MPEG-D SPATIAL AUDIO OBJECT CODING FOR DIALOGUE ENHANCEMENT (SAOC-DE)

J. Paulus, J. Herre, A. Murtaza, L. Terentiv, H. Fuchs, S. Disch, F. Ridderbusch

OUTLINE

Introduction to Spatial Audio Object Coding

Dialogue enhancement

Concept

Technical solution

- Evaluation: subjective listening test
- Demonstration

Conclusions

Spatial Audio Object Coding (SAOC)

- SAOC is an efficient way for coding audio objects
- A semantic pre-/post-processor to other audio codecs

Dialogue Enhancement (DE) – Legacy decoder

Dialogue Enhancement (DE) – SAOC-DE decoder

Wimbledon 2011 experiment with BBC

- Public test during Tennis Grand Slam Championships 2011 in Wimbledon
- Player provided on BBC website
- User control for dialogue vs. background balance
- Well-received: >80% of people answering the questionnaire indicated the effect of this functionality to be positive

Dialogue enhancement functionality benefits

- Improving intelligibility of dialogue by background attenuation
 - Hearing-impaired audience
 - Non-native audience
 - Noisy listening environments
- Reducing dialogue level
 - Custom mixture, e.g., focusing on sports event atmosphere sounds
- Allows addressing complaints in broadcast regarding dialogue mixing levels

Adapting MPEG-D SAOC for DE-application needs

- Adding support for more than 2 downmix channels
 - In 5.1, dialogue is normally present in the 3 front channels
- Disable functionality not needed by the application
 - Reduction in engineering and computational complexity
- 2 meta-objects: foreground (FGO), background (BGO)
- Restrict rendering functionality to in-place re-balancing of FGO and BGO
 - Number of output channels = number of downmix channels
 - No object re-panning

SAOC-DE decoder overview

Signal model

Downmix signal obtained with instantaneous linear mixing

$$\mathbf{X} = \mathbf{DS}$$
$$= \mathbf{X}_{BGO} + \mathbf{X}_{FGO}$$

Target output signal: re-balanced mix of partial downmixes

$$\hat{\mathbf{X}} \approx m_{BGO} \mathbf{X}_{BGO} + m_{FGO} \mathbf{X}_{FGO}$$

- The gains determined from single user input m_G
 - The re-balancing gain to be applied to FGO (dialogue)
 - Applied as attenuation only to avoid clipping

Object reconstruction

Parametric object reconstruction

$$\hat{\mathbf{S}} = \mathbf{G}\mathbf{X} \approx \mathbf{S}$$

Un-mixing matrix

$$\mathbf{G} = \mathbf{E}\mathbf{D}^* \left(\mathbf{D}\mathbf{E}\mathbf{D}^*\right)^{-1}$$

- Object covariance E and downmixing matrix D obtained from SAOC side information (object level differences, inter-object correlations, etc.)
- Enhanced Audio Object (EAO) reconstruction
 - Include waveform residual signal(s) for improving perceptual quality of output
 - Residual signals focused on FGO (i.e., dialogue signal)

$$\mathbf{X}_{res} = \mathbf{S}_{FGO} - \hat{\mathbf{S}}_{FGO}$$

Modification Range Control (MRC)

- Rendering gain interface allows full separation of partial downmixes of FGO and BGO
 - Rights-management issues
 - Quality control concerns
- MRC values in bitstream restrict the range of the user input gain
- Content-provider retains control over the allowed modifications
 - Keep modification in a safe region

Main differences from classic MPEG-D SAOC

- Increased maximum number of downmix channels to 3 (from 2)
 - Generalized object reconstruction algorithms to support higher number of downmix channels
- Simplified rendering interface
 - In-place gain change of two meta-objects
 - Single gain rendering control input instead of a full rendering matrix
- Significant complexity reduction
 - Disabled un-used tools and modes (e.g., decorrelators)
 - Limited number of objects to 6 (from 32)
- Replaced DCU with MRC
- Removed MPEG Surround transcoding

Subjective listening test with MUSHRA

Material similar to broadcast content

- Stereo background (music, sound effects, audience noise)
- Mono dialogue foreground panned to center
- Downmix (stereo) SNR 1.5 7.5 dB

Conditions	
HR	Original objects mixed with target gains
HE-AAC REF	"HR" encoded with HE-AAC at 64 kbps
HE-AAC MO	Multi-Object transmission (discrete objects, 43+21=64 kbps)
HE-AAC DE	SAOC-DE and HE-AAC encoded downmix (64 kbps)
HE-AAC DE+	SAOC-DE bitrate on top of dmx bitrate (64+SAOC kbps)
LP35	3.5 kHz low-pass anchor

FGO +6 dB (parametric-only, 10 listeners, 64 kbps)

FGO +12 dB (with EAO processing, 10 listeners, 64 kbps)

Fraunhofer

IIS

Demonstration

Conclusions

- SAOC-DE extends MPEG-D SAOC for dialogue enhancement applications
- It is answering the request from broadcasting industry
 - Providing a backward compatible extension to existing services
- Good performance in subjective evaluations
- Technical solution standardized as an amendment to MPEG-D SAOC
 - ISO/IEC 23003-2:2010/Amd.3:2015
- Included as "Advanced Clean Audio" solution in DVB
 - ETSI TS 101 154 v2.2.1

