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ABSTRACT

In this papemwe describea methodfor thetranscriptionof percus-
sive audiosignalswhich have beenperformedwith arbitrarynon-
drumsoundsThesystemlocatessoundeventsfrom theinputsig-

nal using an onsetdetector Then a set of featuresis extracted
from the onsettimes. Featurevectorsare clusteredandthe clus-
tersareassignedvith labelswhich describethe rhythmic role of

eachevent. For thelabeling,a novel methodis proposedvhichis

basedon metrical(temporal)positionsof the soundeventswithin

the measuresThe systemis evaluatedusingmonophonigercus-
sive tracks consistingof non-drumsounds.In simulations,the
systemachieved a total error rate of 33.7%. Demo signalsare
available at URL:<http://wwves.tut.fi/~paulus/demo/>.

1. INTRODUCTION

Theaim of this paperis to proposea methodfor transcribingper-
cussve rhythms from audio signalsinto a symbolic representa-
tion. In particular the idea is that the input rhythms can be
performedusingan arbitrary setof percussie soundsfor exam-
ple by hand-tappingor pencil-clicking on different materials,or
even by scat singing (imitating drum instrumentsby speech
sounds)The outputof the systemconsistsf a sequencef time-
stampedabelswhich canbefurthercorvertede.g.to aMIDI file.
Dueto thedegreesof freedomin regardto thesoundsetsallowed,
only threerhythmically differentsoundsare attemptedo be rec-
ognized.Theseare referredto as rhythmic role labels, and are
denotedasB (bassdrum), S (snaredrum)andH (hi-hat),accord-
ing to the instrumentsthat are usually usedto play the roles of
these labels in realavld music.

A systemof the describedkind actsas a user interface for
presentingmusical rhythms to a computer Specific musical
instrumentor musicaleducation(e.g.scorewriting ability) is not
necessarySuch a user interface has several applications.For
example,it canbe usedto enteraquerystringto amusicinforma-
tion retrieval system A musicianmay useit to inputadrumtrack
to a score-writingprogram.A non-musicianmay wantto create
music by tappinga rhythm (and simultaneouslysinging a mel-
ody), andto have a computerprogramwhich listensandaccom-
paniesaccordingto a particularmusicalstyle. The mostintuitive
methodfor presentingthe rhythmswould be tappingthem with
e.g.fingersandrecordthe producedsoundwith a microphonelf

somespecialhardwareis neededor presentinghedesiredrhyth-
mical patternsto the computer the usability of the system
degrades.Also, the extra hardware may be intimidating for the
user The taskfor the systemis to somehav recognizeandlabel
the percussie sound eents.

A ratherconstrainingnodelwith only threerhythmically dif-
ferentlabelsis proposedAlthoughthis dropsall timbral nuances
of the audio signals,the basicrhythmic perceptcan be retained
for a large body of music from different genres.As has been
shavn by Zils et al., a drum track of popularmusic canbe pre-
sentedwith very few actualelementsoccurringand still it will
producethe samerhythmic perceptasthe original track[1]. Their
systemattemptsto extract a drum track consistingof bassand
snaredrum occurrencesHere, the label H was added,because
even though the rhythmic perceptgeneratedoy only bassand
snaredrumsarecloseto the original one,still somethings miss-
ing. This missingpartis in popularmusicoftenplayedby hi-hats,
hencethe label. The initial intuition predictsthat this kind of
modelfor rhythms suits for the genrespop, rock, bluesand hip
hop, and to some deee for electronic music.

To our knowledge, transcription of percussie tracks per-
formed with arbitrary non-drumsoundshasnot beenattempted
before.Transcriptionof percussie tracksperformedwith actual
drum instrumentshas beenattemptede.g. by FitzGeraldet al.
who usedsub-bandndependensubspacanalysisin transcribing
drum tracks consistingof kick drums, snaredrumsand hi-hats
[2]. Their systemusedmanuallysetrulesin determiningthe cor-
rect namingof the found componentsPerformanceof their sys-
tem was quite reasonablétotal successate 89.5%) considering
thatthematerialwaspolyphonic.Theweakpointis thattheir sys-
tem neededhumaninterferenceand so the systemcan be used
with onekind of a drum setonly, not with arbitrary sounds.Vir-
tanenuseda data-adaptie sparsecodingapproachwherethe cost
functiontook temporalcontinuityinto accountin [3] whentrying
to separatalifferentsoundsourcedrom a mixture. He testedthe
systemin automaticdrum transcription,trying to separatekick
and snaredrumsfrom polyphonicmixtures.The total error rate
for his systemwas34%. The weaknessn that systemwasthatit
neededspectratemplatego identify the separategdourcesAlso
hi-hats were not separated due to their nedgtiwveak enagy.

