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This paper proposes a method for transcribing drums from polyphonic music using a network of connected hidden Markov
models (HMMs). The task is to detect the temporal locations of unpitched percussive sounds (such as bass drum or hi-hat)
and recognise the instruments played. Contrary to many earlier methods, a separate sound event segmentation is not done,
but connected HMMs are used to perform the segmentation and recognition jointly. Two ways of using HMMs are studied:
modelling combinations of the target drums and a detector-like modelling of each target drum. Acoustic feature parametrisation
is done with mel-frequency cepstral coefficients and their first-order temporal derivatives. The effect of lowering the feature
dimensionality with principal component analysis and linear discriminant analysis is evaluated. Unsupervised acoustic model
parameter adaptation with maximum likelihood linear regression is evaluated for compensating the differences between the
training and target signals. The performance of the proposed method is evaluated on a publicly available data set containing
signals with and without accompaniment, and compared with two reference methods. The results suggest that the transcription
is possible using connected HMMs, and that using detector-like models for each target drum provides a better performance than
modelling drum combinations.
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1. Introduction

This paper applies connected hidden Markov models
(HMMs) to the transcription of drums from polyphonic
musical audio. For brevity, the word “drum” is here used
to refer to all the unpitched percussions met in Western
pop/rock music, such as bass drum, snare drum, and
cymbals. The word “transcription” is used to refer to
the process of locating drum sound onset instants and
recognising the drums played. The analysis result enables
several applications, such as using the transcription to assist
beat tracking [1], drum track modification in the audio [2],
reusing the drum patterns from existing audio, or musical
studies on the played patterns.

Several methods have been proposed in literature to
solve the drum transcription problem. Following the cat-
egorisation made in [3, 4], majority of the methods can
be viewed to be either segment and classify or separate
and detect approaches. The methods in the first category

operate by segmenting the input audio into meaningful
events, and then attempt to recognise the content of the
segments. The segmentation can be done by detecting
candidate sound onsets or by creating an isochronous
temporal grid coinciding with most of the onsets. After
the segmentation a set of features is extracted from each
segment, and a classifier is employed to recognise the
contents. The classification method varies from a naive Bayes
classifier with Gaussian mixture models (GMMs) [5] to
support vector machines (SVMs) [4, 6] and decision trees
[7].

The methods in the second category aim at segregating
each target drum into a separate stream and to detect
sound onsets within the streams. The separation can be
done with unsupervised methods like sparse coding [8] or
independent subspace analysis (ISA) [9], but these require
recognising the instruments from the resulting streams.
The recognition step can be avoided by utilising prior
knowledge of the target drums in the form of templates, and
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applying a supervised source separation method. Combining
ISA with drum templates produces a method called prior
subspace analysis (PSA) [10]. PSA represents the templates
as magnitude spectrograms and estimates the gains of
each template over time. The possible negative values
in the gains do not have a physical interpretation and
require a heuristic post-processing. This problem was solved
using nonnegative matrix factorisation (NMF) restricting
the component spectra and gains to be nonnegative. This
approach was shown to perform well when the target signal
matches the model (signals containing only target drums)
[11].

Some methods cannot be assigned to either of the
categories above. These include template matching and
adaptation methods operating with time-domain signals
[12], or with a spectrogram representation [13].

The main weakness with the “segment and classify”
methods is the segmentation. The classification phase is
not able to recover any events missed in the segmentation
without an explicit error correction scheme, for example,
[14]. If a temporal grid is used instead of onset detection,
most of the events will be found, but the expressivity lying
in the small temporal deviations from the grid is lost, and
problems with the grid generation will be propagated to
subsequent analysis stages.

To avoid making any decisions in the segmentation, this
paper proposes to use a network of connected HMMs in the
transcription in order to locate sound onsets and recognise
the contents jointly. The target classes for recognition can be
either combinations of drums or detectors for each drum.
In the first approach, the recognition dictionary consists of
combinations of target drums with one model to serve as
the background model when no combination is played, and
the task is to cover the input signal with these models. In the
detector approach, each individual target drum is associated
with two models: a “sound” model and a “silence” model,
and the input signal is covered with these two models for each
target drum independently from the others.

In addition to the HMM baseline system, the use of
model adaptation with maximum likelihood linear regres-
sion (MLLR) will be evaluated. MLLR adapts the acoustic
models from training to better match the specific input.

