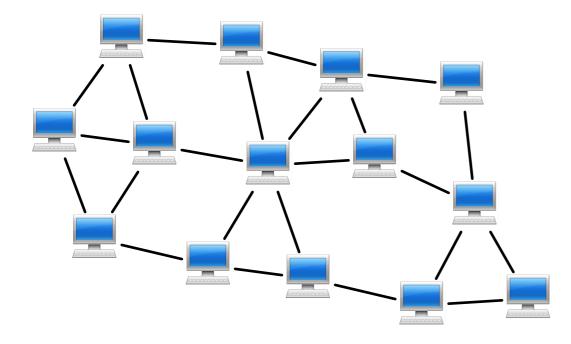
- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

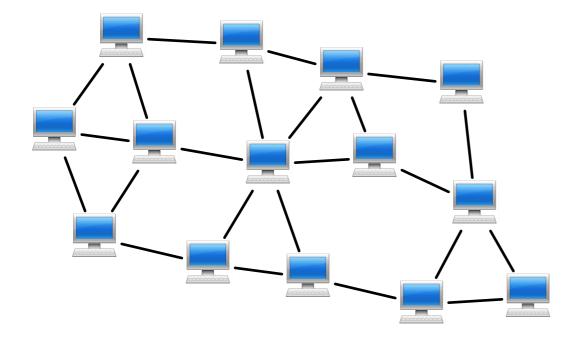
Week 12

- Conclusions

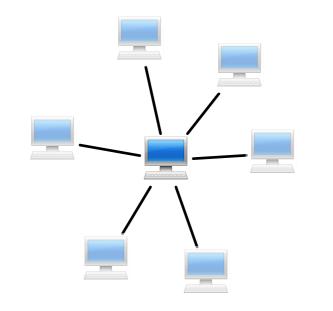
Algorithms for computer networks



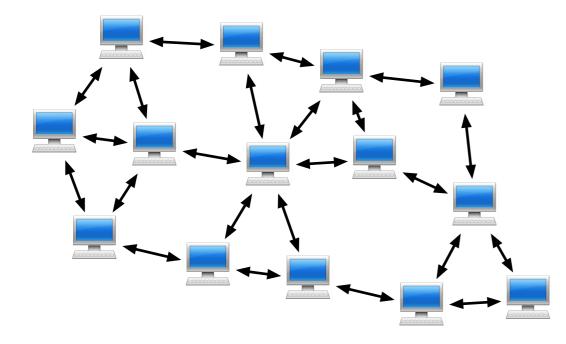
Identical computers in an unknown network, all running the same algorithm



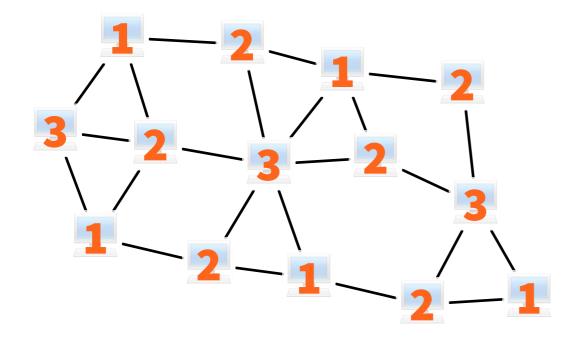
Initially each computer only aware of its immediate neighbourhood



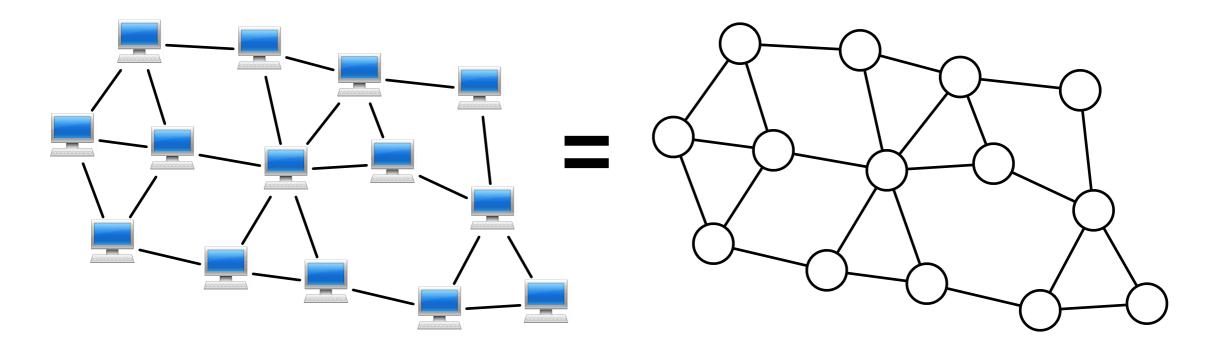
Nodes can exchange messages with their neighbours to learn more...