Whennormaldrumsoundsareused,anacoustic-modebased
approacltanbeused Earlierwe presenteé systentor transcrib-
ing polyphonicdrum tracksof real drumswith the aid of simple
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Figure 1:System overview.

acousticmodelsand N-gram basedanguagemodelsin [4]. But
whenusingarbitrary soundsin the input, acousticinformationit
is notenoughto identify thesoundsin [5] Patelandlverserhave
studiedthe North Indiantabladrummingtraditionin whichasys-
tem of nonsensesyllablesis usedto namedrum sounds.They
wantedto know if thereexists an acousticand perceptuabasis
for the mappingfrom drum soundgo thesesyllables.As aresult
they found that there exists acousticfeatures,such as spectral
centroidand decaytime, that can be usedin the mappingwhen
usedin relationto eachother In their perceptualtests,people
unfamiliar with tabladrummingwereableto createthe mapping
quite well when setsof two syllable soundsand corresponding
tabla soundswere presentedo them. This methodworks when
individual soundseedto belabeled but the metricalinformation
informationtendsto overruletheacoustianformationwhendeal-
ing with rhythmical patternsThis is partly dueto the diversity of
the possible sound sets.

2. PROPOSED METHOD

Overview of the proposedsystemis shavn in Figurel. The bot-
tom-upclusteringpartof the systemresembleshat of Herreraet
al. wheredrumtracksconsistingof hi-hats,bassandsnaredrums
areautomaticallylabeled.Their systemanalyseghe signalusing
a constantemporalgrid, extractsfeaturesat eachgrid point and
finally clusters thexracted features [6].

Another systemwhich usespercussie sound clusteringis
thatof Wanget al. which detectspercussie soundsin a musical
piece and then clustersthem into as mary clustersas needed
accordingto their perceptualsimilarity. The obtained cluster
informationis thenusedin reconstructingacousticsignalin the
caseof apaclketlossin thetransmissiorf anencodedsignal[7].

In our systemfeaturesareextractedonly atthe beginningsof
detectedsoundevents, similarly to [7]. For this purpose,onset
detectionis performedusing the mid-level representatiomf the
systempresentedn [8]. At eachonsetlocationa small frame of
the signalis extractedandanalysedvith a methodsimilar to [6].
The analysis result, i.e. the clustering information, is then
insertedo agrid of tatumpulsesaccordingo thetiming informa-
tion resultingto a symbolic representationAs the crucial step,
this informationis fed to the labeling systemwhich thenusesa
simple probabilistic model in determinationthe labeling. The
termlabeling is usedto referto thenamingof the createdclusters
usingthelimited setof rhythmic role labelsavailable.If the clus-
tering was not accomplishedotally correct,a simple algorithm

for post-labeling cluster assignment changes is applied.

2.1. Meter estimation and sound onset detection

Temporalsegmentationin the proposedsystemis doneusingthe
musicalmeterestimatordescribedn [8]. Meter refersto thetem-
poralregularity of musicsignals,consistingof pulsesensationst
different levels. The applied meter estimatoranalysesmeter at
threedifferenttime scales.Beat (foot tappingrate)is the most
prominentlevel. Tatum (time quantum)refers to the shortest
durationalvaluesthat are still more than incidentally encoun-
tered.The otherdurationalvalues,with few exceptions areinte-

ger multiples of the tatum. Musical measure is relatedto the

harmonicchangerateandto thelengthof rhythmical patternsn

music.Theaccuray of the meterestimatothasbeenevaluatedn

[8] andit wasfoundto beapplicablein musicfrom differentgen-
res.

Here, information about the temporalstructureis usedfor
two purposeskFirst, the bottom-upfeatureextractiontakesplace
only at the instantsof detectedonsets. The featurevectorsare
thenclusteredurtheraswill bedescribedn Sec2.2and2.3.Sec-
ondly, a subsequenprobabilistic model usesthe metrical posi-
tions of the soundeventsbelongingto eachclusterto infer the
rhythmical role (label) of eachcluster This is describedn more
detailin Sec.2.4.A discretetime grid of equidistantatumpulses
is created using the informatiorteacted from the signal.