The rest of this article is organised as follows: Section 2
describes the proposed HMM-based transcription method;
Section 3 details the evaluation setup and presents the
obtained results; and finally Section 4 presents the conclu-
sions of the paper. Parts of this work have been published
earlier in [15, 16].

2. Proposed Method

Figure 1 shows an overview of the proposed method. The
input audio is subjected to sinusoids-plus-residual modelling
to suppress the effect of nondrum instruments by using
only the residual. Then the signal is subdivided into short
frames from which a set of features is extracted. The features
serve as observations in HMMs that have been constructed
in the training phase. The trained models are adapted

with unsupervised maximum likelihood linear regression
[17] to match the transcribed signal more closely. Finally,
the transcription is done by searching an optimal path
through the HMMs with Viterbi algorithm. The steps are
described in more detail in the following.

2.1. Feature Extraction and Transformation. It has been
noted, for example, in [13, 18], that suppression of tonal
spectral components improves the accuracy of drum tran-
scription. This is no surprise, as the common drums in
pop/rock drum kit contain a notable stochastic component
and relatively little tonal energy. Especially the idiophones
(e.g., cymbals) produce mostly noise-like signal, while the
membranophones (skinned drums) may contain also tonal
components [19]. The harmonic suppression is here done
with simple sinusoids-plus-residual modelling [20, 21]. The
signal is subdivided into 92.9 ms frames, the spectrum is
calculated with discrete Fourier transform, and 30 sinusoids
with the largest magnitude are selected by locating the
30 largest local maxima in the magnitude spectrum. The
sinusoids are then synthesised and the resulting signal is
subtracted from the original signal. The residual serves as
the input to the following analysis stages. Even though
the processing may remove some of the tonal components
of the membranophones, the remaining ones and the
stochastic components are enough for the recognition.
Preliminary experiments also suggest that the exact number
of removed components is not important, even doubling
the number to 60 caused only an insignificant drop in the
performance.

The feature extraction calculates 13 mel-frequency cep-
stral coefficients (MFCCs) in 46.4 ms frames with 75% over-
lap [22]. In addition to the MFCCs, their first-order temporal
derivatives are estimated. The zeroth coefficient which is
often discarded is also used. MFCCs have proven to work well
in a variety of acoustic signal content analysis tasks including
instrument recognition [23]. In addition to the MFCCs and
their temporal derivatives, other spectral features, such as
band energy ratios, spectral kurtosis, skewness, flatness, and
slope used, for example, in [6] were considered for the feature
set. However, preliminary experiments suggested that their
inclusion reduces the overall performance slightly and they
are not used in the presented results. The reason for this
degradation is an open question to be addressed in the
future work, but is assumed that the features do not contain
enough additional information compared to the original set
to compensate the increased modelling requirements.

The resulting 26-dimensional feature vectors are nor-
malised to have zero mean and unity variance in each
feature dimension over the training data. Then the feature
matrix is subjected to dimensionality reduction. Though
unsupervised transformation with principal component
analysis (PCA) has been successfully used in some earlier
publications, for example, [24], it did not perform well in
our experiments. It is assumed that this is because PCA
attempts only to describe the variance of the data without
class information, and it may be distracted by the amount of
noise present in the data.
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Figure 1: A block diagram of the proposed HMM transcription method including acoustic model adaptation.

The feature transformation used here is calculated with
linear discriminant analysis (LDA). LDA is a class-aware
transformation attempting to minimise intra-class scatter
while maximising interclass separation. If there are N
different classes, LDA produces a transformation to N − 1
feature dimensions.

2.2. HMM Topologies. Two different ways to utilise con-
nected HMMs for drum transcription are considered: drum
sound combination modelling and detector models for each
target drum. In the first case, each of the 2M combinations
of M target drums is modelled with a separate HMM.
In the latter case, each target drum has two separate
models: a “sound” model and a “silence” model. In both
approaches the recognition aims to find a sequence of the
models providing the optimal description of the input signal.
Figure 2 illustrates the decoding with combination mod-
elling, while Figure 3 illustrates the decoding with drumwise
detectors.

