Music Structure Analysis Using a Probabilistic Fitness Measure And an Integrated Musicological Model

Jouni Paulus and Anssi Klapuri
Department of Signal Processing, Tampere University of Technology, Tampere, Finland

Introduction

- Structure analysis: from audio input
- find segmentation to musical parts (e.g., chorus and verse)
-group segments with similar content, and
- assign musically meaningful labels to groups.

Segment matching

- Three acoustic features for different aspects: - general timbre \rightarrow MFCCs,
-tonal / harmonic content \rightarrow chroma,
-rhythmic content \rightarrow rhythmogram.
- Self-distance matrix (SDM)
- Cos-distance between all frame pairs.
- Distance measures for segment pairs:
segment s_{n}

- Map distances to probability that the segments belong to same group. (E.g., blocks, stripes.)

Fitness measure

- Find the structural description E maximising

$$
P(E)=\sum_{m=1}^{M} \sum_{n=1}^{M} A\left(s_{m}, s_{n}\right) L\left(s_{m}, s_{n}\right)
$$

where
$L\left(s_{m}, s_{n}\right)= \begin{cases}\log \left(\hat{p}\left(s_{m}, s_{n}\right)\right), & \text { if } g_{m}=g_{n} \\ \log \left(1-\hat{p}\left(s_{m}, s_{n}\right)\right), & \text { if } g_{m} \neq g_{n}\end{cases}$ $A\left(s_{m}, s_{n}\right):$ submatrix area, ${\underset{A}{1}}^{g_{1}} \underset{A_{1}}{:} \underset{A_{2}}{\text { group }} \underset{B_{2}}{ }$ of s_{n}

Musicological knowledge

- N -grams for musical part sequences proved to contain useful information.
-Labelling the groups as a post-processing step (presented © CMMR2008)
- Use information in search by adding a term:
$P(E)=\sum_{m=1}^{M} \sum_{n=1}^{M} A\left(s_{m}, s_{n}\right) L\left(s_{m}, s_{n}\right)$
$+\frac{w}{M-1} \sum_{o=1}^{M} \log \left(p_{N}\left(g_{o} \mid g_{1:(o-1)}\right)\right) \sum_{m=1}^{M} \sum_{n=1}^{M} A\left(s_{m}, s_{n}\right.$ p_{N} : N -gram probability, w : weighting factor.

Search problem

- Rapid increase of search space size as a function of number of segmentation point candidates. E.g.,

Allowing three different groups ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) produces DAG:

- Find optimal path from BEG to END.
- Problem: state transition costs depend on the whole earlier path.

Bubble Token Passing

- Each segment \& group combination is a state
- States contain an ordered buffer of tokens. At each iteration
- arriving tokens are inserted to the buffer, and -the N best tokens are propagated and removed from the buffer
- Tokens store travelled state sequence.
- Tokens arriving to end state contain found structure descriptions
- Operation parametrised by number of propagated tokens and maximum number of stored tokens.
- Controllably greedy
-Finds a solution quickly, iterations increase search scope and may produce better solutions.
- Store all tokens and run until all tokens have arrived to end state \rightarrow exhaustive search.

Experiments

- Evaluations with 557 manually annotated popular music pieces, TUTstructure07.
- Evaluation metrics on frame-by-frame basis
-Correct segmentation and grouping of frame pairs, F-measure,
- Correct musical label to frame.

Conclusions

- Probabilistic fitness function for music structure descriptions
- Fitness function optimisation presented as a graph search.
- A novel greedy search algorithm presented.
- The effect of using musical part N -grams in the fitness function studied.
- Musicological model has very small effect on frame-by-frame grouping result.
- Musicological model improves result when evaluated by correctly labelled frames (compared to post-process labelling)

