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ABSTRACT

To date several methods for transcribing drums from poly-

phonic music have been published. Majority of the fea-

tures used in the transcription systems are “spectral”: pa-

rameterising some property of the signal spectrum in a rel-

atively short time frames. It has been shown that utilising

narrow-band features describing long-term temporal evo-

lution in conjunction with the more traditional features

can improve the overall performance in speech recogni-

tion. We investigate similar utilisation of temporal fea-

tures in addition to the HMM baseline. The effect of

the proposed extension is evaluated with simulations on

acoustic data, and the results suggest that temporal fea-

tures do improve the result slightly. Demonstrational sig-

nals of the transcription results are available at

http://www.cs.tut.fi/sgn/arg/paulus/demo/. 1

1 INTRODUCTION

Systems for automatic transcription of music have gained

a considerable amount of research effort during the last

few years. From the point of view of music information

retrieval, these can be considered as tools for rising from

the acoustic signal to a higher level of abstraction that cor-

relates better with the content of interest. Here we focus

on the transcription of drums: locating and recognising

sound events created by drum instruments in music.

Several methods have been proposed for drum tran-

scription. Some of them are based on locating the on-

sets of prominent sound events, extracting a set of fea-

tures from the locations of the onsets, and classifying the

events using the features. Systems of this category include

the method by Tanghe et al. [11] using support vector

machines (SVMs) as classifiers, and a system using tem-

plate adaptation and iterative musical pattern based error

correction by Yoshii et al. [13]. As an extension to the

systems relying only on acoustic data, Gillet and Richard

have proposed a multi-modal system which uses also vi-

sual information of the drummer playing [4]. A system us-

ing hidden Markov models (HMMs) was presented in [8].

1 This work was supported by the Academy of Finland, project No.

5213462 (Finnish centre of Excellence program 2006 - 2011).
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Figure 1. The basic idea of temporal features illustrated.

Instead of short wide-band frames of data, features are cal-

culated from long narrow-band frames. (After [6].)

In polyphonic music the presence of other instruments

makes the transcription more difficult, since they are ef-

fectively noise for drum transcription systems. An alter-

native to the previous approaches is to try to separate the

drums from polyphonic music, or to separate each drum

to its own stream. The separation can be done blindly

without any prior templates for the drums, as is done by

Dittmar and Uhle [2], or by using a dictionary for different

drums [9]. Several methods, both blind and dictionary-

based, developed by FitzGerald et al. are detailed in [3].

For a more description of the earlier methods refer to [3].

Majority of the features used in the recognisers are “spec-

tral”: parameterising some property of the signal spec-

trum in a relatively short (e.g., 10 ms) time frames. Fea-

tures describing the temporal evolution of the signal are

usually limited to the first temporal derivatives of spec-

tral features, and in essence they still are short-time fea-

tures. Some systems hand the responsibility of modelling

the temporal evolution of the features over to an HMM ar-

chitecture: different states describe different time instants

of the modelled event. Hermansky and Sharma proposed

an alternative for this in [6] in the form of using TRAPS

(TempoRAl PatternS) features describing energy evolu-

tion at different subbands. The main idea behind TRAPS

is illustrated in Figure 1. They showed that utilising the in-

formation of how the energy evolves on several subbands

in one-second frames it was possible to improve the per-

formance of a baseline speech recogniser which used only

short-time cepstral features.

Features from subband envelopes have been used ear-

lier also in other music related applications, such as mu-
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Figure 2. Block diagram of the full system with the pro-

posed extension circled with dashed line.

sical piece structure analysis [10], genre classification [7],

and automatic record reviews [12]. However, the features

used in these works were concentrated on the modula-

tions of the envelopes whereas we are interested in certain

events: the drum hits.

We propose to utilise the information from temporal

features in addition to the earlier HMM-based system [8],

and show that they do increase the performance. Temporal

features suit for drums, because drums are usually short

events and do not have any “stable” state as e.g. harmonic

sounds may have. The baseline HMM system is described

in Section 2.1. The added temporal features are detailed in

Section 2.2. Methods for combining the information from

temporal features to the baseline system are described in

Section 2.3. The performance of the resulting system is

evaluated with simulations described in Section 3. Finally,

conclusions are given in Section 4.

