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Introduction

•Structure analysis: from audio input

–find segmentation to musical parts (e.g., chorus

and verse)

–group segments with similar content, and

– assign musically meaningful labels to groups.
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Segment matching

•Three acoustic features for different aspects:

–general timbre → MFCCs,

– tonal / harmonic content → chroma,

– rhythmic content → rhythmogram.

•Self-distance matrix (SDM)

–Cos-distance between all frame pairs.

•Distance measures for segment pairs:
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•Map distances to probability that the segments be-

long to same group. (E.g., blocks, stripes.)
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Fitness measure

•Find the structural description E maximising

P (E) =
M
∑

m=1

M
∑

n=1

A (sm, sn)L (sm, sn),

where

L (sm, sn) =











log (p̂ (sm, sn)) , if gm = gn

log (1 − p̂ (sm, sn)) , if gm 6= gn

.

A (sm, sn): submatrix area, gn: group of sn.
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Musicological knowledge

•N-grams for musical part sequences proved to con-

tain useful information.

–Labelling the groups as a post-processing step

(presented @ CMMR2008).

•Use information in search by adding a term:
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M
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m=1

M
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A (sm, sn)L (sm, sn)

+
w

M − 1

M
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(

pN(go|g1:(o−1))
)

M
∑
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M
∑
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A (sm, sn),

pN : N-gram probability, w: weighting factor.

Search problem

•Rapid increase of search space size as a function of

number of segmentation point candidates. E.g.,
border candidates
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Allowing three different groups (A, B, C) produces
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•Find optimal path from BEG to END.

•Problem: state transition costs depend on the

whole earlier path.

Bubble Token Passing

•Each segment & group combination is a state.

•States contain an ordered buffer of tokens. At

each iteration

– arriving tokens are inserted to the buffer, and

– the N best tokens are propagated and removed

from the buffer.

•Tokens store travelled state sequence.

•Tokens arriving to end state contain found struc-

ture descriptions.

•Operation parametrised by number of propagated

tokens and maximum number of stored tokens.

–Controllably greedy.

–Finds a solution quickly, iterations increase

search scope and may produce better solutions.

–Store all tokens and run until all tokens have ar-

rived to end state → exhaustive search.

Experiments

•Evaluations with 557 manually annotated popular

music pieces, TUTstructure07.

•Evaluation metrics on frame-by-frame basis:

–Correct segmentation and grouping of frame

pairs, F-measure, precision rate, recall rate.

–Correct musical label to frame.

0

0.2

0.4

0.6

0.8

1.0

full&LM full bord&LM bord segs&LM segs

Conclusions:

•Probabilistic fitness function for music struc-

ture descriptions.

•Fitness function optimisation presented as a

graph search.

•A novel greedy search algorithm presented.

•The effect of using musical part N-grams in

the fitness function studied.

•Musicological model has very small effect on

frame-by-frame grouping result.

•Musicological model improves result when

evaluated by correctly labelled frames (com-

pared to post-process labelling).


