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ABSTRACT

In thispaperwedescribeamethodfor thetranscriptionof percus-
sive audiosignalswhich have beenperformedwith arbitrarynon-
drumsounds.Thesystemlocatessoundeventsfrom theinputsig-
nal using an onsetdetector. Then a set of featuresis extracted
from the onsettimes.Featurevectorsareclusteredandthe clus-
tersareassignedwith labelswhich describethe rhythmic role of
eachevent.For thelabeling,a novel methodis proposedwhich is
basedon metrical(temporal)positionsof thesoundeventswithin
themeasures.Thesystemis evaluatedusingmonophonicpercus-
sive tracks consistingof non-drumsounds.In simulations,the
systemachieved a total error rate of 33.7%. Demo signalsare
available at URL:<http://www.cs.tut.fi/~paulus/demo/>.

1.  INTRODUCTION

Theaim of this paperis to proposea methodfor transcribingper-
cussive rhythms from audio signalsinto a symbolic representa-
tion. In particular, the idea is that the input rhythms can be
performedusingan arbitrarysetof percussive sounds,for exam-
ple by hand-tappingor pencil-clickingon differentmaterials,or
even by scat singing (imitating drum instrumentsby speech
sounds).Theoutputof thesystemconsistsof a sequenceof time-
stampedlabelswhichcanbefurtherconvertede.g.to a MIDI file.
Dueto thedegreesof freedomin regardto thesoundsetsallowed,
only threerhythmically differentsoundsareattemptedto be rec-
ognized.Theseare referredto as rhythmic role labels, and are
denotedasB (bassdrum),S (snaredrum)andH (hi-hat),accord-
ing to the instrumentsthat are usually usedto play the roles of
these labels in real world music.

A systemof the describedkind actsas a user interface for
presentingmusical rhythms to a computer. Specific musical
instrumentsor musicaleducation(e.g.scorewriting ability) is not
necessary. Such a user interface has several applications.For
example,it canbeusedto enteraquerystringto amusicinforma-
tion retrieval system.A musicianmayuseit to input a drumtrack
to a score-writingprogram.A non-musicianmay want to create
music by tappinga rhythm (and simultaneouslysinging a mel-
ody), andto have a computerprogramwhich listensandaccom-
paniesaccordingto a particularmusicalstyle.Themostintuitive
methodfor presentingthe rhythms would be tappingthem with
e.g.fingersandrecordtheproducedsoundwith a microphone.If

somespecialhardwareis neededfor presentingthedesiredrhyth-
mical patterns to the computer, the usability of the system
degrades.Also, the extra hardware may be intimidating for the
user. The taskfor the systemis to somehow recognizeandlabel
the percussive sound events.

A ratherconstrainingmodelwith only threerhythmically dif-
ferentlabelsis proposed.Althoughthis dropsall timbral nuances
of the audiosignals,the basicrhythmic perceptcanbe retained
for a large body of music from different genres.As has been
shown by Zils et al., a drum track of popularmusiccanbe pre-
sentedwith very few actualelementsoccurringand still it will
producethesamerhythmicperceptastheoriginal track[1]. Their
systemattemptsto extract a drum track consistingof bassand
snaredrum occurrences.Here, the label H was added,because
even though the rhythmic perceptgeneratedby only bassand
snaredrumsarecloseto theoriginal one,still somethingis miss-
ing. Thismissingpartis in popularmusicoftenplayedby hi-hats,
hencethe label. The initial intuition predicts that this kind of
model for rhythmssuits for the genrespop, rock, bluesandhip
hop, and to some degree for electronic music.

To our knowledge, transcriptionof percussive tracks per-
formed with arbitrary non-drumsoundshasnot beenattempted
before.Transcriptionof percussive tracksperformedwith actual
drum instrumentshas beenattemptede.g. by FitzGeraldet al.
who usedsub-bandindependentsubspaceanalysisin transcribing
drum tracksconsistingof kick drums,snaredrumsand hi-hats
[2]. Their systemusedmanuallysetrulesin determiningthecor-
rect namingof the found components.Performanceof their sys-
tem wasquite reasonable(total successrate89.5%)considering
thatthematerialwaspolyphonic.Theweakpoint is thattheir sys-
tem neededhumaninterferenceand so the systemcan be used
with onekind of a drum setonly, not with arbitrarysounds.Vir-
tanenusedadata-adaptivesparsecodingapproach,wherethecost
functiontook temporalcontinuity into accountin [3] whentrying
to separatedifferentsoundsourcesfrom a mixture.He testedthe
systemin automaticdrum transcription,trying to separatekick
and snaredrumsfrom polyphonicmixtures.The total error rate
for his systemwas34%.Theweaknessin thatsystemwasthat it
neededspectraltemplatesto identify the separatedsources.Also
hi-hats were not separated due to their relatively weak energy.