The main motivation for the combination modelling is
that in popular music multiple drums are often hit simulta-
neously. However, the main weakness is that as the number
of target drums increases, the number of combinations to
be modelled also increases rapidly. Since only the few most
frequent combinations cover most of the occurrences, as
illustrated in Figure 4, there is very little training data for the
more rare combinations. Furthermore, it may be difficult to
determine whether or not some softer sound is present in a
combination (e.g., when kick and snare drums are played, the
presence of hi-hat may be difficult to detect from the acoustic
information) and a wrong combination may be recognised.

With detector models, the training data can be utilised
more efficiently than with combination models, because all
combinations containing the target drum can be used to
train the model. Another difference in the training phase
is that each drum has a separate silence (or background)
model.

As will be shown in Section 3, the detector topology
generally outperforms the combination modelling which
was found to have problems with overfitting the limited
amount of training data. This was indicated by the following
observations: performance degradation with increasing the
number of HMM training iterations and acoustic adap-
tation, and slight improvement in the performance with
simpler models and reduced feature dimensions. Because of

this, the results on acoustic model adaptation and feature
transformations are presented only for the detector topology
(similar choice has been done, e.g., in [4]). For the sake
of comparison, however, results are reported also for the
combination modelling baseline.

The sound models consist of a four-state left-to-right
HMM where a transition is allowed to the state itself and to
the following state. The observation likelihoods are modelled
with single Gaussian distributions. The silence model is
a single-state HMM with a 5-component GMM for the
observation likelihoods. This topology was chosen because
the background sound does not have a clear sequential
form. The number of states and GMM components were
empirically determined.

The models are trained with expectation maximisation
algorithm [26] using segmented training examples. The
segments are extracted after annotated event onsets using
a maximum duration of 10 frames. If there is another
onset closer than the set limit, the segment is truncated
accordingly. In detector modelling, the training instances
for the “sound” model are generated from the segments
containing the target drum, and the remaining frames are
used to train the “silence” model. In combination modelling,
the training instances for each combination are collected
from the data, and the remaining frames are used to train
the background model.

2.3. Acoustic Adaptation. Unsupervised acoustic adaptation
with maximum likelihood linear regression (MLLR) [17]
has been successfully used to adapt the HMM observation
density parameters, for example, in adapting speaker inde-
pendent models to speaker dependent models in speech
recognition [17], language adaptation from Spanish to
Valencian [27], or to utilise a recognition database trained
for phone speech to recognise speech in car conditions
[28]. The motivation for using MLLR here is that, it is
assumed that the acoustic properties of the target signal
always differ from those of the training data, and the match
between the model and the observations can be improved
with adaptation. The adaptation is done for each target signal
independently to provide models that fit the specific signal
better. The adaptation is evaluated only for the detector
topology, because for drum combinations, the adaptation
was not successful, most likely due to the limited amount of
observations.
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Figure 2: Illustration of the basic idea of drum transcription with connected HMMs for drum combinations. The decoding aims to find the
optimal path through the models given the observed acoustic information.
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Figure 3: Illustration of the basic idea of drum transcription with HMM-based drum detectors. Each target drum is associated with two
models, “sound” and “silence”, and the decoding is done for each drum separately.

In single variable MLLR for the mean parameter, a
transformation matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1,1 w1,2 0 · · · 0

w2,1 0 w2,3 · · · 0

...
. . .

...

wn,1 0 · · · 0 wn,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

is used to apply a linear transformation to the GMM
mean vector μ so that the likelihood of the adaptation
data is maximised. The mean vector μ with the length n is
transformed by

μ′ = W
[
ω,μ�

]�, (2)

where the transformation matrix has the dimensions of n ×
(n+ 1), and ω = 1 is a bias parameter. The nonzero elements
of W can be organised into a vector

ŵ = [w1,1, . . . ,wn,1,w1,2, . . . ,wn,n+1
]�
. (3)

The value of the vector can be calculated by

ŵ =
⎡
⎣

S∑

s=1

T∑

t=1

γs(t)DT
s C−1

s Ds

⎤
⎦
−1⎡
⎣

S∑

s=1

T∑

t=1

γs(t)DT
s C−1

s o(t)

⎤
⎦,

(4)

where t is frame index; o(t) is the observation vector from
frame t; s is an index of GMM components in the HMM;
Cs is the covariance matrix of GMM component s, γs(t)
the occupation probability of sth component in frame t
(calculated, e.g., with the forward-backward algorithm), and
matrix Ds is defined as a concatenation of two diagonal
matrices

Ds =
[

Iω, diag
(
μs
)]

, (5)

where μs is the mean vector of the sth component and
I is a n × n identity matrix [17]. In addition to the
single variable mean transformation, also full matrix mean
transformation [17] and variance transformation [29] were
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Figure 4: Relative occurrence frequencies of various drum com-
binations in “ENST drums” [25] data set. Different drums are
denoted with BD (bass drum), CY (all cymbals), HH (all hi-hats),
SD (snare drum), and TT (all tom-toms). Two drum hits were
defined to be simultaneous if their annotated onset times differ less
than 10 ms. Only the 16 most frequent combinations are shown.

tested. In the evaluations, the single variable adaptation
performed better than the full matrix mean transformation,
and therefore the results are presented only for it. Variance
transformation reduced performance in all cases.

The adaptation is done so that the signal is first analysed
with the original models. Then it is segmented to examples
of either class (“sound”/“silence”) based on the recognition
result, and the segments are used to adapt the corresponding
models. The adaptation can be repeated using the models
from the previous adaptation iteration for segmentation. It
was found in the evaluations that applying the adaptation
repeatedly for three times produced the best result even
though the obtained improvement after the first adaptation
was usually very small. Further increment of the number of
adaptation iterations from this started to degrade the results.

2.4. Recognition. In the recognition phase, the (adapted)
HMM models are combined into a larger compound model;
see Figures 2 and 3. This is done by concatenating the state
transition matrices of the individual HMMs and incorpo-
rating the intermodel transition probabilities in the same
matrix. The transition probabilities between the models are
estimated from the same material that is used for training the
acoustic models, and the bigram probabilities are smoothed
with Witten-Bell smoothing [30]. The compound model is
then used to decode the sequence with Viterbi algorithm.
Another alternative would be to use token passing algorithm
[31], but since the model satisfies the first-order Markov
assumption (only bigrams are used), Viterbi is still a viable
alternative.

3. Results

The performance of the proposed method is evaluated using
the publicly available data set “ENST drums” [25]. The data
set allows adjusting the accompaniment (everything else but
the drums) level in relation to the drum signal, and two

different levels are used in the evaluations: a balanced mix
and a drums-only signal. The performance of the proposed
method is compared with two reference systems: a “segment
and classify” method by Tanghe et al. [6], and a supervised
“separate and detect” method using nonnegative matrix
factorisation [11].

3.1. Acoustic Data. The data set “ENST drums” contains
multichannel recordings of three drummers playing with
different drum kits. In addition to the original multichannel
recordings, also two downmixes are provided: “dry” with
minimal effects, mainly having only the levels of different
drums balanced, and “wet” resembling the drum tracks
on commercial recordings, containing some effects and
compression. The material in the data set ranges from
individual hits to stereotypical phrases, and finally to longer
tracks played along with an accompaniment. These “minus
one” tracks played on accompaniment have the synchronised
accompaniment available as a separate signal allowing to
create polyphonic signals with custom mixing levels. The
ground truth for the data set contains the onset times for the
different drums, and was provided with the data set.

The “minus one” tracks are used as the evaluation data.
They are naturally split into three subsets based on the player
and kit, each having approximately the same number of
tracks (two with 21 tracks and one with 22). The lengths
of the tracks range from 30 s to 75 s with mean duration
of 55 s. The mixing ratios of drums and accompaniment
used in the evaluations are drums-only and a “balanced”
mix. The former is used to obtain a baseline result for the
system with no accompaniment. The latter, corresponding
to applying scaling factors of 2/3 for the drum signal and 1/3
for the accompaniment, is used then to evaluate the system
performance in realistic conditions met in polyphonic music.
(The mixing levels are based on personal communication
with Gillet, and result into an average of −1.25 dB drums-
to-accompaniment ratio over the whole data set.)

3.2. Evaluation Setup. Evaluations are run using a three-fold
cross-validation scheme. Data from two drummers are used
to train the system and the data from the third are used
for testing, and the division is repeated three times. This
setup guarantees that the acoustic models have not seen the
test data and their generalisation capability will be tested. In
fact, the sounds of the corresponding drums in different kits
may differ considerably (e.g., depending on the tension of
the skin, the use of muffling in case of kick drum, or the
instrument used to hit the drum that can be a mallet, a stick,
rods, or brushes) and using only two examples of a certain
drum category to recognise a third one is a difficult problem.
Hence, in real applications the training should be done with
as diverse data as possible.