2 PROPOSED METHOD

The block diagram of the system including the proposed

extension is illustrated in Figure 2. The baseline system

extracts a set of spectral features from the input signal and

estimates observation likelihoods for all HMM states us-

ing Gaussian mixture models (GMMs). Finally, the tran-

scription is obtained by finding out the best state and model

sequence to explain the observed features. The extension

adopts the idea from [6] and assumes that temporal fea-

tures can provide information which can correct some of

the errors made by the baseline system. The information

provided by the proposed extension is added to the base-

line system in the observation likelihood stage before de-

coding.

2.1 Baseline HMM Recogniser

The baseline HMM system is the one published earlier

in [8]. Each combination of the target drums is modelled

with a HMM and one HMM serves as a background model

for the situation when none of the target drums is playing.

These models are combined into a network whose idea is

illustrated in Figure 3. At each time frame the system is
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Figure 3. The idea of the used HMM model network con-

sisting of drum combinations (“comb 1” and “comb N”)

and the silence model.

in one state of one of the combination models. After the

system exits a combination model it may enter another

combination or the background model. In the recognition

phase, the best path through the models is searched using

token passing algorithm [14].

When handling polyphonic music signals, the input is

passed through a sinusoids+residual -modelling. The mod-

elled sinusoids are subtracted from the original signal and

the residual is regarded as the input signal for the fur-

ther processing. It is assumed that some components of

pitched instruments are modelled with the sinusoids and

their contribution is reduced in the residual. As most of

the sound generated by the drums is stochastic, the mod-

elling does not affect them much. Then the signal is di-

vided into 23.2 ms frames with 50% overlap and the fol-

lowing set of features is extracted: 13 mel-frequency cep-

stral coefficients and their first order time differences, en-

ergy of the signal, spectral centroid, kurtosis, spread, slope,

flatness, and roll-off, and log-energy from 8 octave-spaced

bands.

The used HMM architecture uses four states for all of

the drum combinations and one state for the background

model. The feature distributions in the states are modelled

with GMMs with two components in states belonging to

the drum models and 10 components in the background

model. State transitions are allowed only to the state itself

and to the next state.

2.2 Temporal Features

Hermansky et al. used one-second frames of subband en-

ergy envelopes sampled at 100 Hz as the input to a multi-

layer perceptron (MLP) classifier. Here we use only the

main idea of temporal features and divert from the original

method. Even though the features we use are not exactly

the same as the ones in the original TRAPS publication,

we still use the term TRAPS to refer to them. [6]

The input signal is passed through a bank of 1/3-octave

bandpass filters, and the following processing is applied

to each of the resulting subband signals. The envelope

of a subband signal is calculated by squaring and low-

pass filtering with 80 Hz cutoff frequency. In the low-

est bands where the bandwidth is less than 80 Hz, the

low-pass cutoff is lowered to match the bandwidth. The

envelope signals are sampled at 400 Hz and µ-law com-



pression (x̂ = log(1 + µx)/ log(1 + µ)) is applied with

µ = 100. Finally, temporal difference is calculated. The

motivation for applying compression and differentiation is

to detect perceptually significant level changes in the sub-

band signal. The result of this processing are the bandwise

envelopes bi(t) from which the temporal features are cal-

culated.

The actual temporal features from the envelopes are

calculated by diving them into 100 ms frames with 50%

overlap, and applying hamming windowing. Then a time-

shift invariant representation of the envelope within each

frame is desired, meaning that the position of a drum event

should not have an effect on the extracted features. This is

achieved by calculating the discrete Fourier transform and

retaining only the magnitude spectrum. The information

about the location of the event within the frame is now

discarded along with the phase spectrum. The magnitude

spectrum is converted to a cepstrum-like format by µ-law

compressing it with µ = 1000, applying discrete cosine

transform (DCT), and discarding a majority of the coeffi-

cients. It was empirically noted that discarding the zeroth

coefficient and retaining the following 5 produced a suit-

able parameterisation. The compression is used to reduce

the large dynamic scale on the magnitude values before

reducing the dimensionality and correlation by DCT.

Athineos et al. parameterised the envelopes by frequency-

domain linear prediction in [1]. The parameterisation was

efficient, but for drum transcription application is has one

major drawback: the resulting features were sensitive to

the absolute location of the event within the frame.

2.3 Combining the Spectral and Temporal Features

Combining the information from temporal features to the

baseline HMM recogniser can be done in several ways.

