
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Degree Programme in Computer Science and Engineering

Arto Teräs

Database for Ground Based Snowfall Observation

Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science in Technology.

Supervisor: Professor Olli Simula
Instructor: Professor Ken-ichiro Muramoto

Helsinki May 25, 2004

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS

Author: Arto Teräs
Title of thesis: Database for Ground Based Snowfall Observation
Finnish title: Tietokanta lumisateen havainnointidatan tallennukseen
Date: May 25, 2004 Pages: 84

Department: Department of Computer Science and Engineering
Professorship: T-115 Computer and Information Science

Supervisor: Professor Olli Simula
Instructor: Professor Ken-ichiro Muramoto

This thesis presents a system based on a relational database for storing and analyzing
snowfall observation data. Using a database facilitates data retrieval and collaboration
between several research groups. Visualization tools were developed to quickly determine
weather conditions and to detect possible problems with the measurement instruments.

The data used in the project was gathered as part of the Coordinated Enhanced Observing
Period (CEOP), an international collaborative research campaign focusing particularly on
the global water cycle. During winter 2003, a large number of instruments including radars,
radiometers, an optical lidar and an image processing based snowfall observation system
were installed at Fukui, Japan. They provided simultaneous measurements about cloud
structure and precipitation rate, type, particle velocity and diameter distribution on the
ground level. Clocks were synchronized and temporal resolution of less than one minute
allowed distinguishing between different phases of a precipitation event.

Geographical location and other measurement parameters are stored with the data which
makes the system suitable for large scale campaigns with multiple observation sites. In the
future more data will be added which will provide a good foundation for statistical analysis
and development of automatic classification algorithms.

The database tables were designed with SQL standard compliance, flexibility and extensi-
bility in mind. Some performance issues were encountered during the project and resolved
by deviating from the standard a little bit and using array related special features of the
PostgreSQL database engine. An important goal was to make the table structure easy to
understand so that scientists could focus on their research instead of studying the database
or the original file formats produced by the instruments.

This database and visualization tools are designed for weather and particularly snowfall
observation, but the same concept could be useful in many other types of research involving
measurement data.

Keywords: database, snowfall, cloud, weather observation, visualization,
Z-R relation, radar, lidar, image processing

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Arto Teräs
Työn nimi: Tietokanta lumisateen havainnointidatan tallennukseen
English title: Database for Ground Based Snowfall Observation
Päivämäärä: 25.5.2004 Sivumäärä: 84

Osasto: Tietotekniikan osasto
Professuuri: T-115 Informaatiotekniikka

Valvoja: Professori Olli Simula
Ohjaaja: Professori Ken-ichiro Muramoto

Työssä suunniteltiin ja toteutettiin relaatiotietokantaan pohjautuva lumisateen havainnoin-
tidatan tallennukseen ja analyysiin tarkoitettu järjestelmä. Tietokanta tarjoaa yhtenäisen
tavan päästä käsiksi dataan ja helpottaa sen yhteiskäyttöä useamman tutkimusryhmän
kesken. Projektissa kehitettiin myös visualisointityökalut, joilla saadaan nopeasti yleiskuva
säätilasta halutulla ajanhetkellä ja voidaan havaita mahdolliset ongelmat mittalaitteiden
toiminnassa.

Projektissa käytetty data kerättiin kansainvälisessä Coordinated Enhanced Observation
Period (CEOP) -hankkeessa, joka keskittyy erityisesti globaalin veden kierron tutkimuk-
seen. Talvella 2003 suuri määrä erilaisia mittalaitteita, mm. erilaisia tutkia, radiometrejä
ja videokameroihin ja kuvankäsittelyyn pohjautuva lumisateen havainnointilaitteisto oli
asennettuna Fukuihin, Japaniin. Laitteista saatiin samanaikaista mittaustietoa pilvien ra-
kenteesta sekä sadehiukkasten tyypistä, koko- ja nopeusjakaumasta maanpinnan tasolla.
Laitteiden kellot oli tahdistettu ja ne tuottivat mittausarvoja vähintään kerran minuutissa,
joka riittää yksittäisenkin sade- tai lumikuuron eri vaiheiden erottamiseen toisistaan.

Laitteiden maantieteellinen sijainti ja asetukset tallennetaan mittaustulosten yhteyteen,
joten järjestelmä soveltuu myös useita havainnointipaikkoja käsittäviin laajoihin hankkei-
siin. Jatkossa tietokantaan on tarkoitus syöttää lisää dataa jolloin siitä muodostuu hyvä
pohja tilastolliseen analyysiin ja automaattisten luokittelualgoritmien kehittämiseen.

Tietokannan taulujen suunnittelussa huomioitiin SQL-standardi, joustavuus ja laajen-
nettavuus. Projektin aikana kohdattiin joitakin suorituskykyongelmia, jotka ratkaistiin
poikkeamalla standardista hieman ja käyttämällä taulukoiden tallennukseen liittyviä
PostgreSQL-tietokannan erityisominaisuuksia. Tärkeä päämäärä oli saada taulurakenteesta
helposti ymmärrettävä, ettei aika tuhlaantuisi tietokannan tai laitteiden alkuperäisten tiedos-
tomuotojen opiskeluun vaan tutkijat voisivat keskittyä uusien algoritmien kehittämiseen.

Työssä kuvattu tietokanta ja visualisointityökalut on suunniteltu säätutkimukseen ja eri-
tyisesti lumisateen havainnointiin, mutta samankaltainen ratkaisu voisi olla hyödyllinen
monessa muussakin tutkimusprojektissa, jossa käsitellään mittaustietoa.

Avainsanat: tietokanta, lumisade, pilvi, säähavainto, visualisointi, Z-R-suhde, tutka,
pilvenkorkeusmittari, kuvankäsittely

Preface

The work described in this thesis was done during my exchange year in Japan, where I was
a research student in the Image Information Science laboratory at Kanazawa University.

I wish to express my gratitude to professor Ken-ichiro Muramoto, who provided me excel-
lent facilities in his laboratory and supported me during the whole project. Professor Olli
Simula reviewed my thesis several times during the writing process and guided me to focus
on important topics.