The target drums in the evaluations are bass drum (BD),
snare drum (SD), and hi-hat (HH). The target set is limited
to these three for two main reasons. Firstly, they are found
practically in every track in the evaluation data and they
cover a large portion of all the drum sound events, as can be
seen from Figure 5. Secondly, and more importantly, these
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Table 1: Evaluation results for the tested methods using the balanced drums and accompaniment mixture as input.

Method Metric BD SD HH Total

HMM
P(%) 84.7 65.3 84.9 80.0

R(%) 77.4 44.9 78.5 68.0

F(%) 80.9 53.2 81.6 73.5

HMM + MLLR
P(%) 80.2 66.3 84.7 79.0

R(%) 81.5 45.3 82.6 70.9

F(%) 80.8 53.9 83.6 74.7

HMM comb
P(%) 54.9 38.8 73.0 55.0

R(%) 66.4 47.0 58.7 57.4

F(%) 60.1 42.5 65.1 56.1

P(%) 69.9 57.0 58.2 62.0

NMF-PSA [11] R(%) 57.9 16.7 53.5 43.6

F(%) 63.4 25.9 55.8 51.2

P(%) 80.9 65.9 47.1 54.3

SVM [6] R(%) 38.4 14.2 69.5 43.8

F(%) 51.1 23.4 56.1 48.5

Table 2: Evaluation results for the tested methods using signals without any accompaniment as input.

Method Metric BD SD HH Total

HMM
P(%) 95.7 68.7 82.7 82.5

R(%) 88.1 57.7 80.9 75.9

F(%) 91.8 62.7 81.8 79.1

HMM + MLLR
P(%) 94.1 75.0 83.8 84.8

R(%) 92.1 56.7 84.9 78.4

F(%) 93.1 64.6 84.4 81.5

HMM comb
P(%) 71.5 41.3 63.8 57.5

R(%) 74.2 54.3 55.3 60.4

F(%) 72.8 46.9 59.3 58.9

P(%) 85.0 75.6 57.1 68.5

NMF-PSA [11] R(%) 80.1 38.1 67.7 62.2

F(%) 82.5 50.7 61.9 65.2

P(%) 95.4 62.9 61.1 68.2

SVM [6] R(%) 54.0 37.9 72.3 56.6

F(%) 69.0 47.3 66.2 61.9

Table 3: Effect of feature transformation on overall F-measure (%)
of detector HMMs without acoustic model adaptation.

none PCA 90% LDA

Plain drums 63.6 66.0 79.1

Balanced mix 59.6 60.9 73.5

three instruments convey the main rhythmic feel of most of
the popular music songs, and occur in a relatively similar way
in all the kits.

In the evaluation of the transcription result, the found
target drum onset locations are compared with the locations
given in the ground truth annotation. The hits are matched
to the closest hit in the other set so that each hit has at
most one hit associated to it. A transcribed onset is accepted
as correct if the absolute time difference to the ground

truth onset is less than 30 ms. (When comparing the results
obtained with the same data set in [4], it should be noted that
there the allowed deviation was 50 ms.) When the number of
events is G in the ground truth and E in the transcription
result, and the number of missed ground truth events and
inserted events are m and i, respectively, the transcription
performance can be described with precision rate

P = E − i
E

(6)

and recall rate

R = G−m
G

. (7)

These two metrics can be further summarised by their
harmonic mean, F-measure

F = 2PR
P + R

. (8)
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Figure 5: Occurrence frequencies of different drums in “ENST
drums” data set. The instruments are denoted by: BD (bass drum),
CR (all crash cymbals), CY (other cymbals), HH (open and closed
hi-hat), RC (all ride cymbals), SD (snare drum), TT (all tom-toms),
and OT (other unpitched percussion instruments, e.g., cow bell).

3.3. Reference Methods. The system performance is com-
pared with two earlier methods: a “segment and classify”
method by Tanghe et al. [6] and a “separate and detect”
method by Paulus and Virtanen [11]. The former, referred to
as SVM in the results, was designed for transcribing drums
from polyphonic music by detecting sound onsets and then
classifying the sounds with binary SVMs for each target
drum. An implementation of the original author is used
[32]. The latter, referred to as NMF-PSA, was designed for
transcribing drums from a signal without accompaniment.
The method uses spectral templates for each target drum
and estimates their time-varying gains using NMF. Onsets
are detected from the recovered gains. Also here the original
implementation is used. The models for the SVM method
are not trained specifically for the data used, but the generic
models provided are used instead. The spectral templates for
NMF-PSA are calculated from the individual drum hits in the
data set used here. In the original publication the mid-level
representation used spectral resolution of five bands. Here
they are replaced with 24 Bark bands for improved frequency
resolution.

3.4. Results. The evaluation results are given in Tables 1 and
2. The former contains the evaluation results in the case of
the “balanced” mixture as the input, while the latter contains
the results for signals without accompaniment. The methods
are referred to as

(i) HMM: The proposed HMM method with detectors
for each target drum without acoustic adaptation,

(ii) HMM + MLLR: The proposed detector-like HMM
method including the acoustic model adaptation
with MLLR,

(iii) HMM comb: The proposed HMM method with drum
combinations without acoustic adaptation,

(iv) NMF-PSA: A “separate and detect” method using
NMF for the source separation, proposed in [11],

(v) SVM: A “segment and classify” method proposed in
[6] using SVMs for detecting the presence of each
target drum in the located segments.

The results show that the proposed method performs
best among the evaluated methods. In addition, it can be seen

that the acoustic adaptation slightly improves the recognition
result. All the evaluated methods seem to have problems in
transcribing the snare drum (SD), even without the presence
of accompaniment. One reason for this is that the snare
drum is often played in more diverse ways than, for example,
the bass drum. Examples of these include producing the
excitation with sticks or brushes, or playing with and without
the snare belt, or by producing barely audible “ghost hits”.

When analysing the results of “segment and classify”
methods, it is possible to distinguish between errors in
segmentation and classification. However, since the proposed
method aims to perform these tasks jointly, acting as a
specialised onset detection method for each target drum, this
distinction cannot be made.

An earlier evaluation with the same data set was pre-
sented in [4, Table II] . The table section “Accompaniment
+0 dB” in there corresponds to the results presented in
Table 1, and section “Accompaniment −∞ dB” corresponds
to the results in Table 2. In both cases, the proposed method
clearly outperforms the earlier method in bass drum and hi-
hat transcription accuracy. However, the performance of the
proposed method on snare drum is slightly worse.

The improvement obtained using the acoustic model
adaptation is relatively small. Measuring the statistical signif-
icance with two-tailed unequal variance Welch’s t-test [33]
on the F-measures for individual test signals produces P-
value of approximately .64 for the balanced mix test data
and .18 for the data without accompaniment suggesting that
the difference in the results is not statistically significant.
However, the adaptation seems to provide a better balance
on precision and recall rates. The performance differences
between the proposed detector-like HMMs and the other
methods are clearly in favour of the proposed method.

Table 3 provides the evaluation results with different
feature transformation methods while using detector-like
HMMs without acoustic adaptation. The results show that
PCA has a very small effect on the overall performance while
LDA provides a considerable improvement.

4. Conclusions

This paper has studied and evaluated different ways of using
connected HMMs for transcribing drums from polyphonic
music. The proposed detector-type approach is relatively
simple with only two models for each target drum: a “sound”
and a “silence” model. In addition, modelling of drum
combinations instead of detectors for individual drums
was investigated, but found not to work very well. It is
likely that the problems with the combination models are
caused by overfitting the training data. The acoustic front-
end extracts mel-frequency cepstral coefficients (MFCCs)
and their first-order derivatives to be used as the acoustic
feature. Comparison of feature transformations suggests that
LDA provides a considerable performance increase with the
proposed method. Acoustic model adaptation with MLLR is
tested, but the obtained improvement is relatively small. The
proposed method produces a relatively good transcription
of bass drum and hi-hat, but snare drum recognition has
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some problems that need to be addressed in future work.
The main finding is that it is not necessary to have a
separate segmentation step in a drum transcriber, but the
segmentation and recognition can be performed jointly with
an HMM even in the presence of accompaniment and with
bad signal-to-noise ratios.
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