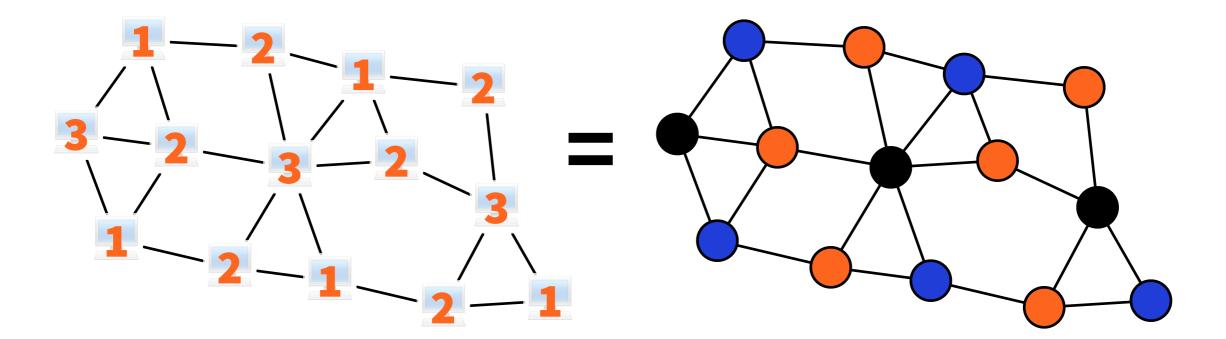
Finally, each computer has to stop and produce its own local output



Focus on graph problems: network topology = input graph



Focus on graph problems: local outputs = solution (here: graph colouring)



Typical research question:

"How fast can we solve graph problem X?"

Time = number of communication rounds

What have we learned?

- Dealing with *unknown systems*
- Dealing with *partial information*
- Dealing with *parallelism*
- Applications beyond distributed computing: fault tolerance, online, streaming, multicore...

Learning objectives

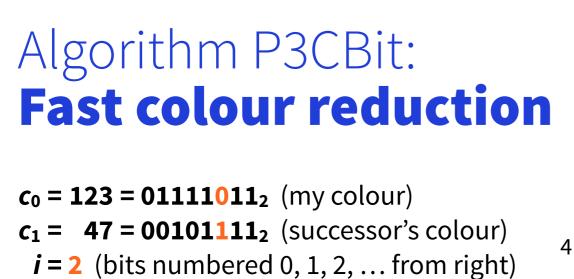
- Models
- Algorithms
- Lower bounds
- Graph theory

Objective 1: Models of computing

- Precisely what is a "distributed algorithm"
- In each of these models:
 - PN, LOCAL, CONGEST
 - deterministic, randomised

Objective 2: Algorithms

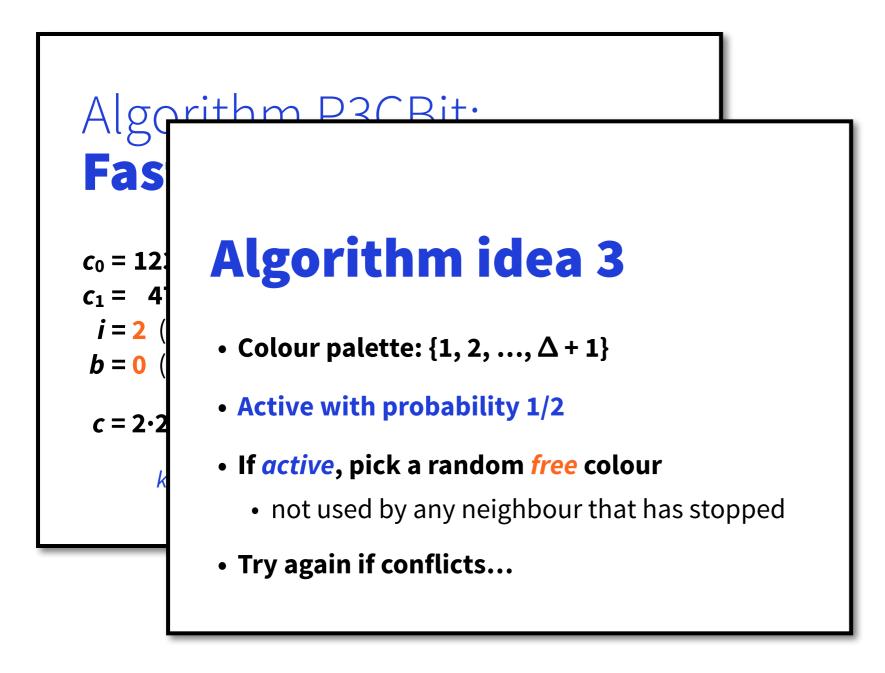
- Colouring paths: LOCAL, O(log* n)
- Colouring graphs: LOCAL, O(log n) w.h.p.
- Gather everything: LOCAL, O(diam(G))
- **Bipartite maximal matching:** PN, $O(\Delta)$
- All-pairs shortest paths: CONGEST, O(n)