Thomas Pfaff introduced me to radio soundings and radiometers and shared his knowledge
about radars and meteorology. Thomas also used the database heavily already during the
prototype phase and his bug reports, questions and suggestions were very useful in the
development. Masahiro Tamura and Hideki Aoyama spent long nights in the garage at
Fukui airport monitoring the measurement instruments and writing weather notes. Marko
Niinimäki helped me in database related topics.

I also want to thank all the people who made my stay in Japan such a rich and enjoyable
experience. The whole exchange year wouldn’t have been possible without the help of my
Japanese professor Junichiro Okura, Anneli Sinkkonen and Henri Servomaa. Kanazawa
University Student Exchange Division staff made great effort in arranging all necessary
practical issues related to living in Japan. Mamoru Kubo, Ryotaro Komura and other labo-
ratory members were always available when I needed help or had questions about Japanese
language and culture. Everywhere I went I was surrounded with hospitality and friendliness
I will remember forever.

Finally, I thank my family for continuous support and encouragement during all my study
years. It didn’t matter whether we were living under the same roof or thousands of kilome-
ters apart — you were always there with me.

Helsinki May 25, 2004

Arto Teräs

4

Contents

1 Introduction 8

2 Snowfall 10

2.1 Clouds and Snow . 10

2.2 Snowflake Measurements . 10

2.3 Radar and Satellite Observations . 11

2.4 Snowfall Characteristics on the Sea of Japan Coast 12

2.5 Coordinated Enhanced Observing Period and the Wakasa Bay Experiment . 13

2.5.1 Instruments . 13

2.5.2 Snowfall events and field work . 14

3 Database as a Research Aid 16

3.1 Need for a Database . 16

3.2 Goals of the Project . 17

3.3 Comparison with Other Database Applications 17

3.4 Choosing the Right Database and Tools 18

3.4.1 Relational and Object Databases 18

3.4.2 Database Engines . 18

3.4.3 Compatibility Issues . 19

3.4.4 Chosen Software and Hardware 19

4 Design and Implementation 20

4.1 Table Structure . 20

4.1.1 Data tables and parameter tables 21

4.1.2 Measurement Data Layout . 22

4.1.3 Normalization . 25

4.2 Inserting and Deleting Data . 27

4.3 Data Retrieval and Search Functionality 29

5

CONTENTS 6

4.3.1 Timestamp Synchronization . 29

4.3.2 Continuous and Discontinuous Blocks 30

4.4 Expandability and Flexibility . 31

5 Snowfall Event Analysis 32

5.1 System Characteristics . 32

5.2 Visualization Tools . 32

5.3 Analysis examples . 33

5.4 Suitability for Statistical Analysis . 36

5.5 User Experiences . 37

6 System Performance 38

6.1 Performance Requirements . 38

6.2 System Setup . 38

6.2.1 Test Data . 38

6.2.2 Hardware and Software Environment 40

6.2.3 Main Factors Affecting Performance 41

6.3 Results . 42

6.3.1 Inserting Data . 42

6.3.2 Visualization Tools . 43

6.3.3 Exporting Data . 47

6.4 Result Analysis and Scalability Estimates 49

7 Application to Analysis of Relationship Between Radar Reflectivity Factor and
Snowfall Rate 51

7.1 Background . 51

7.2 Observation Data, Database and Data Extraction 51

7.3 Division Into Individual Snowfall Events 52

7.4 Shortening and Division of Selected Events Using Optical Lidar Data . . . 54

7.5 Discussion . 57

8 Future Experiments 58

9 Conclusion 59

10 Acknowledgements 61

CONTENTS 7

A Database Table Layout 62

A.1 Standard version . 63

A.2 Array version . 65

B Detailed Results of Performance Measurements 67

B.1 Graph Types, Command Lines and SQL Queries 67

B.2 Visualization Tools . 73

B.3 Exporting data . 75

C Visualization examples 77

Chapter 1

Introduction

In Kanazawa, Japan, there’s a saying “Bentou wo wasuretemo kasa wa wasurena”, which
translates to “Even if you forget your lunch box, don’t forget your umbrella”. Indeed, the
weather can change rapidly from blue sky to rain, sleet, snowfall or even a graupel throwing
thunderstorm. This provides ideal conditions for the snowfall team in Image Information
Science laboratory at Kanazawa University. The team has been studying characteristics
of different snowfall events using video cameras, radars and other instruments for several
years.

To gain better understanding of weather conditions and develop better forecasts, it is im-
portant to compare measurements of several different kinds of instruments. Good ground
reference data at many sites around the world is necessary to calibrate new satellite based
observation instruments and to validate global weather models. Weather phenomena extend
beyond nations and continents which is why researchers from all around the world need to
work together and access each others’ data.

This work describes a database designed for storing measurement data of snowfall research.
It was developed to address a specific need to share data between several research groups
which participated in an observation campaign in Fukui, Japan, January-February 2003. The
number of measurement instruments was large and there were many practical problems in
using the data which was scattered in text and binary files of various formats. Transferring
measurement values to a relational database helps the groups to manage their data and
allows them to concentrate on developing new analysis algorithms.

Although the database tables are designed for weather observation and a certain set of instru-
ments, the same concept could be used for many other types of research involving measure-
ment data. As the amount of data grows and statistical algorithms together with numerical
simulations become more prominent way of doing research, it is likely that databases only
increase their popularity.

Chapter 2 is an introduction to snowfall, instruments used to measure precipitation and the
Wakasa Bay experiment which initiated this project. Chapter 3 describes how databases
can be useful for researchers, covers available databases types and justifies why a relational
database was suitable in this case. Chapter 4 presents the details of table design and data
retrieval and search functionality.

Chapter 5 introduces visualization tools which allow to easily plot data from several mea-
surement instruments side by side and get a quick understanding of weather conditions.

8

1. Introduction 9

Simple snowfall analysis examples are also given. Chapter 6 presents performance measure-
ments and scalability estimates of the database system in various usage scenarios. Chapter 7
contains an example of how the database and visualization tools were used to analyze rela-
tionship between radar reflectivity factor and snowfall rate. Chapter 8 describes future plans
for the system and conclusions are presented in Chapter 9. Complete table design diagrams,
details of performance measurements and additional examples of visualization tools can be
found in the appendices.

