}\right)$
for all $1 \leq x_{1}<\ldots<x_{k+1} \leq \boldsymbol{n}$
- We only care what happens with increasing identifiers

k-ary c-colouring function

$$
f(25,29,34,46,52) \neq f(29,34,46,52,77)
$$

k-ary c-colouring function

- Assume: A is a distributed algorithm that finds a 3 -colouring in directed n-cycles in time T
- Then: \boldsymbol{A} is also a k-ary 3 -colouring function for $\boldsymbol{k}=\mathbf{2 T} \mathbf{+ 1}$
- Plan: show that $\boldsymbol{k}+1 \geq \log ^{*} n$

Lemma 1

- If f is a 1 -ary c-colouring function, then $c \geq n$
- Proof:
- pigeonhole principle
- if $c<n$, there is a collision $f(x)=f(y)$ for some $1 \leq x<y \leq n$, contradiction

Lemma 2

- If f is a k-ary c-colouring function, then we can construct a ($k-1$)-ary 2^{c}-colouring function g
- Proof:
- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g\left(x_{1}, \ldots, x_{k-1}\right)=h\left(g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)\right)$
- $h=$ bijection that maps sets to colours

Lemma 2 (continued)

- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g\left(x_{1}, \ldots, x_{k-1}\right)=h\left(g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)\right)$
- $h=$ bijection that maps sets to colours
- By construction: $g\left(x_{1}, \ldots, x_{k-1}\right) \in\left\{1, \ldots, 2^{c}\right\}$
- Need to show: $g\left(x_{1}, \ldots, x_{k-1}\right) \neq g\left(x_{2}, \ldots, x_{k}\right)$ for all $1 \leq x_{1}<\ldots<x_{k} \leq n$

Lemma 2 (continued)

- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g\left(x_{1}, \ldots, x_{k-1}\right)=h\left(g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)\right)$
- $h=$ bijection that maps sets to colours
- Need to show: $g\left(x_{1}, \ldots, x_{k-1}\right) \neq g\left(x_{2}, \ldots, x_{k}\right)$ for all $1 \leq x_{1}<\ldots<x_{k} \leq n$

Lemma 2 (continued)

- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g\left(x_{1}, \ldots, x_{k-1}\right)=h\left(g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)\right)$
- $h=$ bijection that maps sets to colours
- Need to show: $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right) \neq g^{\prime}\left(x_{2}, \ldots, x_{k}\right)$ for all $1 \leq x_{1}<\ldots<x_{k} \leq n$

Lemma 2 (continued)

- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- Need to show: $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right) \neq g^{\prime}\left(x_{2}, \ldots, x_{k}\right)$ for all $1 \leq x_{1}<\ldots<x_{k} \leq n$

Lemma 2 (continued)

- $1 \leq x_{1}<x_{2}<\ldots<x_{k} \leq n$
- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g^{\prime}\left(x_{2}, \ldots, x_{k}\right)=\left\{f\left(x_{2}, \ldots, x_{k}, z\right): z>x_{k}\right\}$
- $f\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \in g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)$
- $f\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \notin g^{\prime}\left(x_{2}, \ldots, x_{k}\right)$
- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right) \neq g^{\prime}\left(x_{2}, \ldots, x_{k}\right)$

Lemma 2 (continued)

- $1 \leq x_{1}<x_{2}<\ldots<x_{k} \leq n$
- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g^{\prime}\left(x_{2}, \ldots, x_{k}\right)=\left\{f\left(x_{2}, \ldots, x_{k}, z\right): z>x_{k}\right\}$
- $f\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \in g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)$
- $f\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \notin g^{\prime}\left(x_{2}, \ldots, x_{k}\right)$
- $g\left(x_{1}, \ldots, x_{k-1}\right) \neq g\left(x_{2}, \ldots, x_{k}\right)$

$$
\begin{array}{ll}
n=6 & \text { Tree that contains all increasing } \\
k=3 & \text { sequences of }\{1,2, \ldots n\}
\end{array}
$$

Lemma 2

- If f is a k-ary c-colouring function, then we can construct a ($k-1$)-ary 2^{c}-colouring function g
- Proof:
- $g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{f\left(x_{1}, \ldots, x_{k-1}, y\right): y>x_{k-1}\right\}$
- $g\left(x_{1}, \ldots, x_{k-1}\right)=h\left(g^{\prime}\left(x_{1}, \ldots, x_{k-1}\right)\right)$
- $h=$ bijection that maps sets to colours

Iterate Lemma 2

${ }^{i} 2=2^{2 \cdot} \quad$ (i twos $)$

- k-ary 3-colouring function \rightarrow k-ary ${ }^{2} 2$-colouring function \rightarrow (k-1)-ary ${ }^{3} 2$-colouring function \rightarrow (k-2)-ary ${ }^{4} 2$-colouring function \rightarrow ($k-3$)-ary ${ }^{5} 2$-colouring function \rightarrow

1-ary ${ }^{k+1} 2$-colouring function

Lemma 1 + Lemma 2

$$
i_{2}=2^{2 \cdot i}(i \text { twos })
$$

- Lemma 2:
- k-ary 3-colouring function \rightarrow 1 -ary ${ }^{k+1} 2$-colouring function
- Lemma 1:
- ${ }^{k+1} 2 \geq n \quad$ (that is, $k+1 \geq \log ^{*} n$)

Lower bound for 3-colouring

- Assume: A is a distributed algorithm that finds a 3 -colouring in directed n-cycles in time T
- Then: A is also a k-ary 3 -colouring function for $\boldsymbol{k}=\mathbf{2 T}+\mathbf{1}$
- Then: $k+1 \geq \log ^{*} n$, therefore: $T \geq 1 / 2 \log ^{*}(n)-1$

Conclusions: tight bounds

- 2-colouring paths:
- possible in time $O(n)$
- not possible in time o(n)
- 3-colouring paths:
- possible in time $O\left(\log ^{\star} n\right)$
- not possible in time $o\left(\log ^{*} n\right)$

Conclusions: tight bounds

- 2-colouring paths:
- possible in time $O(n)$
- not possible in time o(n)
- 3-colouring paths:
- possible in time $O\left(\log ^{\star} n\right)$

Richard Cole and Uzi Vishkin (1986)

- not possible in time $o\left(\log ^{\star} n\right)<$ Nathan Linial (1992)
- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