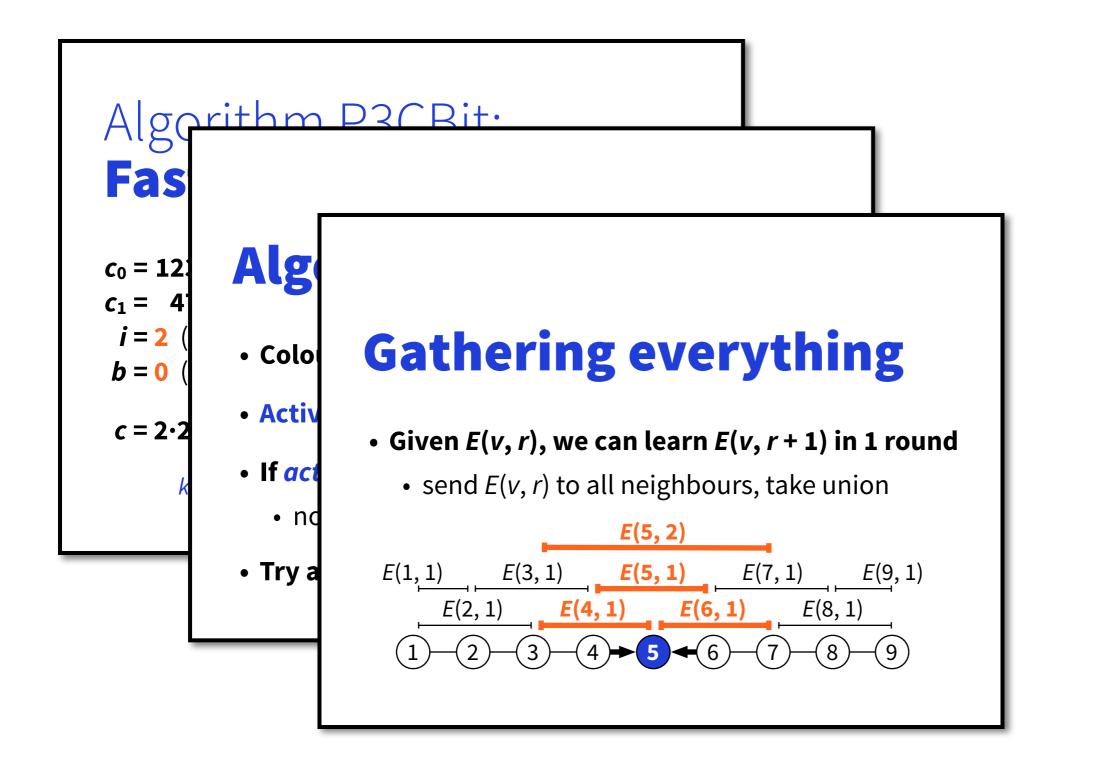
- b = 0 (in my colour bit number *i* was 0)
- *c* = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours

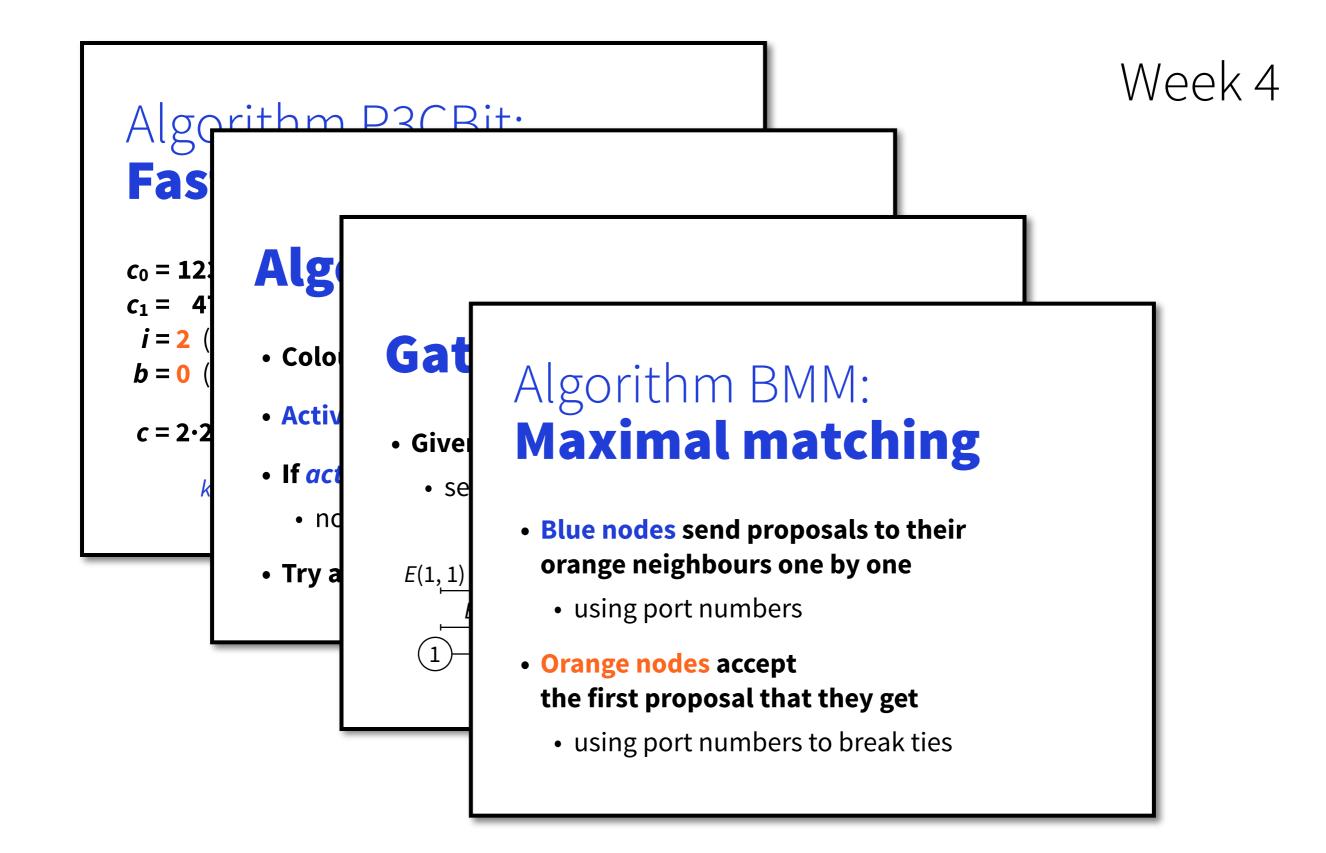
Week 1

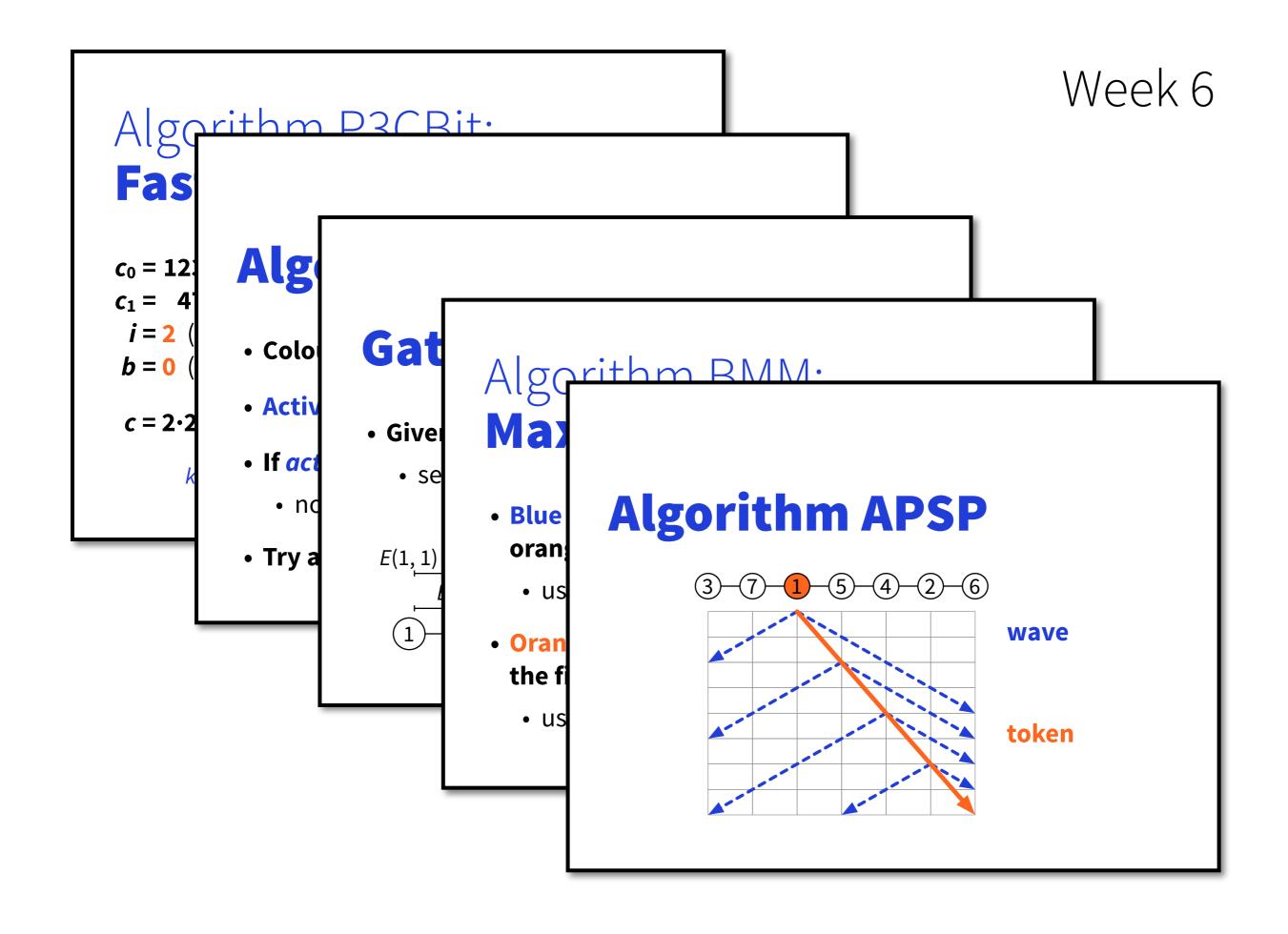


Week 7



Week 5





Objective 2: Algorithms

- Reductions!
- Graph colouring is a very useful subroutine

Objective 3: Lower bounds

• Covering maps:

what cannot be solved at all in PN model

- Local neighbourhoods: what cannot be solved fast in any model
- **Ramsey's theorem:** what cannot be solved in *O*(1) time

Objective 4: Graph theory

- Basic definitions
- Connections between graph problems
 - e.g. maximal matching → small vertex covers
- Ramsey's theorem
 - at least for *c* = 2, *k* = 2

What else is studied in distributed computing?

- Fault-tolerance
- Asynchrony
- Shared memory
- Physical models
- Robot navigation

- Nondeterminism
- Complexity measures
- High-performance computing
- Practical aspects of networking ...

What next?

- ICS-E4020 Programming Parallel Computers
 - 5th period, 5 credits, intensive course
 - programming modern parallel computers: multicore, GPU, memory hierarchies ...
 - hands-on programming exercises
 - main goal: make it as fast as you can!

What next?

- Just ask if you want to do more!
 - master's thesis topics?
 - summer internships?
 - doctoral studies?

Practicalities

- 2nd mid-term exam: 11 December
 - remember to register on time!
- Course feedback: deadline 12 December
 - this is a new course, feedback very important!
 - 1 extra point in grading

What to expect in the exam?

- See the learning objectives!
- Do not think that you can safely forget what we learned during the 1st period!
- Expect both algorithm design and lower bound proofs

 Prove: no deterministic PN-algorithm that finds a *minimum* vertex cover in cycle graphs, given a *minimal* vertex cover

 Prove: no deterministic PN-algorithm that finds a 6-colouring in cycle graphs given a maximal independent set

- Counting problem: all nodes output |V|
- Prove: no deterministic
 PN-algorithm for cycle graphs
- Prove: no o(n)-time deterministic
 LOCAL-algorithm for cycle graphs

 Prove: no deterministic PN-algorithm for maximal matching in arbitrary graphs

Prove: no deterministic o(n)-time
 PN-algorithm for weak 2-colouring
 in paths of length ≥ 3

 Give an elementary proof that any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes

- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap