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Abstra
t. This paper des
ribes a method for labelling stru
tural partsof a musi
al pie
e. Existing methods for the analysis of pie
e stru
ture of-ten name the parts with musi
ally meaningless tags, e.g., �p1�, �p2�, �p3�.Given a sequen
e of these tags as an input, the proposed system assignsmusi
ally more meaningful labels to these, e.g., given the input �p1, p2,p3, p2, p3� the system might produ
e �intro, verse, 
horus, verse, 
horus�.The label assignment is 
hosen by s
oring the resulting label sequen
eswith Markov models. Both traditional and variable-order Markov modelsare evaluated for the sequen
e modelling. Sear
h over the label permu-tations is done with N-best variant of token passing algorithm. The pro-posed method is evaluated with leave-one-out 
ross-validations on twolarge manually annotated data sets of popular musi
. The results showthat Markov models perform well in the desired task.
1 Introdu
tionWestern popular musi
 pie
es often follow a se
tional form in whi
h the pie
e is
onstru
ted from shorter units. These units, or musi
al parts, may have distin
troles on the stru
ture of the pie
e, and they 
an be named based on this role, forexample as �
horus� or �verse�. Some of the parts may have several o

urren
esduring the pie
e (e.g., �
horus�) while some may o

ur only on
e (e.g., �intro�).To date, several methods have been proposed to perform automati
 analysisof the stru
ture of a musi
al pie
e from audio input, see [7℄ or [6℄ for a review.Majority of the methods do not assign musi
ally meaningful labels to the stru
-tural parts they lo
ate. Instead, they just provide information about the order,possible repetitions, and temporal boundaries of the found parts. There also ex-ist a few methods that utilise musi
al models in the analysis, and the resultingstru
ture des
riptions have musi
ally meaningful labels atta
hed to the foundparts [10, 5℄.The musi
al pie
e stru
ture 
an be used for example in a musi
 player user in-terfa
e allowing the user to navigate within the pie
e based on musi
al parts [3℄.The results of a user study with a musi
 player having su
h a navigation abilitysuggest that the parts should be labelled meaningfully. The additional informa-tion of knowing whi
h of the parts is for instan
e �
horus� and whi
h is �solo�was judged to be valuable [2℄.
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ements
p1,p2,p3,p2,p3,p4 SYSTEM intro, verse, 
horus, verse...p1,p2,p2,p3,p2,p2 verse, 
horus, 
horus, solo....Fig. 1. Basi
 idea of the system. The system assigns meaningful labels to arbitrary tagsbased on a musi
al model. The mapping from tags to labels is determined separatelyfor ea
h input.

The proposed method does not perform the musi
al stru
ture analysis fromaudio, but only labels stru
tural des
riptions and should be 
onsidered as an add-on or an extension to existing stru
ture analysis systems. So, the problem to besolved here is how to assign musi
ally more meaningful part labels when givena sequen
e of tags des
ribing the stru
ture of a musi
al pie
e. The operation isillustrated in Figure 1. As an example, the stru
ture of the pie
e �Help!� by TheBeatles is �intro, verse, refrain, verse, refrain, verse, refrain, outro�, as given in [8℄.A typi
al stru
ture analysis system might produ
e �p1,p2,p3,p2,p3,p2,p3,p4� asthe result, whi
h then would be the input to the proposed system. If the systemoperation was su

essful, the output would be the assignment: �p1 → intro,p2 → verse, p3 → refrain, p4 → outro�.It is often said more or less seriously that popular musi
 pie
es tend to beof the same form, su
h as �intro, verse, 
horus, verse, 
horus, solo, 
horus�.1The proposed method aims to utilise this stereotypi
al property by modellingthe sequential dependen
ies between part labels (o

urren
es of musi
al parts)with Markov 
hains, and sear
hing the label assignment that maximises theprobability of the resulting label sequen
e. Evaluation show that the sequentialdependen
ies of musi
al parts are so informative that they 
an be used in thelabelling.The rest of the paper is stru
tured as following: Se
t. 2 des
ribes the proposedmethod. The labelling performan
e of the method is evaluated in Se
t. 3. Se
t. 4gives the 
on
lusions of the paper.
2 Proposed MethodThe input to the system is a sequen
e of tags R1:K ≡ R1, R2, . . . , RK , and theproblem is to assign a musi
al label to ea
h of the unique tags so that no two tagsare assigned the same label. This assignment is de�ned as an inje
tive mappingfun
tion f : T → L from input set T of tags to the output set L of musi
allymeaningful labels, as illustrated in Figure 2. The mapping fun
tion transformsthe input tag sequen
e R1:K into a sequen
e of labels f(R1:K) = S1:K .The proposed methods assumes that the musi
al parts depend sequentiallyon ea
h other in the form of a Markov 
hain and that it is possible to predi
t thenext musi
al part given a �nite history of the pre
eding parts. This predi
tability1 Though statisti
s from two data sets of popular musi
 pie
es show that the stru
turesof the pie
es are more heterogeneous than was initially expe
ted, see Se
t. 3.1.
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f introverse
horusbridgeoutro solo

Fig. 2. An example of the mapping fun
tion f : T → L. All tags in T are mapped toone label in L, but some labels in L may remain unused.
is used to s
ore di�erent mapping alternatives and the best mapping is then givenas the output of the system.
2.1 Markov ModelsMarkov models assume that the probability of a 
ontinuation Si+1 for sequen
e
S1:i depends only on a �nite history of the sequen
e S(i−N+1):i instead of thefull history, i.e., p(Si+1|s1:i) = p(si+1|S(i−N+1):i), where N is the length of theused history. This is also referred as the order of the resulting Markov model andgives rise to the alternative name of N-grams. Based on the Markov assumption.the overall probability of a sequen
e S1:K is obtained by

p(S1:K) =
K
∏

k=1

p(Sk|S(k−N):(k−1)). (1)
In the beginning of the sequen
e where there is not enough history available, itis possible to use a lower order model or pad the sequen
e from the beginningwith a spe
ial symbol. [4℄The total N-gram probability of Eq. (1) is used to s
ore di�erent mappingfun
tions by evaluating it for the output sequen
es after the mapping f(R1:K) =
S1:K . The target is to �nd the mapping fun
tion fOPT that maximises the totalprobability

fOPT = argmax
f

{p (f(R1:K))}, f : T → L inje
tive. (2)
2.2 Optimisation AlgorithmThe maximisation problem is solved by using M-best2 variant of token pass-ing (TP) algorithm, more frequently used in spee
h re
ognition [12℄. The mainprin
iple of TP is that tokens t are propagated time syn
hronously between the2 Better known as the N-best token passing. The name is adjusted to avoid possible
onfusion with N-grams.
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h token knows the path it has travelled and a

umu-lates the total probability over it. Based on the path probabilities, the M tokenswith the highest probabilities are sele
ted for propagation in ea
h state, they arerepli
ated and passed to all 
onne
ted states. The token path probabilities areupdated based on the transition probabilities between the states.The state spa
e of TP is formed from the possible labels in L, and the pathsof the tokens en
ode di�erent mapping fun
tions. The optimisation of Eq. (2)
an be done by sear
hing the most probable path through the states (labels)de�ning the state transition probabilities with
p

(

fk(Rk) = li|R1:(k−1), fk−1

)

=

{

0, if DME
p(li|fk−1(R1:(k−1))), otherwise, (3)

where DME denotes the predi
ate �di�erent mapping exists�, whi
h is used toguarantee that the mapping fun
tion is inje
tive, and it is de�ned byDME = ∃j : (Rj = Rk ∧ fk−1(Rj) 6= li)∨(Rj 6= Rk ∧ fk−1(Rj) = li) , j ∈ [1, k−1].(4)In the equations above, p (fk(Rk) = li|R1:k, fk−1) denotes the probability of atoken to transition to the state 
orresponding to label li after it has travelledthe path fk−1(R1:(k−1)). The N-gram probability for label li when the pre
eding
ontext is fk−1(R1:(k−1)), is denoted as p(li|fk−1(R1:(k−1))). As the mappingis generated gradually, fk is used to denote the mapping after handling thesequen
e R1:k.Pseudo
ode of the algorithm is given in Algorithm 1. It sear
hes a mappingfun
tion f : T → L from tags in input sequen
e to the possible label set. Forea
h label l ∈ L, the probability π0(l) of that label to be the �rst label in thesequen
e and the probability the label the be the last πE(l) are de�ned. In themiddle of the sequen
e, the probability of the 
ontinuation given the pre
eding
ontext is obtained from Eq. (3).As the mapping depends on de
isions done within the whole pre
eding his-tory, the Markov assumption is violated and the sear
h 
annot be done with moree�
ient methods guaranteeing a globally optimal solution. This sub-optimalityhinders also the traditional TP, sin
e it might be that the optimal labelling maynot be the best one earlier in the sequen
e, and is therefore pruned during thesear
h. The M-best variant of TP alleviates this problem by propagating M besttokens instead of only the best one. If all tokens were propagated, the methodwould �nd the globally optimal solution, but at a high 
omputational 
ost. Witha suitable number of tokens, a good result 
an be found with 
onsiderably less
omputation than with an exhaustive sear
h. An exhaustive sear
h was tested,but due to the large sear
h spa
e, it proved to be very ine�
ient. However, itwas used to verify the operations of TP with a subset of the data. In that subset,the TP showed to �nd the same result as the exhaustive sear
h in almost all the
ases when storing 100 tokens at ea
h state.
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h label mapping f : T → LInput sequen
e R1:K .Label spa
e L. Asso
iated with ea
h label l ∈ L, there are input bu�er Il andoutput bu�er Ol.Tokens t with probability value t.p and label mapping fun
tion t.f .for l ∈ L do // initialisationInsert t to Il and assign t.p← π0(l)for k ← 1 to K dofor l ∈ L do
Ol ← Il // propagate to outputClear Ilfor l ∈ L do // transition sour
efor t ∈ Ol dofor l̃ ∈ L do // transition target

t̃← t // 
opy tokenif ∃j : Rj = Rk, j ∈ [1, k − 1] thenif t̃.f(Rk) = l̃ then
t̃.p← t̃.p× p(t̃.f(Rk)|t̃.f(R1:(k−1)))elsẽ
t.p← 0elseif ∀j : t̃.f(Rj) 6= l̃, j ∈ [1, k − 1] thenSet t̃.f(Rk)← l̃

t̃.p← t̃.p× p(t̃.f(Rk)|t̃.f(R1:(k−1)))elsẽ
t.p← 0Insert t̃ to Il̃for l ∈ L doRetain M best tokens in Ilfor l ∈ L do

Ol ← Ilfor t ∈ Ol do
t.p← t.p× πE(l)Sele
t token t̂ with the largest t.preturn t̂.f

2.3 Modelling IssuesThe main problem with N-gram models is the amount of training material neededfor estimating the transition probabilities: the amount in
reases rapidly as afun
tion of the number of possible states and the 
ontext length (given A possiblestates and 
ontext length of N , there exist AN probabilities to be estimated).It may happen that not all of the sequen
es of the required length o

ur in thetraining data. This situation 
an be handled by ba
k-o� (using shorter 
ontext at
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ases), or by smoothing (assigning a small amount of the total probabilitymass to the events not en
ountered in the training material).In some 
ases, it is possible that in
reasing the length of the 
ontext does notprovide any information 
ompared to the shorter history. Variable-order Markovmodels (VMMs) have been proposed to repla
e traditional N-grams. Instead ofusing a �xed history, VMMs try to dedu
e the length of the usable 
ontext fromthe data. If in
reasing the length of the 
ontext does not improve the predi
tion,then only the shorter 
ontext is used. VMMs 
an be used to 
al
ulate the totalprobability of the sequen
e in the same manner as in Eq. (1), but using a variable
ontext length instead of �xed N . [9℄
3 EvaluationsPerforman
e of the labelling method was evaluated in simulations using stru
-tural des
riptions from real musi
 pie
es.
3.1 DataThe method was evaluated on two separate data sets. The �rst, TUTstru
ture07,was 
olle
ted at Tampere University of Te
hnology. The database 
ontains a totalof 557 pie
es sampling the popular musi
 genre from 1980's to present day.3The musi
al stru
ture of ea
h pie
e was manually annotated. The annotation
onsists of temporal segmentation of the pie
e into musi
al parts and namingea
h of the parts with musi
ally meaningful labels. The annotations were doneby two resear
h assistants with some musi
al ba
kground. The se
ond data set,UPF Beatles, 
onsists of 174 songs by The Beatles. The original pie
e stru
tureswere annotated by musi
ologist Alan W. Polla
k [8℄, and the segmentation timestamps were added at Universitat Pompeu Fabra (UPF)4.Though many of the forms are thought to be often o

urring or stereotypi
alfor musi
 from pop/ro
k genre, the statisti
s from the data sets do not supportthis fully. In TUTstru
ture07, the label sequen
es vary a lot. The three mostfrequently o

urring stru
tures are� �intro�, �verse�, �
horus�, �verse�, �
horus�, �C�, �
horus�, �outro�� �intro�, �A�, �A�, �B�, �A�, �solo�, �B�, �A�, �outro�� �intro�, �verse�, �
horus�, �verse�, �
horus�, �
horus�, �outro�,ea
h o

urring four times in the data set. 524 (94%) of the label sequen
es areunique.With UPF Beatles, there is a 
learer top, but still there is a large body ofsequen
es o

urring only on
e in the data set. The most frequent label sequen
eis3 List of the pie
es is available at<http://www.
s.tut.�/sgn/arg/paulus/TUTstru
ture07_�les.html>.4 <http://www.iua.upf.edu/%7Eperfe/annotations/se
tions/li
ense.html>
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e with Markov Models 7� �intro�, �verse�, �verse�, �bridge�, �verse�, �bridge�, �verse�, �outro�,o

urring seventeen times in the data set. 135 (78%) of the label sequen
es areunique.3.2 Training the ModelsTransition probabilities for the models were trained using the data sets. Ea
hlabel sequen
e representing the stru
ture of a pie
e was augmented with spe
iallabels �BEG� in the beginning, and �END� in the end. After the augmentation,the total number of o

urren
es of ea
h label in the data set was 
ounted. Be
ausethere exists a large number of unique labels, some of whi
h o

ur only on
e inthe whole data set, the size of the label alphabet was redu
ed by using onlythe labels that 
over 90% of all o

urren
es. The remaining labels were repla
edwith an arti�
ial label �MISC�. The zero-probability problem was addressed byusing Witten-Bell dis
ounting (Method C in [11℄), ex
ept for the VMMs.In the original data sets, there were 82 and 52 unique labels (without theaugmentation labels �BEG�, �END�, and �MISC�) in the data set of TUTstru
-ture07 and UPF Beatles, respe
tively. After augmentation and set redu
tion thelabel set sizes were 15 and 10. On the average, there were 6.0 unique labelsand 12.1 label o

urren
es (musi
al parts) in a pie
e in TUTstru
ture07. Thesame statisti
s for UPF Beatles were 4.6 and 8.6. This suggests that the pie
esin TUTstru
ture07 were more 
omplex or they have been annotated on a �nerlevel.3.3 Simulation SetupIn simulations, the stru
tural annotations from the data base were taken. Theoriginal label sequen
es (with the �MISC� substitution) was taken as the groundtruth, while the input to the labelling algorithm was generated by repla
ing thelabels with letters.To avoid overlap in train and test sets whilst utilising as mu
h of the dataas possible, simulations were run using leave-one-out 
ross-validation s
heme. Inea
h 
ross-validation iteration one of the pie
es in the data set was left as thetest 
ase while the Markov models were trained using all the other pie
es. Thisway the model never saw the pie
e it was trying to label.With 
onventional N-grams, the length of the Markov 
hain was varied from1 to 5, i.e., from using just prior probabilities for the labels to utilising 
ontextof length 4. With VMMs, several di�erent algorithms were tested, in
luding:de
omposed 
ontext tree weighting (DCTW), predi
tion by partial mat
hing -method C, and a variant of Lempel-Ziv predi
tion algorithm. The implementa-tions for these were provided by [1℄. It was noted that DCTW worked the bestof these three, and the result are presented only for it. The maximum 
ontextlength for VMMs was set to 5. Also the maximum 
ontext lengths of 3 and10 were tested, but the former deteriorated the results and the latter produ
edpra
ti
ally identi
al results with the 
hosen parameter value.
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e 
omparison on TUTstru
ture07 with traditional Markov modelsof di�erent order. The best VMM result is given for 
omparison. The given values arethe average hit rates in per
ents. The row average is the total average of 
orre
t partlabels. The best result on ea
h row is typeset with bold.label N=1 N=2 N=3 N=4 N=5 VMM
horus 68.1 76.3 80.8 76.6 74.9 78.5verse 42.3 62.4 64.4 64.9 66.0 66.0bridge 17.7 38.6 45.6 47.4 44.4 43.7intro 27.6 97.6 98.2 97.8 97.8 96.4pre-verse 4.2 40.7 46.3 43.3 41.7 43.3outro 13.9 98.3 98.6 97.8 92.1 98.3
 0.0 38.0 42.1 47.4 54.8 49.3theme 0.0 0.0 2.7 4.4 3.3 3.3solo 0.0 4.4 7.2 16.0 18.2 14.9
horus_a 0.0 0.0 7.5 15.7 11.2 3.0a 0.0 0.0 32.5 31.7 27.0 29.4
horus_b 0.0 0.9 5.3 12.4 7.1 2.7MISC 12.6 29.5 38.3 37.1 40.3 38.3average 30.9 55.6 60.3 59.9 59.5 59.8
3.4 Evaluation Metri
sWhen evaluating the labelling result, 
onfusion matrix C for the labels is 
al-
ulated. The result of the best mapping fun
tion applied to the input sequen
e
f(R1:K) and the ground truth sequen
e S1:K are 
ompared. At ea
h label o

ur-ren
e Si, i ∈ [1, K], the value in the element [Si, f(Ri)] of the 
onfusion matrixis in
reased by one. This applies weighting for the more frequently o

urring la-bels. The 
onfusion matrix is 
al
ulated over all 
ross-validation iterations. Theaverage hit rate for a target label was 
al
ulated as a ratio of 
orre
t assignments(main diagonal of 
onfusion matrix) to total o