Whennormaldrumsoundsareused,anacoustic-modelbased
approachcanbeused.Earlierwepresentedasystemfor transcrib-
ing polyphonicdrum tracksof real drumswith the aid of simple
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acousticmodelsandN-grambasedlanguagemodelsin [4]. But
whenusingarbitrarysoundsin the input, acousticinformationit
is notenoughto identify thesounds.In [5] PatelandIversenhave
studiedtheNorth Indiantabladrummingtraditionin whichasys-
tem of nonsensesyllablesis usedto namedrum sounds.They
wantedto know if thereexists an acousticandperceptualbasis
for themappingfrom drumsoundsto thesesyllables.As a result
they found that there exists acousticfeatures,such as spectral
centroidanddecaytime, that canbe usedin the mappingwhen
usedin relation to eachother. In their perceptualtests,people
unfamiliar with tabladrummingwereableto createthemapping
quite well when setsof two syllable soundsand corresponding
tablasoundswerepresentedto them.This methodworks when
individualsoundsneedto belabeled,but themetricalinformation
informationtendsto overruletheacousticinformationwhendeal-
ing with rhythmicalpatterns.This is partly dueto thediversityof
the possible sound sets.

2.  PROPOSED METHOD

Overview of theproposedsystemis shown in Figure1. Thebot-
tom-upclusteringpartof thesystemresemblesthatof Herreraet
al. wheredrumtracksconsistingof hi-hats,bassandsnaredrums
areautomaticallylabeled.Their systemanalysesthesignalusing
a constanttemporalgrid, extractsfeaturesat eachgrid point and
finally clusters the extracted features [6].

Another systemwhich usespercussive soundclustering is
thatof Wanget al. which detectspercussive soundsin a musical
piece and then clustersthem into as many clustersas needed
according to their perceptualsimilarity. The obtained cluster
information is thenusedin reconstructingacousticsignal in the
caseof apacket lossin thetransmissionof anencodedsignal[7].

In oursystem,featuresareextractedonly at thebeginningsof
detectedsoundevents,similarly to [7]. For this purpose,onset
detectionis performedusing the mid-level representationof the
systempresentedin [8]. At eachonsetlocationa small frameof
thesignalis extractedandanalysedwith a methodsimilar to [6].
The analysis result, i.e. the clustering information, is then
insertedto agrid of tatumpulsesaccordingto thetiming informa-
tion resultingto a symbolic representation.As the crucial step,
this informationis fed to the labelingsystem,which thenusesa
simple probabilistic model in determinationthe labeling. The
termlabeling is usedto referto thenamingof thecreatedclusters
usingthelimited setof rhythmic role labelsavailable.If theclus-
tering was not accomplishedtotally correct,a simple algorithm

for post-labeling cluster assignment changes is applied.

2.1. Meter estimation and sound onset detection

Temporalsegmentationin theproposedsystemis doneusingthe
musicalmeterestimatordescribedin [8]. Meter refersto thetem-
poralregularityof musicsignals,consistingof pulsesensationsat
different levels. The appliedmeterestimatoranalysesmeterat
threedifferent time scales.Beat (foot tappingrate) is the most
prominent level. Tatum (time quantum)refers to the shortest
durationalvaluesthat are still more than incidentally encoun-
tered.Theotherdurationalvalues,with few exceptions,areinte-
ger multiples of the tatum. Musical measure is related to the
harmonicchangerateandto the lengthof rhythmicalpatternsin
music.Theaccuracy of themeterestimatorhasbeenevaluatedin
[8] andit wasfoundto beapplicablein musicfrom differentgen-
res.

