Drum transcription from multichannel recordings with non-negative matrix factorization

David S. Alves^{1,2}, *Jouni Paulus*¹, and José Fonseca²

¹Department of Signal Processing, Tampere University of Technology, Finland ²Department of Electrical Engineering, New University of Lisbon, Portugal

Introduction

- Drum transcription: from audio input
- -determine temporal locations of drum sound events, and
- -recognise the played instruments.
- Earlier methods operate mainly on single-channel (or stereo) signals.
 In studios, multichannel recordings are available.
- $\mathbf{s}_{n,c}$ spectrum basis of n^{th} drum on c^{th} channel. $\tilde{\mathbf{s}}_n$ spectrum basis of n^{th} drum across channels.

• Solve gains **A** from $\tilde{\mathbf{X}} \approx \tilde{\mathbf{S}}\mathbf{A}$.

• Extend an existing method to multichannel signals.

Signal model

- Observed magnitude spectrogram **X** is a sum of N source signals: $\mathbf{X} = \sum_{n=1}^{N} \mathbf{X}_n + \epsilon.$
- Each source is assumed to be a product of two basis vectors (gain over time and magnitude on each frequency): $\mathbf{X}_n = \mathbf{s}_n \mathbf{a}_n^{\mathsf{T}}$.
- As a matrix product: $\mathbf{X} \approx \mathbf{SA}$, where $\mathbf{S} = [\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_N]$ and $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_N]^{\mathsf{T}}$.
- Inverse problem: solve ${f S}$ and ${f A}$ minimising reconstruction error given ${f X}$.
- Non-negative matrix factorization (NMF) restricts all elements to be nonnegative.
- An example factorization of a drum loop to three sources (**X** is a melfrequency spectrogram):

Baseline method

- Template-based NMF method from Paulus & Virtanen *"Drum transcrip-tion with non-negative spectrogram factorisation"*, EUSIPCO2005.
- Calculate spectral templates **S** for each target drum (training phase).
- Solve time-varying gains **A** from input **X** keeping **S** fixed.
- Detect onsets from the gains **A**.

Results

- Evaluations with ENST drums data set
- 3 drummers and drum kits (differring microphone setups with 7–8 mics),
 64 tracks, average duration 55 s (30–75 s)
- Transcribe bass drum (BD), snare drum (SD), and hi-hat (HH).
- Comparison to
- -a single-channel version operating on a mix-down, and
- a naíve onset detection based multichannel method (assuming each drum to have a close microphone).

Multichannel extension

 $\tilde{\mathbf{X}} =$

 \mathbf{X}_1

 \mathbf{X}_{2}

 \mathbf{X}_C

• Stack spectrograms \mathbf{X}_c from C channels $c \in 1 \dots C$ to

• Spectral template stacking:

$$\tilde{\mathbf{S}} = \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \\ \vdots \\ \mathbf{S}_C \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{1,1}, \mathbf{s}_{1,2}, \cdots, \mathbf{s}_{1,N} \\ \mathbf{s}_{2,1}, \mathbf{s}_{2,2}, \cdots, \mathbf{s}_{2,N} \\ \vdots \cdots \cdots \vdots \\ \mathbf{s}_{C,1}, \mathbf{s}_{C,2}, \cdots, \mathbf{s}_{C,N} \end{bmatrix} = [\tilde{\mathbf{s}}_1, \tilde{\mathbf{s}}_2, \cdots, \tilde{\mathbf{s}}_N].$$

1 CHANNEL ONSET DET. MULTICHANNEL

Conclusions:

• Extend a drum transcription method using spectral templates to accept multichannel inputs.

 \bullet Performance increase from single-channel method \rightarrow channel information helps.

• Performance increase from naı́ve onset detection method \rightarrow spectral information helps (and no dependency on having close microphones on all targets).