Chapter 2

Snowfall

During winters, snow is abundant in northern and southern areas of the globe. Yet two snow
crystals have never been found to be identical. There are large wet snowflakes, tiny ice nee-
dles, hard graupel pellets, gently falling small crystals. Size, velocity, density, temperature
and shape are widely varying. The Inuits have at least 13 separate words for different types
of snow [1].

2.1 Clouds and Snow

In the atmosphere, concentrations of water and ice are called clouds. There are basically
two methods how ice crystals can be formed: the freezing of a liquid droplet and direct
sublimation of vapor to the solid phase. After the initial formation, the crystal can grow by
diffusion from other droplets or by colliding with other crystals, which is called aggrega-
tion [2]. These processes are happening constantly inside the cloud, and therefore normally
many types of particles coexist.

Precipitation reaching the ground doesn’t include the smallest particles, and it may also be
in different form. For example, most of the rain that falls to ground surface is in fact melted
snow. Therefore, to fully understand rain- and snowfall, we have to make observations on
the ground, look inside the clouds and take larger pictures of the cloud shape using radars
and satellites.

2.2 Snowflake Measurements

Individual snowflakes have been studied in detail for decades. The first scientific refer-
ence is “On the Six-Cornered Snowflake” by Johannes Kepler, written in 1611. In the
early 1900s, thousands of snow crystal photographs were taken and published by Wilson
A. Bentley. Ukichiro Nakaya created the first artificial snow crystals in laboratory condi-
tions in 1936. More recently, very detailed microscope images have been published, the
shapes and structures of snowflake types have been imitated in laboratories and the forma-
tion of different types of snow has been studied [3] [4]. Also, the relation of size, shape and
fall velocity of precipitation particles has been studied both on the ground level and in the
clouds [2] [5] [6].

10

2.3. Radar and Satellite Observations 11

On the other hand, long term statistics of the amount and type of snowfall and related
data such as temperature have been gathered at all regions around the world. Anyone who
is interested can participate in this activity, for example by buying a weather station and
sending the data via Internet to Weather Underground [7].

However, long term observations including detailed snowflake data have only been done
fairly recently. In Kanazawa University, Hokkaido University and Toyama National College
of Technology in Japan, a video camera and image processing based observation system
has been developed to continuously measure the size and velocity distribution of falling
snowflakes (Figure 2.1) [8]. A similar type of system has also been designed and con-
structed by Johanneum Research in Austria [11]. An optical spectrometer with a smaller
sampling area but capability of recording detailed snowflake shape features and velocity has
been developed in Switzerland [12].

 Observation
 Space

Camera1 : shutter speed 1/60 [s]

Camera2 : shutter speed 1/4000 [s]

Computer

 Video Recorder

 Timelapse
 Video Recorder

 Monitor
 Indoor

 1m

1m

 2m

Figure 2.1: Video camera based observation system to measure snowflake size
and velocity distributions.

2.3 Radar and Satellite Observations

Radars and satellites are currently the main tools to obtain meteorological data of large
areas. Both show the location and shape of clouds, radars can also be used to look inside
the clouds. Radars have been used in meteorology since 1940s, and doppler radars which
are capable of not only measuring the distance but also the speed of the targets, became
common in 1970s [13].

Radar measurements of precipitation are based on electromagnetic waves being scattered
by precipitation particles. The radar sends pulses or frequency modulated continuous waves
and receives the signals reflected back from the particles, called backscatter. The volume
of one measurement in all meteorological radars is orders of magnitude larger than an in-

2.4. Snowfall Characteristics on the Sea of Japan Coast 12

dividual precipitation particle, therefore the reflectivity values measured by the radar are
a combination of small reflections from a very large number of raindrops, snowflakes and
other particles.

Generic theory of the scattering of electromagnetic waves by particles was developed by
Mie in early 20th century. The scattering depends on the amount, size and material of
particles, and also the radar wavelength. When the size of the particles is small compared
to the wavelength, the backscattering can be approximated by a simpler formula called
Rayleigh approximation [14]. For raindrops it is usually quite accurate with current radar
wavelengths, but in snowfall it doesn’t always apply [15].

The relationship between radar reflectivity and amount of precipitation is called the Z � R
relation. It is usually estimated by the classic equation first presented by Marshall and
Gunn [16]:

Z � BRβ �
mm6 � m3 ��� (2.1)

where Z is reflectivity, R is precipitation intensity in mm � h (liquid water) and B and β
are coefficients. However, the coefficients B and β are not universal constants, but vary
depending on the radar and the type, size and shape of precipitation particles.

For rainfall, it is possible to find values for constants B and β so that the Z � R relationship is
adequately modeled for a particular type of radar. The case of snowfall is more difficult, be-
cause the snowflakes vary not only in size and speed, but also shape and density. Therefore it
is difficult and unreliable to estimate the amount of snowfall using a single radar. New tech-
niques using two or several radars of different wavelengths have been proposed [17] [18] to
improve the estimates. Another approach using other devices to determine the snowfall type
and calculating B and β separately for different types of events is being studied in Kanazawa
and described in chapter 7 of this thesis. Still, a lot of work remains before snowfall can be
measured reliably and accurately using radars.

Satellites are convenient for observing large continuous areas. From the 1960s until present,
they have been used to take 2-dimensional images of cloud tops in increasingly better res-
olution. Radar technology to achieve 3-dimensional data is difficult to use in satellites
because of the large distance and interference of the surface of the earth. However, in the
late 1990s good results for rainfall have been obtained in the Tropical Rainfall Measuring
Mission [19]. Another recent technology currently being integrated to meteorological satel-
lites are radiometers: passive receivers which measure the natural radiation of microwave
frequencies, reflecting the humidity and amount of different types of molecules between the
satellite and ground level.

To better understand the relations between radar and satellite measurements and precip-
itation, obtaining reference data both on the ground level and inside clouds is essential.
In-cloud measurements can be done using specially equipped aircrafts and radio soundings,
ground level observations involve setting up measurement instruments in several locations
around the world.

2.4 Snowfall Characteristics on the Sea of Japan Coast

By the Sea of Japan, clouds brought by the north-western wind are often stopped by moun-
tains and release their precipitation on the coast. During winter, the temperature is usually

2.5. Coordinated Enhanced Observing Period and the Wakasa Bay Experiment 13

around or slightly above zero degrees Celsius, which leads to frequent and varying types of
precipitation events.