Here, information about the temporalstructureis usedfor
two purposes.First, thebottom-upfeatureextractiontakesplace
only at the instantsof detectedonsets. The featurevectorsare
thenclusteredfurtheraswill bedescribedin Sec2.2and2.3.Sec-
ondly, a subsequentprobabilisticmodel usesthe metrical posi-
tions of the soundeventsbelongingto eachclusterto infer the
rhythmical role (label)of eachcluster. This is describedin more
detail in Sec.2.4.A discretetimegrid of equidistanttatumpulses
is created using the information extracted from the signal.

2.2. Feature extraction

Fromthelocationof eachdetectedsoundonset,a partof thesig-
nal is extractedusinga Hanningwindow. Sincethesoundevents
are limited in time by their nature,a rectangularwindow could
also be used.The length of the window is to the next detected
onset,but 100 ms at maximum.From eachframetemporalcen-
troid, signalcrestfactor, signalenergy, spectralkurtosisandsix
MFCCs(Mel-frequency cepstralcoefficients)areextracted.The
zerothMFCC is not used.Finally the featuresarenormalizedto
have zero mean and unity variance over time.

2.3. Clustering of sound events

Thenormalizedfeaturevectorsareclusteredwith fuzzyK-means
algorithm.Likewith its crispversion,thenumberof desiredclus-
tersis setmanually. Thetermcrisp is usedhereastheoppositeof
fuzzy. In additionto thenormalclusterinformation,thealgorithm
alsocalculatesfor eachdatapointdegreesof membershipto each
cluster. The datapoint is assignedto the clusterto which it has
thelargestmembershipvalue.Whenleft to this state,thecluster-
ing resultis similar to theoneproducedby thecrispversion.The
membership values are used in the post-labeling enhancement.

Theresultafterclusteringis asequenceof timestampedclus-
ter numbers , where K denotes the total
numberof clustersandt is thecontinuoustimeindex over thesig-
nal.Eachclusternumber is assignedto thenearestgrid point.
If thereis no clusternumberassignedto a certaingrid point, it
will containthenumber0. Theresultinggrid containsthecluster
numbers , where i is discretetime index
over thesignalin stepsof onetatum.In furthersteps,whenusing
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the term cluster numbers, the set  is referred.
The degreesof clustermembershipsafter time quantization,

arestorein a matrix , wheretheelement is thedegree
of membershipof the data point at the time i in the cluster
numberk. On thelocationsi wherenoonsetswasassignedto, the
matrix containsthe value1 in locationcorrespondingto the
clusternumber , and0 on the locationscorrespondingto
theotherclusters.Similarly, thevalue0 is setto thelocationcor-
respondingto theclusternumber on thelocationsi where
any other cluster number was assigned.

2.4. Probabilistic model

Theremainingproblemis to find a way for labelingtheclusters,
i.e. to find a mapping from
clusternumbers to labels . The label is
directly mappedto the clusternumberrepresentingsilence,i.e.

. Therestof themappingcouldbecreatedwith themeth-
ods of acoustic pattern recognition, e.g. a Gaussianmixture
model.Themainproblemwith acousticmodelsis that they can-
not generalizeto extremecaseslike the soundsetvariationcon-
sidered here. If the input signals are performed with drum
instruments,an acousticmodelbasedrecognitionsystemcanbe
constructed,aswedemonstratedin [4]. As theaimwasto beable
to handleand label any percussive tracks,independentlyof the
usedinstruments,acousticmodelsneedto besetaside.Instead,a
methodrelying on the timing of soundeventswithin patternsis
introduced.

The model estimatesthe probability of a certain rhythmic
label q to be presentat a certaintime index within a measure,
whenthetime is discretizedto stepsof onetatum.An illustration
of the data structureof the matrix of probability values is in
Figure2. The measure length in tatum units is m and

denotesthepositionof thesoundeventwithin
the measure.Sincethereexists numerousdifferentmusicaltime
signatures, the measure lengths from 1 to 48 were modeled.

2.4.1.  Model estimation

Probabilitiesfor eachlabel q to occur at different metrical
positions wereestimatedusinga commerciallyavailable
MIDI databaseDrumtrax 3.0. The databasecovers most of the
westernmusical genrescontaining 359 performancesin total.

The piecesareorganizedin 14 differentcategories,of which 13
aredifferentgenresandthelastoneis akind of a tool box.Varied
subsetof 26 pieces(two from eachgenre)wasleft for thetestset
andtherestwereusedin trainingof themodel.Thedivision was
donefor tentimesandthepresentedresultsareaveragedover all
tests. In probability estimationthe musical grid of songswas
annotatedby handandnotesaredistributedto this discretetime
grid. TheneachMIDI drum instrumentis assignedto belongto
onelabel . Thegrid is dividedto measuresandthey arehandled
individually. The numberof occurrencesof eachlabel in each
metrical position are calculated to a data structure seen in
Figure2, and the resulting probabilities estimated.

Though the usedtraining set containedquite an extensive
rangeof pieces,not all probabilitiescould be determineddueto
thelack of properdata.Thenumberof songsin thetrainingsub-
setof thedatabase,having acertainmeasurelengthin tatumscan
be seenin Figure3. This zerooccurrenceproblemwashandled
by applyingWitten-Bell smoothing.An exampleof theproduced
probabilities can be seen in Figure4.

2.4.2.  Model usage

Eachof the clusternumbersk is mappedto oneof the rhythmic
role labelsq. After assigninga mapping,theresultingprobability
can be calculated with

, (1)

wherei denotesthediscretetime index, the labelassignedto
thatpositionusingthemappingL, themetricalpositionof the
time index i within the measureof the lengthm. Becauseof the
small numberof the clustersandpossiblelabels,every possible
mappingpermutationcan be calculatedin brute force and the
optimalonefound.Theoptimal labelingis definedto be theone
having thelargesttotalprobability. This labelingstrategy is based
on the assumptionthat a majority of eventsare correctly clus-
tered.

2.5. Post-labeling cluster changes

Sinceit is morethanlikely thatnot all of thedatapointsareclus-
tered correctly in a realistic situation, a simple method for
enhancingthefinal resultis presented.Thebasisfor thechanges
is the clustermembershipvaluesfrom the fuzzy K-means.It is
assumedthatmostof thedatapointsis assignedto a correctclus-
terandhenceonly smallchangesareallowed.Also, it is assumed
that the chosenmapping is the correct one and it is not
changedin the algorithm. It shouldbe notedthat the algorithm
canchangeonly the datapointsthat containedan onset,i.e. not
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the ones containing the label . It proceeds as follows:
calculate base line probability  with Eq. (1)
for

for
if

assign label  to be the one mapped from clusterk
calculate total probability  using the Eq.(1)
if

retain the change
else

discard the change
endif

endif
endfor

endfor
The membershipvalue limit is in the range . It has
theeffect thatthesmallerit is, thelessthesystemtruststheclus-
tering result. If it set to 0, the systemcan changeany cluster
assignment.Whenthetotal numberof clustersis 4, includingthe
silence,thebestworkingvaluefor wasfoundto beca.0.10.
Valuethis smallallows thealgorithmto changeca.40%of label
assignments,wherea non-silencelabel wasset.The numberof
actuallychangedlabelsis verysmall,lessthan5%in mostcases.

3.  SYSTEM EVALUATION

Thesystemwasevaluatedwith simulations.Theinput to thesys-
tem, audio trackswith percussive soundswasproducedby syn-
thesizing30 secondsfrom eachof theMIDI piecesleft to thetest
set. The test and train set division was donerandomly for ten
times and the presentedresultsare the averageof all divisions.
The evaluationcould be doneautomaticallysincethe reference
was obtained from the MIDI piece.

In all simulations,themetricalinformationwasannotatedby
handinsteadof usingthemusicalmeterestimator. This wasdone
becauseof theneedfor automatictranscriptionevaluation.Since
thereferencedatawasannotatedin MIDI files, it wasdecidedto
use the annotatedmetrical information. The accuracy of the
musical meter estimator was evaluated in [8].