urren
es of the label (sum alongrows of the 
onfusion matrix).
3.5 ResultsThe e�e
t of varying the 
ontext length in N-grams is shown in Tables 1 and 2for TUTstru
ture07 and UPF Beatles, respe
tively. In addition to the di�erentN-gram lengths, the tables 
ontain also the result for the best VMM (DCTWwith maximum memory length of 5). The tables 
ontain the per
entage of 
orre
tassignments for ea
h label used. The total average of 
orre
t hits (�average�) is
al
ulated without the augmentation labels �BEG� and �END�.5Based on the results in Tables 1 and 2, it 
an be seen that in
reasing theorder of traditional Markov model from unigrams to bigrams produ
e a large5 For an interested reader, the 
onfusion matri
es are given in a do
ument availableat <http://www.
s.tut.�/sgn/arg/paulus/CMMR08_
onfMats.pdf>.
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e 
omparison on UPF Beatles with traditional Markov models ofdi�erent order. The best VMM result is given for 
omparison. For des
ription of thedata, see the Table 1. label N=1 N=2 N=3 N=4 N=5 VMMverse 72.4 79.9 86.7 85.7 83.7 87.5refrain 30.1 32.1 62.2 66.3 68.7 70.7bridge 36.7 40.7 78.0 74.0 74.0 70.6intro 0.0 93.2 88.9 92.0 93.8 93.2outro 0.0 99.3 99.3 97.2 93.0 97.9verses 0.0 16.1 48.2 50.0 44.6 44.6versea 0.0 5.9 7.8 17.6 21.6 5.9MISC 0.0 15.9 22.3 25.5 23.6 22.3average 33.5 58.9 72.1 72.8 72.1 73.0
in
rease in the performan
e. The performan
e 
ontinues to in
rease when the
ontext length is in
reased, but more slowly. With TUTstru
ture07, the per-forman
e peak is at N = 3, whereas with UPF Beatles, the maximum withtraditional N-grams 
an be obtained with N = 4. It was also noted that withTUTstru
ture07 the use of VMM did not improve the result. However, there isa small performan
e in
rease with VMMs in UPF Beatles.Even though the use of VMM did not improve the result with TUTstru
-ture07, there was one 
lear advantage with them: it was possible to use longer
ontext in the models. With traditional N-grams, the transition probabilitieswill be
ome very sparse even with bigrams. The large blo
ks of zero provide noinformation whatsoever and only 
onsume memory. With VMMs, the 
ontextlength is adjusted a

ording to the available information.From the results, it is notable that �
horus� 
an be labelled from the inputover 80% a

ura
y, and �verse� almost at 65% a

ura
y in TUTstru
ture07. InUPF Beatles �verse� 
ould be labelled with 87% a

ura
y and �refrain� with 71%a

ura
y.3.6 Dis
ussionIt should be noted that the proposed system performs the labelling purely basedon a model of sequential dependen
ies of musi
al parts. In
orporating somea
ousti
 information might improve the result somewhat (e.g., energeti
 repeatedpart might be �
horus�). Also, the knowledge of the high-level musi
al 
ontent,su
h as the lyri
s, instrumentation or 
hord progressions, 
ould provide valuableinformation for the labelling. However, the extra
tion of these from the a
ousti
input is still a 
hallenging task, as well as 
reating a usable model for them. Inaddition, when dis
ussing the prin
iples used when assigning the ground truthlabels with the annotators, the main 
ue was the lo
ation of the part in the �mu-si
al language model�. In
orporating these other information sour
es in additionto the sequen
e model should be 
onsidered in the future work.



10 Jouni Paulus and Anssi KlapuriThe di�eren
e in performan
e between the two data sets remains partly anopen question. The main reason may be that the label sequen
es in TUTstru
-ture07 are more diverse, as 
ould be seen from the statisti
s presented in Se
. 3.1(94% of sequen
es in TUTstru
ture are unique, 
ompared to 78% in UPF Beat-les). We tested the hypothesis that is was due to the smaller label set (10 vs. 15)by using only as many of the most frequent labels as were used with UPF Bea-tles. As a slight surprise, the performan
e on the remaining set was even worse
ompared label-wise to the larger set. The average result, however, in
reasedslightly be
ause the most rarely o

urring (and most often mis-labelled) labelswere omitted.
4 Con
lusionThis paper has proposed a method for assigning musi
ally meaningful labelsto the parts found by musi
 stru
ture analysis systems. The method models thesequential dependen
ies between musi
al parts with Markov models and uses themodels to s
ore di�erent label assignments. The paper has proposed applyingM-best token passing algorithm to the label assignment sear
h to be able toperform the assignment without having to test all possible permutations. Theproposed method has been evaluated with leave-one-out 
ross-validations on twodata sets of popular musi
 pie
es. The evaluation results suggest that the modelsfor the sequential dependen
ies of musi
al parts are so informative even at low
ontext lengths that they 
an be used alone for labelling. The obtained labellingperforman
e was reasonable, even though the used model was relatively simple.
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