The type of snowflakes in the area is usually graupel of snowflake aggregate, and it often
changes from graupel to aggregate and sometimes from aggregate to graupel. Raindrops
mixed with snowflakes are also very common. Individual snowfall events are often short,
and can include many types of precipitation.

These fast changing conditions present a challenge to meteorologists. It is difficult to es-
timate the precipitation type and amount from satellite or radar data alone. On the other
hand, the frequent and varying precipitation events offer an ideal opportunity for observing
and studying the relation between different types of clouds and precipitation. In the Image
Information Science laboratory at Kanazawa University [20], rain- and snowfall has been
studied for several years, using higher temporal resolution than most other meteorological
observations [21].

2.5 Coordinated Enhanced Observing Period and the Wakasa
Bay Experiment, Winter 2003

International collaboration in the Coordinated Enhanced Observing Period (CEOP) [22] has
been designed to promote cooperation in global climate research, focusing particularly on
the global water cycle. The project started in July 2001 and will last for a total of 4 years.
Satellite data is used extensively and compared with in-situ observation data at reference
sites around the world.

As part of CEOP and the AMSR/AMSR-E satellite data validation program [23], a rainfall
and snowfall observation campaign was carried out at Fukui airport and over Wakasa Bay,
located north of Osaka on the Sea of Japan, from January 13 to February 6, 2003. The
participants were University of Tokyo [24], Kanazawa University [20], Meteorological Re-
search Agency of Japan [25], National Space Development Agency of Japan (NASDA, later
merged to JAXA [26]), National Aeronautics and Space Administration of the United States
(NASA) [27] [28], Fukui University [29], Sankosha Corporation [30], Yamada Giken Cor-
poration [31] and the Japan Science and Technology Agency [32]. The aim was to gather
data for CEOP and also for various research projects done independently at the laboratories
of the participating universities and institutes.

2.5.1 Instruments

Measurements were done both at ground level and at high altitudes. An overview of the used
instruments is shown in Figure 2.2. More detailed list of instruments installed at ground
level is shown in Table 2.1.

In addition, radiosondes measuring temperature, humidity and wind profiles were released
four times a day. NASA P-3 Orion aircraft did periodic measurements using a dual fre-
quency precipitation radar, a cloud radar and two radiometers. Data for the same region
was also obtained from a Sankosha DWSR-2501C dual polarization doppler radar installed
10 kilometers away. The total amount of data produced by the instruments was about 2
gigabytes per day.

2.5. Coordinated Enhanced Observing Period and the Wakasa Bay Experiment 14

Figure 2.2: Wakasa Bay observation campaign overview.

2.5.2 Snowfall events and field work

During the Wakasa Bay experiment, many types of precipitation events occurred. During
the first two weeks most precipitation was rain, complemented by a few graupel showers.
At the end of the observation period the temperature dropped and snowfalls became more
frequent. Big and small snowflakes, graupel and sleet were observed, and there was a three
day period of snowstorms with heavy snowfall and strong wind.

As could be expected, various practical problems were encountered during the experiment.
For example, wet snow accumulated on the MRR radar dish affecting the measurements,
and the radar didn’t work very well even in more favorable conditions. The rain gauge
attached to one of the weather stations gave completely meaningless results in snowfall.
Wind was often quite heavy and coming from unexpected south-western direction, which
caused some bias to measurements done using devices which were installed inside a wind-
breaker net (electronic balance, video camera based observation system, snow heat capacity
sensor). All these experiences suggest that it is useful to have several instruments measuring
the same elements — for example snowfall rate — so that results can be compared with each
other.

Weather conditions were also observed visually and written in a logbook during the whole
experiment, which proved very useful when analyzing the measurements later.

2.5. Coordinated Enhanced Observing Period and the Wakasa Bay Experiment 15

Table 2.1: Instruments installed at ground level during the Wakasa
bay observation campaign

Instrument Measured elements

Video camera and image
processing based snowfall
measurement system [8]

Number concentration of snow particles
Size distribution of snow particles
Velocity distribution of snow particles

Electronic balance Precipitation rate (calculated from weight data)

Andrew POSS ground level
bi-static radar

Reflectivity, doppler velocity
Estimated precipitation type and rate

Metek MRR-2 vertically
pointing doppler radar

Reflectivity and doppler velocity up to 6000 m
Rain rate, drop size distribution (calculated, for
water only)

Vaisala Ceilometer CT-
25K optical lidar

Optical backscatter profile up to 7680 m
Cloud base height

Radiometrics WVR1100
radiometer

Brightness temperatures for 23.8 and 31.4 GHz
Integrated water vapor and liquid water path

Radiometer Physics GmbH
RPG-LWP and RPG-
TEMPRO 90 radiometers

Brightness temperatures for 23.8, 36.5 and 90
GHz
Oxygen line profile consisting of 10 frequencies
between 50 and 60 GHz

Snow heat capacity sensor Amount of heat to melt snow particles

GPS sensor Time
Integrated water vapor

Weather station (2 units) Rain rate by rain gauge
Wind direction and strength
Temperature, humidity, air pressure

Chapter 3

Database as a Research Aid

Research projects involving observations of natural phenomena often gather significant
amounts of data. This data is commonly used to test several algorithms and results ana-
lyzed statistically. In this kind of environment, a database can ease data management and
allow researchers to concentrate on the actual analysis.

In meteorological research, most data is still stored in custom file formats produced by
radars and other instruments. The popularity of databases has been increasing, especially for
gathering climate data of long time periods and providing easy access for users [9]. In some
cases database systems have been used to select right data files from a large data set [10].
The project described in this thesis pushes the database to a lower level by using it as the
storage for raw measurement data. The goal is not to develop new database technology but
use a generic database as a tool for other research.

3.1 Need for a Database

The Wakasa observation (Section 2.5) was a joint project of several groups of researchers.
Each of them brought their own instruments and expertise to the site, and the plan was to
share data between participants. However, there were many practical problems. The data
from each instrument was saved in text or binary files, most of them in different formats.
Usually there was one file per day, sometimes one file per hour. Some files had timestamps
in UTC time, others in local time. File naming convention and directory structure varied
widely. Groups were generally familiar with the data and file formats of their own equip-
ment, but not other groups’ instruments. Furthermore, there were no simple visualization
tools for some data, and the existing tools were separate programs with different interfaces
and operating system requirements, making it difficult to do comparisons between instru-
ments.