3.1. Audio synthesis

Sincethe aim was away from the more traditional drum tracks
towardstracksperformedwith arbitrarypercussivesounds,aspe-
cific synthesizeris needed.It wasconstructedby recordingtotal
of 68 differentsoundsthatcanbethoughtto beusedin a realsit-
uation.For eachsound15 repetitionswererecordedto guarantee
somedegreeof variation in the synthesis.The soundsweredis-
tributedsothat48 of themwereproducedby tappingwith hands
or pento tables,books,coffeemugsetc.,or by foot tappingwith
differentfootwear. Theremaining20 soundswerespeechsounds
by two persons,both performingthe same10 sounds.From the
recordedsamples,five sets of percussive sounds were con-
structed.Two of theseset consistonly soundsproducedwith
speechandtherestconsistof clicksandtappingsounds.It should
benotedthatsinceno acousticmodelingwasdone,therewasno
need to do any division to train and test sets.

The synthesisproducesmonophonicsignal, i.e. only one
soundis playingat a time. In a casewheremorethanonesound
wasto beplayedsimultaneously, theoneto beplayedwaschosen
by a simple priority schemewhere the soundmappedto from
MIDI notesto label S have the highestpriority, B the second
highest, andH the lowest.

3.2. Simulation setups

Sincethe total systemperformancedependsheavily on the suc-
cessive sub-blocks,it was decidedto test it in four individual
steps:
1. Theperformanceof onset detection and clustering accuracy.

In this setup,the systemperformsonsetdetection,feature
extraction and clustering. The clusters are assignedwith
labels manually, so that the error rate is minimized.

2. Test if the rhythmic role labeling is theoreticallypossible
basedonthemetricalpositionof events.In thissetup,thesys-
tem was given the referencetranscriptionexcept that the
soundlabelswere hiddenand had to be inferred using the
method described in Sec. 2.4.

3. The performanceof the whole system without post-labeling
cluster changes. Here,thesystemis givenonly acousticsig-
nal and the metrical information and it neededto detect
onsets,extractfeatures,performclusteringandinfer thelabe-
ling.

4. Theperformanceof thewhole system with post-labeling clus-
ter changes. This setupis similar to the step3, but the post-
labeling cluster change algorithm is also used.

Eachof thesecasesareevaluatedusingthesametestmaterialand
it canbedeterminedwhich partsof thesystemmayneedfurther
development. The used error rate measure was

, (2)

wherei is the discrete time index over the whole signal and
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∅
PB L'( )

i grid points in piece{ }∈
k 0 1 … K, , ,{ }∈
U( )i k, umin>

qi
PT L'( )

PT L'( ) PB L'( )>

umin 0…1

Figure 4:An example of calculated label probabilities. The
measure length is 16.

umin

e
f qi

ref
qi

trans,( )
i∑

1
i∑

-----------------------------------------=

f q
1

q
2,( ) 1 if q

1
q

2≠,
0 otherwise,




=



Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-5

3.3. Simulation results

The simulation results for the four individual stepsare in the
Table1. In additionto thetotalerrorrateoverall soundsets,there
is alsotheaverageerrorratesof speechbasedsoundsetsandtap-
ping basedsoundsets.More detailederrorratestatisticsfor each
of the 13 genres and five sets can be seen on Figure5.

As from the resultscan be seen,it seemsthat soundspro-
ducedwith speecharemoredifficult for thesystemto copewith.
When inspectingthe error ratesfor eachgenre,seemsthat soft
rock, r’n’b and jazz are the easiestonesfor the systemwhile
alternative and world genresare the most difficult. The within
genrevariationswerelarge,mostlycausedby therandomchoice
of thepartof thepiecesto beanalysed.Thepost-labelingcluster
changealgorithm turnedout to have a very small effect to the
total performance.This is due to the fact that errorsin labeling
stepcausehigh total error rate and minor changescan not fix
enough errors.

Some demo signals from the simulationsare available at
URL:<http://www.cs.tut.fi/~paulus/demo/>.

4.  DISCUSSION

In generationof the tatumgrid, the tempois assumedto be
constantover the whole signal.Similarly, it is assumedthat the
lengthof the measureis constant.However, it is very likely that
theseassumptionsdo not hold when operatingwith real world
signals.Musiciansmay vary the tempowhen playing, creating
theirown versionsof thepieceandthetimesignaturemaybedif-
ferent in the verse and chorus of the piece.