2.2. Featureextraction

Fromthelocationof eachdetectedsoundonset,a partof the sig-

nalis extractedusinga Hanningwindow. Sincethe soundevents
arelimited in time by their nature,a rectangulamwindow could

also be used.The length of the window is to the next detected
onset,but 100 ms at maximum.From eachframetemporalcen-
troid, signalcrestfactor signalenegy, spectralkurtosisand six

MFCCs (Mel-frequeng cepstralcoeficients) are extracted.The

zerothMFCC is not used.Finally the featuresare normalizedto

have zero mean and unityxance wer time.

2.3. Clustering of sound events

Thenormalizedfeaturevectorsareclusteredwith fuzzy K-means
algorithm.Lik e with its crispversion thenumberof desiredclus-
tersis setmanually Thetermcrisp is usedhereasthe oppositeof
fuzzy. In additionto thenormalclusterinformation,thealgorithm
alsocalculatedor eachdatapoint degreesof membershigo each
cluster The datapoint is assignedo the clusterto which it has
the largestmembershipzalue. Whenleft to this state the cluster-
ing resultis similar to theoneproducedy the crispversion.The
membership &lues are used in the post-labeling enhancement.
Theresultafterclusteringis asequencef time stampedtlus-
ter numbers ¢, 0{1, 2, ...,K}, where K denotesthe total
numberof clustersandt is thecontinuougime index over thesig-
nal. Eachclusternumberc, is assignedo the nearesgrid point.
If thereis no clusternumberassignedo a certaingrid point, it
will containthe number0. Theresultinggrid containsthe cluster
numbersc; 0{0,1,2,...,K}, wherei is discretetime index
overthesignalin stepsof onetatum.In furtherstepswhenusing
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Figure 2:Data representation of the probabilistic model. g
denotes the label, n metrical position, mlength of the measurein
tatums, and P the probability of the label g to be present at the

position (n, m) .

the term cluster numbers, the $& 1, 2, ..., K} is referred.

The degreesof clustermembershipsfter time quantization,
arestorein amatrix U , wherethe element(U); | is thedegree
of membershipof the data point at the time i in the cluster
numberk. Onthelocationsi whereno onsetsvasassignedo, the
matrix U containsthe value 1 in location correspondingo the
clusternumberk = 0, andO0 on the locationscorrespondindo
the otherclusters Similarly, thevalueO is setto the locationcor-
respondingo the clusternumberk = 0 onthelocationsi where
ary other cluster numberag assigned.

2.4. Probabilistic model

The remainingproblemis to find a way for labelingthe clusters,
i.e. to find a mappingL:{0,1,2,...,K} - {O,B,H, S} from

clusternumbersk to labelsqO {0, B,H, S} . Thelabel O is

directly mappedto the clusternumberrepresentingsilence,i.e.

k = 0. Therestof the mappingcould be createdwith the meth-
ods of acoustic pattern recognition, e.g. a Gaussianmixture
model.The main problemwith acousticmodelsis thatthey can-
not generalizeto extremecasedik e the soundsetvariationcon-
sidered here. If the input signals are performed with drum
instrumentsan acousticmodel basedrecognitionsystemcanbe
constructedaswe demonstrateé [4]. As theaimwasto beable
to handleand label ary percussie tracks,independentlyof the
usedinstrumentsacoustiomodelsneedto be setaside.lnsteada
methodrelying on the timing of soundeventswithin patternsis

introduced.

The model estimatesthe probability of a certain rhythmic
label g to be presentat a certaintime index within a measure,
whenthetime is discretizedo stepsof onetatum.An illustration
of the data structureof the matrix of probability valuesis in
Figure2. The measure length in tatum units is m and
nO{1 2, ..., m} denoteghe positionof the soundeventwithin
the measureSincethereexists numeroudifferentmusicaltime
signatures, the measure lengths from 1 to 48 were modeled.

2.4.1. Model estimation

Probabilitiesfor eachlabel q to occur at different metrical
positions(n, m) wereestimatedusinga commerciallyavailable
MIDI databasédrumtrax 3.0. The databaseovers most of the
westernmusical genrescontaining 359 performancesn total.
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Figure 3:Number of songsin the training set having a certain
length of measure in tatums.

The piecesare organizedin 14 differentcatagories,of which 13
aredifferentgenresandthelastoneis akind of atool box. Varied
subsebf 26 pieces(two from eachgenre)wasleft for thetestset
andtherestwereusedin training of the model. The division was
donefor tentimesandthe presentedesultsareaveragedover all
tests.In probability estimationthe musical grid of songswas
annotatedoy handandnotesare distributedto this discretetime
grid. TheneachMIDI drum instrumentis assignedo belongto
onelabel q. Thegrid is dividedto measureandthey arehandled
individually. The numberof occurrencef eachlabel in each
metrical position are calculatedto a data structure seenin
Figure2, and the resulting probabilities estimated.