Database seemed to be the best way to achieve more convenient and uniform access to the
data. There was another database project in CEOP, aiming to store satellite data and certain
standardized weather data from reference sites around the world, but it was not ready and
not planned to include support for all instruments used in the Wakasa experiment in Fukui.
There was a clear demand for a relatively simple yet flexible database setup which could be
used in various measurements with different device configurations.

16

3.3. Comparison with Other Database Applications 17

3.2 Goals of the Project

The first goal of the project was to gather data collected at Wakasa experiment in an easily
accessible format, of which a copy could be made for each group. Satellite data, aircraft
data and external Sankosha radar data were left out at this phase, the focus was on the
instruments installed at the main observation site.

A longer term goal was to create a system which would be easy to use also in future exper-
iments. Some key features were identified as follows.

� Support observation data from several instruments installed at different locations.

� Provide an easy way to insert new data gathered in future observation campaigns.

� Provide basic visualizations of the data produced by each instrument.

� Allow to easily retrieve any time range of data for further analysis with external tools
such as Excel, Matlab and custom applications.

� Be easy to understand so that new analysis tools could be written to use data in the
database directly.

In the future, the plan is to insert data in the base already during an observation campaign.
Then the visualization tools could be used to get an overview what is happening and detect
possible problems with instruments early. Another major goal was to facilitate statistical
analysis and cross-analysis between instruments, by reducing the time which is currently
used to extract the relevant data from the original text files.

3.3 Comparison with Other Database Applications

In most database applications, the main view to the system is a graphical interface which
hides all the internals of data storage from users. However, in this project the users are
scientists which will analyze the data using various external tools and often also write their
own small programs to test a new algorithm. Therefore, one simple interface to the database
cannot satisfy all analysis needs. Data should be simple to examine and export to external
programs.

The structure of the system should also be easy to understand. It has been planned to
have one administrator to take care of database specific tasks, but other users will also be
accessing raw data and writing programs which read values directly from the database. They
are more advanced computer users than an average person, but cannot be expected to have
much experience with databases.

The database administrator will most likely be one of the scientists and user of the data
as well. However, he will handle additional tasks such as installing new software, taking
backups, inserting new data and verifying that it has been inserted correctly. Generating
a set of graphs and statistics for the whole time period after an observation campaign will
be another task of the administrator. He might also create new tables to the database for
storing intermediate analysis results. When new instruments are acquired, the administra-
tor or another developer should extend the structure and source code so that new types of
measurements can be inserted to the same database.

3.4. Choosing the Right Database and Tools 18

3.4 Choosing the Right Database and Tools

3.4.1 Relational and Object Databases

Early database technologies included hierarchical and network data models [33]. Relational
databases were invented in the 1970s and became popular about one decade later. The re-
lational model was the first database technology which achieved standardization between
different vendors. It is based on two-dimensional tables, or relations in database terminol-
ogy, and data in the base can be manipulated using the Structured Query Language (SQL),
standardized by a joint effort of American National Standards Institute (ANSI) and Interna-
tional Standards Organization (ISO). At least in theory, all compliant database engines from
different vendors implement the same set of SQL commands and the application program-
mer does not need to care of which engine is used.

One major disadvantage of relational databases is the need to map the data of the application
to the relational model. Especially when using object oriented programming languages, this
translation is complex — it has been claimed that as much as 30% of programming effort
is devoted to translations of data between the database and the application. Various object-
oriented databases have been developed to address this issue and make database access more
seamless for the programmer. However, there is no universal standard for object-oriented
bases and they have not yet reached the same level of popularity as relational systems. In
1997 the share of object-oriented systems was about 3% of the overall database market [34].

The relational database camp has also approached object modeling. Most popular database
engines today are relational but include lots of vendor-specific extensions to the traditional
relational model. These extensions are helpful in many applications but incompatible with
each other, making it harder to switch between different database engines. The latest version
of SQL standard, SQL3, also takes a major step in the object oriented direction. Unfortu-
nately, none of the current database engines on market is even near to implement SQL3
completely. The last widely supported version is SQL2 which appeared in 19921 .

3.4.2 Database Engines

Database engines compete based on their features, performance, ease of use, price, type of
license and user support. Traditionally the field has been dominated by large companies,
the best known products being Oracle from Oracle Corporation, DB2 from IBM and SQL
Server from Microsoft. These products are all relatively expensive, typical licenses starting
from a few thousand euros and going up to hundreds of thousands for large installations.
Various light-weight versions such as Microsoft Access have also been popular, but they
have missed critical features such as proper transaction support.

During the last few years, two open source database engines have changed the field consid-
erably. MySQL [36] and PostgreSQL [37] have made real database functionality available
to smaller projects with limited budget. MySQL and PostgreSQL are both free of charge
and can also be redistributed and modified within the conditions of two popular open source
licenses. MySQL is available under the GNU General Public License (GPL) [38] and Post-
greSQL under the BSD License [39]. Also two other formerly proprietary database engines

1Even SQL2 is often not implemented in entirety, but commonly used features of the standard are available
in most databases.

3.4. Choosing the Right Database and Tools 19

have been made available as open source: Firebird [40] (previously known as Interbase) by
Borland and SAPDB by SAP, recently bought by MySQL and re-branded as MaxDB [41].

The development of open source databases has led to numerous other open source projects
which use a database engine as a backend for storing data. Especially web applications
commonly rely on a database. This has in turn further spurred the development of the
databases themselves and made them easier to use from a large variety of programming
languages. It can be said that database technology has moved from the domain of dedicated
database experts to a common building block of any software developer.

3.4.3 Compatibility Issues

As mentioned in Section 3.3, the users of the database in Wakasa project are scientists which
will use a variety of tools to analyze the data. Therefore, compatibility with third-party
database tools, large number of programming languages and conformance to standards was
important in this project. Ideally, the data should be also easy to move to another database
engine, but this was considered less critical.

One question was whether to use strictly standard SQL or exploit various database specific
extensions. This is often a compromise between compatibility and ease of implementation
or performance. If extensions make using the data easier or offer a major speed improve-
ment, the benefits can overweigh the disadvantages.

