Music Structure Analysis with a Probabilistic Fitness Function in MIREX2009

Jouni Paulus and Anssi Klapuri

Department of Signal Processing, Tampere University of Technology, Tampere, Finland

Introduction

- Structure analysis: from audio input
- find segmentation to musical parts (e.g., chorus and verse), and -group segments with similar content.

Audio front-end

- Three acoustic features for different aspects:
- general timbre \rightarrow MFCCs,
-tonal / harmonic content \rightarrow chroma (MF0 salience based)
-rhythmic content \rightarrow rhythmogram (onset accent autocorrelation)
-Each feature focused on two temporal scales.
- Self-distance matrices from cos-distance between all beat frame pairs
- Distance measures for segment pairs:

SEGMENT s_{n}

- Map distances to probability that the segments belong to same group
(E.g., stripes, blocks, + and o empirical values, line sigmoidal fit.)

Optimisation task

- Find the structural description E maximising

$$
P(E)=\sum_{m=1}^{M} \sum_{n=1}^{M} A\left(s_{m}, s_{n}\right) L\left(s_{m}, s_{n}\right)
$$

where

$$
L\left(s_{m}, s_{n}\right)= \begin{cases}\log \left(\hat{p}\left(s_{m}, s_{n}\right)\right), & \text { if } g_{m}=g_{n} \\ \log \left(1-\hat{p}\left(s_{m}, s_{n}\right)\right), & \text { if } g_{m} \neq g_{n}\end{cases}
$$

$A\left(s_{m}, s_{n}\right)$: submatrix area, and g_{n} : group of segment s_{n}

- Formulate task as searching the optimal path through a directed acyclic graph.
-Each candidate segment \& group combination is a state.
- Transition allowed only between consecutive segments
- Problem: Rapid increase of search space size as a function of number of segmentation point candidates.

Search algorithm

- States contain an ordered buffer of tokens. At each iteration
-the N best tokens are propagated and removed from the buffer
- arriving tokens are inserted to the buffer, and
- only the M best tokens are stored for next iteration.
- Tokens store travelled state sequence.
- Operation parametrised by number of propagated tokens and maximum number of stored tokens.
- Controllably greedy.
-Finds a solution quickly, iterations increase search scope and may produce better solutions.
- Store all tokens and run until all tokens have arrived to end state \rightarrow exhaustive search.

Results

- Over- and under-segmentation scores 59.3% and 79.0% indicate tendency for over-segmentation.
- Frame pair clustering precision (74.1%), recall (46.2%), and F-measure (54.0%) support this assumption.
- Segment boundary detection precision (24.3\%), recall (32.3\%), and F-measure (27.1\%) with 0.5 s allowed deviation indicate relatively accurate segmentation.
\rightarrow Most likely the method under-estimates probabilities of segment pairs to be of the same part
- Method details in J. Paulus and A. Klapuri. Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 17(6):1159-1170, Aug. 2009.