Though the usedtraining set containedquite an extensive
rangeof pieces,not all probabilitiescould be determinecdueto
the lack of properdata.The numberof songsin thetraining sub-
setof thedatabasehaving a certainmeasurdengthin tatumscan
be seenin Figure3. This zerooccurrenceproblemwashandled
by applyingWitten-Bell smoothing An exampleof the produced
probabilities can be seen in Figure

2.4.2. Moddl usage

Eachof the clusternumbersk is mappedto one of the rhythmic
role labelsq. After assigninga mapping theresultingprobability
can be calculated with

P(L) = [T, P(ai|(n, m)), (2)

wherei denoteghe discretetime index, g; thelabelassignedo
thatpositionusingthe mappingL, n; themetricalpositionof the
time index i within the measureof the lengthm. Becauseof the
small numberof the clustersand possiblelabels,every possible
mapping permutationcan be calculatedin brute force and the
optimal onefound. The optimal labelingis definedto be the one
having thelargesttotal probability Thislabelingstrateyy is based
on the assumptiorthat a majority of eventsare correctly clus-
tered.

2.5. Post-labeling cluster changes

Sinceit is morethanlikely thatnotall of the datapointsareclus-
tered correctly in a realistic situation, a simple method for
enhancinghe final resultis presentedThe basisfor the changes
is the clustermembershipraluesfrom the fuzzy K-means.It is
assumedhatmostof the datapointsis assignedo a correctclus-
terandhenceonly smallchangesreallowed.Also, it is assumed
that the chosenmapping L' is the correctone and it is not
changedn the algorithm. It shouldbe notedthat the algorithm
canchangeonly the datapointsthat containedan onset,i.e. not
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the ones containing the labigl. It proceeds as folles:
calculate base line probabili§g(L') with Eq. (1)
for i O { grid points in piecg
for kO{O,1, ..., K}
it (U)i, k> Umin
assign labeb;; to be the one mapped from cluster
calculate total probabilityP+ (L") using the Eq(l)
if Pr(L")>Pg(L")
retain the change
ese
discard the change
endif
endif
endfor
endfor
The membershipvaluelimit u;, isin therange0...1. It has
the effectthatthe smallerit is, the lessthe systemtruststhe clus-
tering result. If it setto 0, the systemcan changeary cluster
assignmentWhenthetotal numberof clustersis 4, includingthe
silence the bestworking valuefor u,; , wasfoundto beca.0.10.
Valuethis small allows the algorithmto changeca. 40% of label
assignmentsywherea non-silencelabel was set. The numberof
actuallychangedabelsis very small,lessthan5%in mostcases.

3. SYSTEM EVALUATION

The systemwasevaluatedwith simulations.Theinputto thesys-

tem, audiotrackswith percussie soundswas producedby syn-

thesizing30 secondgrom eachof the MIDI piecedeft to thetest
set. The test and train set division was done randomly for ten

times and the presentedesultsare the averageof all divisions.

The evaluationcould be done automaticallysincethe reference
was obtained from the MIDI piece.

In all simulationsthe metricalinformationwasannotatedy
handinsteadof usingthe musicalmeterestimator This wasdone
becausef the needfor automatictranscriptionevaluation.Since
thereferencedatawasannotatedn MIDI files, it wasdecidedto
use the annotatedmetrical information. The accurag of the
musical meter estimatoras ealuated in [8].

3.1. Audiosynthesis

Sincethe aim was away from the more traditional drum tracks
towardstracksperformedwith arbitrarypercussie soundsaspe-
cific synthesizeis neededIt wasconstructedyy recordingtotal
of 68 differentsoundghatcanbethoughtto be usedin arealsit-
uation.For eachsound15 repetitionswererecordedo guarantee
somedegreeof variationin the synthesisThe soundswere dis-
tributedsothat48 of themwereproducedby tappingwith hands
or pento tables,books,coffee mugsetc.,or by foot tappingwith
differentfootwear The remaining20 soundsverespeechsounds
by two personspoth performingthe samel0 sounds.From the
recorded samples,five sets of percussie soundswere con-
structed. Two of theseset consistonly soundsproducedwith
speechandtherestconsistof clicks andtappingsoundslt should
be notedthat sinceno acousticmodelingwasdone,therewasno
need to do andivision to train and test sets.

The synthesisproducesmonophonicsignal, i.e. only one
soundis playing atatime. In a casewheremorethanonesound
wasto be playedsimultaneouslythe oneto be playedwaschosen
by a simple priority schemewhere the soundmappedto from
MIDI notesto label S have the highestpriority, B the second
highest, andH the lavest.