Hermansky et al. used a combining MLP having the out-

puts of the bandwise MLPs as its input to yield the final

recognition result [6].

The easiest way to utilise the TRAPS features would

be to concatenate the features from all bands to the feature

vector used in the baseline recogniser. This approach has

two major problems, however: explosion of the dimen-

sionality of the feature vector and the highly correlated

nature of the TRAPS features.

Instead of using the TRAPS features as such one could

follow the example of Hermansky et al. [6] and train a de-

tector classifier producing posterior probabilities for each

target drum and for each subband. These bandwise pos-

terior probabilities can be interpreted as features and con-

catenated to the HMM feature vectors. However, the HMM

uses GMMs to model the features and the distribution of

the posterior probabilities does not fit the model well. As

a result, this approach does not produce a good result.

The solution we propose concatenates the temporal fea-

tures from all bands into one feature vector and trains just

one Bayesian GMM classifier for each target drum instead

of an own classifier of each band. The feature vectors are

subjected to PCA retaining 90% of the variance prior to

training GMMs from them. In experiments it was noted

that a relatively small amount of components suffices in

the modelling: two components for modelling the pres-

ence of the target drum, and three for modelling the ab-

sence of the target drum. For a target drum d the GMMs

produce a posterior probability p(d) of the drum to be

present in the frame.

As the temporal features are modelled as detectors for

the target drums and the HMMs are for combinations of

the drums, the posteriors for different individual drums

have to be combined to one posterior for the combination.

Making the assumption that the drums are independent of

each other, the probability of the drum combination C can

be approximated by

p(C) =
∏

d∈C

p(d)
∏

d/∈C

(1 − p(d)). (1)

The resulting probability for this combination p(C) is then

added to the observation probabilities of all the states of

the combination model by multiplying the probabilities

before finding the optimal path through the models in de-

coding.

3 EVALUATIONS

The performance of the proposed system was evaluated

with simulations on acoustic data. The target drums were

kick drum, snare drum, and hi-hat, resulting in eight com-

binations to be modelled including the background model.

The test material is divided into three subsets: “simple

drums” consisting of simple patterns, such as 8-beat and

shuffle, performed mainly with the target drums, “com-

plex drums” containing more complex patterns and also

non-target drums, and “RWC Pop” consisting of 45 pieces

from RWC Popular music database [5]. The signals con-

sisting only of drums were recorded using three different

drum sets and three different recording environments. The

recorded signals were processed with equalisation and multi-

band compression. The length of the drums-only material

clips was restricted to 30 seconds, while 60 second clips

were taken from the RWC songs. The setup is described

in more detail in [9].

A transcribed event was judged to be correct if it de-

viated less than 30 ms from the event in ground truth an-

notations. The used performance metrics consist of pre-

cision rate, P , (ratio of correctly transcribed events to all

transcribed events), recall rate, R, (ratio of correctly tran-

scribed events to all events in ground truth), and harmonic

F-measure, F = 2RP/(P +R). For each material set the

evaluations were run in 3-fold cross validation scheme:

2/3 of the pieces used as training material and testing with

the remaining 1/3. The presented results are calculated

over all folds.

To get perspective to the performance of the system,

the system from [11] is used as a reference. It classifies

events found by onset detector using a SVM, hence it is

referred in the result tables as “SVM”. 2 . The reference

2 The used implementation was kindly provided by the MAMI con-

sortium http://www.ipem.ugent.be/MAMI/.



F-measure (%) simple complex RWC

drums drums Pop

baseline HMM 93.4 84.0 66.8

HMM+TRAPS 92.9 85.2 69.7

SVM[11] 85.5 76.4 65.1

Table 1. Total average F-measures of different methods

and different material sets. The presented results are cal-

culated over all three target drums.

method was not trained for the material used in the eval-

uations, but instead the provided models were used. The

overall results of the evaluations are given in Table 1.

Detailed results for the HMM-based systems are given

in Table 2, where F-measure, precision, and recall rates

are given for all three target drums for both the baseline

system and the proposed extension with temporal features.

It can be seen that the proposed utilisation of temporal

features increases the performance slightly. Some demon-

strational signals from the simulations are available at

http://www.cs.tut.fi/sgn/arg/paulus/demo/.