Whenconstructingthe models, fixed assignmentfrom MIDI
notesto therhythmic role labelsturnedout to generateproblems.
Though in many casesthe rhythmic roles are operatedby the

specifieddruminstruments,this wasnot thecasewith all genres.
Especiallywith jazz, latin andworld musicgenres,moreexotic
percussionswereusedor the instrumentwas in a different role
(e.g.cymbalin rock is usuallyin the“snare”role whilst in jazzit
may be in the “bass” role). This causedproblemsin automatic
handlingof the testdata.It turnedout that on mostof the cases
wherelabelingafter “perfectclustering”waserroneous,the time
signaturewassuchthattherewasonly few otherpiecesavailable
for training material.

5.  CONCLUSIONS

This paperhasintroduceda methodfor transcribingpercussive
audiosignalsconsistingof arbitrarysounds.It usesthestatistical
dependenciesof metrical positions of rhythmical elementsin
labelingof theevents.Theefficiency of themethodwasevaluated
with simulations.The transcriptionfor arbitrary soundsetsis a
difficult task,andespeciallyerrorsin label assignmentincrease
theerrorratesignificantlycomparedto theerrorsin theclustering
step.Basedon the results,usingmetricalpositionsin the rhyth-
mic role labeling is possible to some degree.

6.  REFERENCES

[1] Zils A., PachetF., DelerueO.,GouyonF., “AutomaticExtrac-
tion of Drum Tracks from PolyphonicMusic Signals”, in
Proc. 2nd Int. Conference on Web Delivering of Music
(WedelMusic2002), Darmstadt, Germany, pp. 179-183, 2002.

[2] FitzGeraldD., Coyle E., Lawlor B., “Sub-bandIndependent
SubspaceAnalysisfor Drum Transcription”,in Proc.5th Int.
Conferenceon Digital Audio Effects(DAFX-02), Hamburg,
Germany, pp. 65-69, 2002.

[3] VirtanenT., “SoundSourceSeparationUsingSparseCoding
with TemporalContinuity Objective”, in Proc. of Interna-
tional ComputerMusicConference(ICMC2003), Singapore,
2003, to appear.

[4] PaulusJ.,Klapuri A., “ConventionalandPeriodicN-gramsin
the Transcriptionof Drum Sequences”,in Proc. of IEEE
International Conference on Multimedia and Expo
(ICME03), Baltimore, USA, pp. 737-740, 2003.

[5] PatelA. D., IversenJ.R., “AcousticandPerceptualCompari-
son of Speechand Drum Soundsin the North Indian Tabla
Tradition: An Empirical Study of Sound Symbolism”, in
Proc.15thInternationalCongressof PhoneticSciences, Bar-
celona, Spain, 2003, to appear

[6] GouyonF., HerreraP., “Exploration of techniquesfor auto-
matic labeling of audio drum tracks’ instruments”,in Proc.
MOSART: Workshop on Current Directions in Computer
Music, Barcelona, Spain, 2001.

[7] WangY., TangJ.,AhmaniemiA., VaalgamaM., “Parametric
Vector Quantization for Coding Percussive Sounds in
Music”, in Proc. IEEE International Conferenceon Acous-
tics, Speech & Signal Processing(ICASSP03), Hong Kong,
pp. 652-655, 2003.

[8] Klapuri A., “Musical MeterEstimationandMusic Transcrip-
tion“, Paper presentedat the CambridgeMusic Processing
Colloquium, Cambridge University, UK, 2003.

0

0.2

0.4
w

or
ld

so
ft 

ro
ck ra
p

r&
b

od
d 

m
et

er
s

la
tin

ja
zz

hi
p 

ho
p

ha
rd

 ro
ck

da
nc

e 
po

p
co

un
try

bl
ue

s
al

te
rn

at
iv

e

E
rr

or
 ra

te

speech 1
speech 2
tap 1
tap 2
tap 3
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sound sets.

Table 1:Error rates for different test steps for speech sounds
(average of two sets), tapping sounds (average of three sets)

and the average of all systems.

test step speech ER tapping ER total avg ER

1. clustering 15.28% 13.12% 13.98%

2. role labeling 27.91% 27.91% 27.91%

3. whole w/o post fix 34.91% 33.15% 33.85%

4. whole w/ post fix 35.68% 33.01% 33.67%
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