3.2. Simulation setups

Sincethe total systemperformancedependsheaily on the suc-
cessie sub-blocks,it was decidedto testit in four individual
steps:

1. Theperformanceof onset detection and clustering accuracy.
In this setup,the systemperformsonsetdetection,feature
extraction and clustering. The clusters are assignedwith
labels manuallyso that the error rate is minimized.

2. Testif the rhythmic role labeling is theoretically possible
basednthemetricalpositionof events.In this setup thesys-
tem was given the referencetranscription except that the
soundlabelswere hiddenand had to be inferred using the
method described in Sec. 2.4.

3. The performanceof the whole system without post-labeling
cluster changes. Here,the systemis given only acousticsig-
nal and the metrical information and it neededto detect
onsetsextractfeaturesperformclusteringandinfer thelabe-
ling.

4. Theperformancef thewhole systemwith post-labeling clus-
ter changes. This setupis similar to the step3, but the post-
labeling cluster change algorithm is also used.

Eachof thesecasesareevaluatedusingthe sametestmaterialand

it canbe determinedvhich partsof the systemmay needfurther

development. The used error rate measuas w

.. zi £ (qiref, qitrans)

DIEE

wherei is the discrete time indeover the whole signal and

@)

) M if o # o2
fghqd) = g Ta*a, ®)
[0, otherwise
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sound sets.

3.3. Simulation results

The simulation resultsfor the four individual stepsare in the
Tablel. In additionto thetotal errorrateover all soundsetsthere
is alsothe averageerrorratesof speechhasedsoundsetsandtap-
ping basedsoundsets.More detailederror ratestatisticsfor each
of the 13 genres and/é sets can be seen on Fighre

As from the resultscan be seen,it seemsthat soundspro-
ducedwith speecharemoredifficult for the systemto copewith.
When inspectingthe error ratesfor eachgenre,seemsthat soft
rock, r'n’b and jazz are the easiestonesfor the systemwhile
alternatve and world genresare the most difficult. The within
genrevariationswerelarge, mostly causedyy the randomchoice
of the partof the piecesto be analysedThe post-labelingcluster
changealgorithm turned out to have a very small effect to the
total performanceThis is dueto the fact that errorsin labeling
step causehigh total error rate and minor changescan not fix
enough errors.

Some demo signals from the simulationsare available at
URL:<http://www.cs.tut.fi/~paulus/demo/>.

Table 1:Error rates for diferent test steps for spdesounds
(average of two sets), tapping sounds (ager of thee sets)
and the aveage of all systems.

test step speech ER| tapping ER | total avg ER
1. clustering 15.28% 13.12% 13.98%
2. role labeling 27.91% 27.91% 27.91%
3. whole w/o post fiy 34.91% 33.15% 33.85%
4. whole w/ post fix | 35.68% 33.01% 33.67%

4. DISCUSSION

In generatiorof the tatumgrid, the tempois assumedo be
constantover the whole signal. Similarly, it is assumedhat the
lengthof the measuréas constantHowever, it is very likely that
theseassumptionsio not hold when operatingwith real world
signals.Musiciansmay vary the tempowhen playing, creating
their own versionsof the pieceandthetime signaturemaybedif-
ferent in the erse and chorus of the piece.

Whenconstructingthe models fixed assignmenfrom MIDI
notesto therhythmic role labelsturnedoutto generatgroblems.
Thoughin mary casesthe rhythmic roles are operatedby the

specifieddruminstrumentsthis wasnot the casewith all genres.
Especiallywith jazz, latin and world music genres more exotic

percussionsvere usedor the instrumentwasin a differentrole

(e.g.cymbalin rockis usuallyin the“snare”role whilst in jazzit

may be in the “bass” role). This causedproblemsin automatic
handlingof the testdata.lt turnedout that on mostof the cases
wherelabelingafter “perfect clustering”waserroneousthe time

signaturewassuchthattherewasonly few otherpiecesavailable
for training material.

5. CONCLUSIONS

This paperhasintroduceda methodfor transcribingpercussie
audiosignalsconsistingof arbitrarysoundslit usesthe statistical
dependencie®f metrical positions of rhythmical elementsin
labelingof theevents.Theefficiengy of themethodwasevaluated
with simulations.The transcriptionfor arbitrary soundsetsis a
difficult task, and especiallyerrorsin label assignmentncrease
theerrorratesignificantlycomparedo theerrorsin theclustering
step.Basedon the results,using metrical positionsin the rhyth-
mic role labeling is possible to somegdee.
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