3.4.4 Chosen Software and Hardware

After a short consideration of other alternatives, PostgreSQL was chosen as the database
engine. It was open source, relatively well standards compliant, had decent documenta-
tion and the necessary features for the project, including extended support for arrays and
matrices which seemed useful considering the type of gathered data.

To implement data insertion, retrieval and visualization, Python programming language [42]
was chosen. It is a modern language which has been gaining popularity and gathered an en-
thusiastic group of users during the last few years. Python quickly proved to be a good
choice - the language was easy to learn and implementing the necessary functionality re-
quired considerably fewer lines of code than doing the same for example in C language.

Gnuplot [43] was chosen as the plotting backend for data visualizations. Proprietary pack-
ages such as Matlab offer more elaborate graphics functionality, but the aim was to use
only open source components and Gnuplot functionality was sufficient2. There was also a
Python module which provided an easy connection interface with Gnuplot.

The hardware used for initial development was a standard desktop PC with Intel Celeron
600 MHz processor and 512 MB of memory. When taking the system to production use, a
800 MHz Pentium III computer with 1024 MB of memory was dedicated as the database
server. It can be easily upgraded later if the performance turns out to be insufficient. In
addition, the system was installed for demonstration purposes on a Pentium MMX 266
MHz laptop with 64 MB of memory.

2The most recent “stable” version of Gnuplot available at the time of development (version 3.7.3) was
missing certain features and therefore the experimental “development” version was chosen.

Chapter 4

Design and Implementation

Designing a good table layout is an important part of any project involving a relational
database. The database described in this thesis was developed for storing data of the Wakasa
experiment, and therefore will be referred to as the “Wakasa database”. However, from the
very beginning one important goal was to design a system which could be used for other
observation campaigns and measurements without modifications, only adding tables for
new instruments.

4.1 Table Structure

Usually the first step before any thought on database table structure is to collect information
about the real world case being modeled. It is important to detect which information is
necessary to store in the database and find relationships and dependencies between data. The
relationships can be modeled for example using the Entity-Relationship (ER) model [33] or
less formal methods [35] and further transferred to relational database tables.

In the case of Wakasa database, it was already clear that data which needed to be stored
were the values produced by the measurement instruments. There was no need to carry out
extensive research to find the relationships and dependencies. The task in designing the
table structure was to find an efficient and intuitive way to map the gathered data into the
relational model.

The Wakasa database contains data from 9 different types of instruments. For each instru-
ment type, there is one parameter table and one or more data tables. An overview of the
structure is shown in Figure 4.1. A more detailed figure of the structure, including labels of
individual columns, can be found in Appendix A.

Actually, two versions of the Wakasa database were developed: standard version and ar-
ray version. The structure shown in Figure 4.1 is the standard version. In the array version,
tables ceilo_backscatter, mrr_data and mrr_raw_data don’t exist. Their contents have
been merged to tables ceilo, mrr and mrr_raw as PostgreSQL arrays1.

1The array data type is a PostgreSQL database engine specific extension to standard SQL.

20

4.1. Table Structure 21

MRR parameters

mrr_parameters

POSS parameters

poss_parameters

MRR radar data separated
one height per row

mrr_data

MRR radar main table
(timestamps and parameter sets
associated with observation ids)

mrr

MRR unprocessed data main table

mrr_raw

obs_id

obs_id

Radiometer parameters

radiometer_parameters

Radiometer main table
(elevation, observation ids)

radiometer

obs_id

Radiometer meteorological
sensor data
(temperature, humidity etc.)

radiometer_metsensors

obs_idRadiometer brightness
temperature data
separated by frequency

radiometer_tbb

Heatsensor parameters

heatsensor_parameters

Yamada heat sensor data
(heat capacity needed for
melting snow)

heatsensor

Sounding parameters

sounding_parameters

sonde_id

Radio sounding data
(height profiles of temperature,
wind, humidity)

sounding

Data identifying each
individual sounding launch
(launch time, serial number etc.)

sounding_launches

Weather station parameters

weatherstation_parameters

Weather station data
(temperature, humidity etc.)

weatherstation

MRR unprocessed data
separated one height per row

mrr_raw_data

Ceilometer parameters

ceilo_parameters

Ceilometer (optical lidar) data
(calculated values, observation ids)

ceilo

Optical backscatter data
one height per row

ceilo_backscatter

obs_id

Precipitation Occurrence Sensor
System data (precipitation type,
precipitation rate)

poss

Video camera observation
system parameters

videodata_parameters

Video camera observation system
data (snowflake size and velocity
distributions)

videodata

Electronic balance parameters

balance_parameters

Electronic balance data
(precipitation rate)

balance

Figure 4.1: Wakasa database structure, standard version.

4.1.1 Data tables and parameter tables

All measurement data in the database is associated with a parameter set. Therefore, there
are at least two tables associated with each instrument: one data table and one parameter
table. The actual measurement values are stored in the data tables, while the parameter
tables contain values which remain constant during a long period of time. In the data table,
one measurement is represented on one row. Figure 4.2 illustrates how the data is stored.

One data table can contain data from several similar instruments. In the example of Fig-
ure 4.2 there are three weather stations, one located in Kanazawa and two in Fukui, repre-
sented by parameter set id’s 1, 2 and 3, respectively. The measurement data in data tables
is linked to the parameter sets using these id numbers, which are generated automatically
by the database engine. Each parameter set also has a more descriptive name chosen by the
administrator when feeding data in: Kanazawa-jwa, Fukui2003-aws and Fukui2003-air
in this example.

All data tables have certain common columns: timestamp (in universal coordinated time),
parameter set id and reliability. One observation is identified by the combination of times-

4.1. Table Structure 22

time_utc paramset temperature

2003-01-28 03:00:30

2003-01-28 03:01:00

2003-01-28 03:01:00

1

1

2

4.55

4.55

4.45

Weatherstation

humidity

66.1

NULL

66.7

other columns

. . .

. . .

. . .

reliability

NULL

NULL

NULL

paramset_id name instrument_description

2

3

1

Fukui2003-aws

Fukui2003-air

Kanazawa-jwa

AWS with rain gauge

Airport station, on the roof

JWA Mamedas KADE C-WT

Weatherstation_parameters

location_latitude

36.35

36.14

36.14

other columns

. . .