The results for both the baseline and the reference sys-

tem presented in Table 1 differ slightly from those re-

ported in [8]. This is because some corrections were made

to the ground truth annotations and longer signal excerpts

were used in the evaluations.

4 CONCLUSIONS AND FUTURE WORK

We have proposed to utilise temporal features in conjunc-

tion with a HMM-based system for transcribing drums

from polyphonic audio. This was shown to result in slight

improvement in transcription accuracy, which is consis-

tent with the results obtained by Hermansky et al. [6]. It

was also noted that the proposed addition changed the type

of the errors from insertions to deletions, which are less

disturbing when listening to the synthesised transcription

result.

The proposed system can be easily used as a baseline

system and extended by incorporating musicological mod-

els. Such a model could be a regular N-gram model, a pe-

riodic N-gram, or a model making decision based on both

the past and the future [13]. It would be preferable for

the system to be able to adapt to the target signals instead

of using fixed models. This could be accomplished by us-

ing the models created with the proposed method as initial

models and adapting them based in the input signal.

5 REFERENCES

[1] M. Athineos and D. P. W. Ellis. Frequency-domain

linear prediction for temporal features. In ASRU, St.

Thomas, U.S. Virgin Islands, USA, 2003.

[2] C. Dittmar and C. Uhle. Further steps towards drum

transcription of polyphonic music. In 116th AES Con-

vention, Berlin, Germany, 2004.

material metric kick drum snare drum hi-hat

simple P(%) 99.2 (92.4) 99.7 (98.2) 96.1 (94.9)

drums R(%) 93.7 (98.2) 89.2 (89.4) 87.5 (90.9)

F(%) 96.4 (95.2) 94.2 (93.6) 91.6 (92.8)

complex P(%) 94.4 (87.4) 86.5 (78.5) 85.9 (82.8)

drums R(%) 97.3 (97.6) 76.5 (81.1) 74.4 (78.2)

F(%) 95.8 (92.2) 81.2 (79.8) 79.8 (80.4)

RWC P(%) 82.8 (73.1) 70.3 (52.7) 78.6 (74.1)

Pop R(%) 76.5 (78.7) 61.3 (66.6) 56.8 (58.6)

F(%) 79.5 (76.8) 65.5 (58.8) 66.0 (65.4)

Table 2. Detailed results for the HMM methods. Baseline

results are given in parentheses.

[3] D. FitzGerald and J. Paulus. Unpitched percussion

transcription. In A. Klapuri and M. Davy, editors,

Signal Processing Methods for Music Transcription.

Springer, 2006.

[4] O. Gillet and G. Richard. Automatic transcription

of drum sequences using audiovisual features. In

ICASSP, Philadelphia, PA, USA, 2005.

[5] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.

RWC music database: Popular, classical, and jazz mu-

sic databases. In ISMIR, Paris, France, 2002.

[6] H. Hermansky and S. Sharma. TRAPS - classifiers of

temporal patterns. In ICSLP, Sydney, Australia, 1998.

[7] M. F. McKinney and J. Breebaart. Features for audio

and music classification. In ISMIR, Baltimore, Mary-

land, USA, 2003.

[8] J. Paulus. Acoustic modelling of drum sounds with

hidden Markov models for music transcription. In

ICASSP, Toulouse, France, 2006.

[9] J. Paulus and T. Virtanen. Drum transcription with

non-negative spectrogram factorisation. In EUSIPCO,

Antalya, Turkey, 2005.

[10] G. Peeters, A. La Burthe, and X. Rodet. Toward au-

tomatic music audio summary generation from signal

analysis. In ISMIR, Paris, France, 2002.

[11] K. Tanghe, S. Dengroeve, and B. De Baets. An algo-

rithm for detecting and labeling drum events in poly-

phonic music. In MIREX, London, UK, 2005. ex-

tended abstract.

[12] B. Whitman and D. P. W. Ellis. Automatic record re-

views. In ISMIR, Barcelona, Spain, 2004.

[13] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G.

Okuno. An error correction framework based on drum

pattern periodicity for improving drum sound detec-

tion. In ICASSP, Toulouse, France, 2006.

[14] S. J. Young, N. H. Russell, and J. H. S. Thornton. To-

ken passing: a simple conceptual model for connected

speech recognition systems. Tech Report CUED/F-

INFENG/TR38, Cambridge, UK, 1989.