. . .

. . .

Figure 4.2: Weather station data in the database

tamp and parameter set id, in other words the pair (time_utc, paramset_id) is the key of
the table. The reliability field is reserved for the future: the idea is to define a coding for
the reliability of the measurement. Other columns in the data tables contain measurement
results and are thus specific to the type of instrument.

Respectively, the parameter tables have certain columns which are uniform between
instruments, and other instrument specific columns. The most important common
columns are location information (location_latitude, location_longitude and
location_elevation) which can be used to select correct data when results are available
from several observation sites concurrently.

Parameter sets can also be used to separate between several similar instruments installed on
the same location, even when their configuration is identical. Running several instruments
in parallel and comparing the results improves the reliability of measurement data. Creating
a unique parameter set id for each instrument makes it possible to store the data from all
instruments in the same data table but still separate between individual instruments later
during analysis.

4.1.2 Measurement Data Layout

As a basic rule, each measurement by one instrument (a set of values produced by the
instrument at a given time) is represented on one row in the data table. Timestamps are
stored in universal coordinated time (UTC) to ensure comparability between instruments. If
some values of the measurement are missing or invalid, they are represented by the special
value NULL.

Individual values for each timestamp can be easily mapped to the two-dimensional rela-
tional model. For example, temperature and humidity are two columns in the weatherstation
table, and precipitation rate estimate is one column in the POSS radar table. However, many
devices produce array or matrix values. For example, the optical lidar gives the reflectivity
profile from 0 to 7680 meters in 30 meter height steps and the POSS radar reports the fast
fourier transform (FFT) spectra of received signal near the ground level. The MRR radar
measures the FFT spectra for 30 separate height steps, leading to a two-dimensional matrix

4.1. Table Structure 23

for each individual timestamp. Arrays and matrices can be inserted in the database using a
few different methods:

1. Create as many columns as the maximum array length.

2. Store the array or matrix in a separate file and insert only the file name and position
indexes in the database.

3. Encode the array or matrix as one long string or binary value which is inserted in the
table cell.

4. Create additional data tables where each array is distributed to several rows.

5. Use database specific features like array datatype or user specific datatypes, not part
of SQL-92.

The first method can be used only for fixed size arrays and selecting the desired range us-
ing SQL language is inconvenient. The second method leaves the actual data outside the
database and can usually be replaced by the third method — modern databases internally
store large data blocks in separate files to maintain decent performance. In a purely rela-
tional model, method 4 is the only right way to proceed. However, methods 3 and 5 are also
often used in practice.

Storing the data as one string or binary block (method 3) is often a good choice if the whole
block is needed during processing. The disadvantage is that individual values from the
array cannot be retrieved and SQL search operations cannot look inside the block. Method
4 preserves the possibility to access and search for individual values, but performance can
suffer heavily if large blocks of the data are needed. Method 5 can ideally combine the
advantages of methods 3 and 4 but deviates from the SQL standard2 , implementation differs
between database engines and search functionality may be limited.

In the Wakasa project, it seemed important to be able to select values of a certain height
or of an arbitrary height range when retrieving data. Therefore arrays consisting of data
from different heights were split to additional data tables (method 4, standard version). To
compare performance, an alternative version using PostgreSQL array extensions (method 5,
array version) was also developed. Most other arrays and matrices such as FFT spectra and
snowflake diameter and velocity distribution data were stored as comma separated value
strings (method 3).

The standard and array versions of the system differ only in the table layouts of the optical
lidar (ceilometer) and mrr radar. Figures 4.3 and 4.4 illustrate how the optical lidar data
is stored in the two versions. In the standard version, the lidar backscatter height profile
is stored in a separate table ceilo_backscatter, one height per row. These values are
linked to the main data table using observation id numbers, generated automatically by the
database. Each observation id refers to one measurement, and the respective timestamps,
parameter set id numbers and other data (cloud base height value, beam power, error codes
etc.) are stored in the main data table.

In the array version, backscatter values have been moved to one column called bs of the
main data table. Each value or a slice of the array can still be individually retrieved using

2SQL3 includes an optional array datatype, but few databases implement it yet.

4.1. Table Structure 24

time_utc paramset obs_id

2003-01-28 23:05:00

2003-01-28 23:05:30

2003-01-28 23:06:00

1

1

1

1247

1248

1249

ceilo

other columns

. . .

. . .

. . .

cb_height_1

850

820

780

height bsobs_id

30

60

90

0.1660

0.1182

0.0964

1247

1247

1247

...

30 0.10471248

ceilo_backscatter

60 0.08531248

Figure 4.3: Data tables for the optical lidar, standard version.

time_utc paramset

2003-01-28 23:05:00

2003-01-28 23:05:30

2003-01-28 23:06:00

1

1

1

ceilo

. . .

. . .

. . .

cb_height_1

850

820

780

. . . bs

0.1660 0.1182 0.0000. . .

0.1047 0.0853 0.0000. . .

0.0803 0.0725 -9999. . .

Figure 4.4: Data table for the optical lidar, array version.

SQL3. The height information is not directly visible, but because the height resolution is
constant the indexes to retrieve the relevant part of the array can be easily calculated. An-
other subtle difference to the standard version is that NULL values cannot be used inside
arrays to mark for missing values. Therefore a special number -9999 which never occurs
in real data was chosen instead. This is simply a limitation of the PostgreSQL array imple-
mentation and may be changed in the future.

The advantage of the array version is increased performance. The difference is particularly
significant when inserting or retrieving long time ranges of data using scripting languages.
The main problem in the standard version is not the time consumed by the database for
finding the right section of the table, but rather the large number of rows to be processed.
Using arrays permits to reduce the number of rows by an order of magnitude. The same
data could of course also be encoded in the cells using text strings, but then it would no
longer be possible to retrieve individual values or height ranges.

Some of the data tables, for example weather station and radiometer tables, are generic and
suitable for many manufacturers and models. If one type of data is not available in a specific
model, it can be marked as a NULL value in the database. Most other tables are specific to
one particular manufacturer and model of the instrument.

3Actually, selecting a slice of an array is also a PostgreSQL extension, but integrates nicely to SQL language.

4.1. Table Structure 25

4.1.3 Normalization

Normalization is a process for organizing the table structure in the database so that data
redundancy and hidden dependencies are removed or minimized. It defines a number of
normal forms and a series of tests can be performed on a table whether it satisfies or violates
the requirements of a given normal form. Normalization is explained in detail in any good
book about relational databases, for example [34]. In the rest of this section the reader is
assumed to be familiar with the concepts of normalization.

The first normal form (1NF) is defined as A relation (a table) in which the intersection of
each row and column contains one and only one value. In the Wakasa database, there are
sometimes several measurement values encoded as a string in one table cell. However, the
string can be accessed as only one block and is only one value from the database point of
view. The PostgreSQL array extension could be considered to violate this requirement by
allowing to store several individually accessible values in one table cell, but the array as a
whole can also be seen as one special value, preserving the normal form. Therefore it can
be said that all tables in the Wakasa database are in the first normal form.

The second normal form (2NF) is defined as A relation that is in first normal form and every
non-primary-key attribute is fully functionally dependent on the primary key. This requires
removal of relations where some attribute (column) would be dependent only on some sub-
set of the primary key. All tables with a single column key are automatically in at least 2NF,
therefore all parameter tables, radiometer_metsensors table and sounding_launches
table in the Wakasa database satisfy this requirement. In other tables, the primary key is
composed of two columns, either time_utc and paramset, obs_id and height or obs_id
and frequency. It can be easily seen that none of the other attributes in these tables is
dependent on only a subset of the key and therefore all tables in the Wakasa database are in
the second normal form.

The third normal form (3NF) is defined as A relation that is in first and second normal
form, and in which no non-primary-key attribute is transitively dependent on the primary
key. Transitive dependency is a condition where A, B and C are attributes of a relation such
that if A � B and B � C, then C is transitively dependent on A via B. In the Wakasa
database, there are a few transitive dependencies. Deviations from the third normal form
are listed in Table 4.1. The relations could be normalized to 3NF by simply removing the
offending columns.

The main reason for normalizing to 3NF is to avoid update anomalies: situations where
updating one column and not updating another can put the database in an invalid state.
However, the data in the Wakasa database is measurement results which are read from the
measurement instruments, written once and not updated later. Only column in the data table
which is likely to be modified at a later time is the reliability column which is not part
of any transitive dependency. Therefore the deviations from the third normal form are not a
big problem in the Wakasa database. In all cases except rain_rate in balance table, the
same dependencies exist also in the original text files produced by the instruments.

Another update anomaly not addressed by the normalization process are dependencies
between tables. In the Wakasa database, rain_rate column in balance table is fully
functionally dependent on the primary key (time_utc, paramset) in terms of data in-
sertion and retrieval, but the correctness of rain_rate values depends on the box_area
value stored in balance_parameters table. Similarly, values in the videodata table

4.1. Table Structure 26

depend on the columns representing observation area dimensions and resolution in the
videodata_parameters table. The only way to avoid this issue would be to not store
these calculated values in the database and do the calculations after data retrieval. The cur-
rent solution requires some extra attention from the database administrator when inserting
data in the base, but is more convenient for the users.

Table 4.1: Deviations from the third normal form (3NF) in the
Wakasa database

Table Column Description

balance rain_rate Transitively dependent on the set of
columns stable_num, stable_accum,
unstable_num and unstable_accum.

ceilo alarm_status Transitively dependent on column
alarm_code.

ceilo cloudbases Transitively dependent on column
detection_status.

ceilo bs_sum Transitively dependent on column bs (in
the array version).

poss precip_intensity_code Transitively dependent on the set of
columns precip_type and precip_rate.

videodata several The values actually measured
by the instrument are time_utc,
frames, frames_with_flakes,
flakes_diameter, flakes_velocity,
diameter_distribution and
velocity_distribution. All
other columns except paramset and
reliability are transitively dependent
on one or more of these columns.

General definitions of second and third normal forms extend the previously stated require-
ments from primary key to any candidate key in the tables. In Wakasa database, only tables
which more than one candidate key are those which have (time_utc, paramset) as the
primary key and obs_id column. In those tables, obs_id is also a candidate key. This does
not change the situation, choosing obs_id as the primary key would give exactly the same
result.

Boyce-Codd normal form (BCNF), fourth normal form (4NF) and fifth normal form (5NF)
define some additional requirements for a relation. They are usually relevant only for sit-
uations with multiple column keys and complex dependencies between the data. In the
Wakasa database, there are no relations which would be in third normal form but violate
some of these stricter normal forms. The previously identified deviations from third normal
form of course apply also to BCNF, 4NF and 5NF.

4.2. Inserting and Deleting Data 27

4.2 Inserting and Deleting Data

On the low level, all data manipulations in the database are performed using SQL language
commands. The measurement instruments don’t connect to the database directly but store
their data in text files. A script called insertdata.py was written to read these files and
feed the data in the base. The script also supports the concept of parameter sets described in
Subsection 4.1.1. The administrator of the database writes an instrument specific parameter
file which is given as a parameter for the script. An example parameter file is shown below:

Parameter file for POSS data from Fukui Jan-Feb 2003
#
[wakasa2003]
location_latitude: 36.14
location_longitude: 136.22
location_utc_offset: +9
time_resolution: 60

It is not obligatory to specify values for all the parameters of the instruments. Most of
the parameter fields are optional: if the value is missing, the corresponding column in the
instrument parameters table in the database is marked as NULL. Missing values can be filled
in later by adding them in the parameter file and calling insertdata.py again. However,
to prevent common mistakes the script does not allow feeding in modified values with the
same parameter set name. If the administrator notices an error in values already stored in
the base, he must either update the values manually using SQL commands or delete and
reinsert the data belonging to the erroneous parameter set.

Instruments supported by the insertdata.py script are listed in Table 4.2. The user spec-
ifies the type of instrument using a command line parameter when calling the script. The
script also supports various other command line options, allowing for example inserting
data of a limited time range. There is also another script deletedata.py which supports
deleting data of the same instruments.

The core part of the data insertion script is a collection of parsers for the instrument specific
data files. The parsers are the only place where it is necessary to know the detailed data
file format of each instrument. After the data is in the base it can be retrieved using SQL
queries or a variety of other generic tools.

Considerable effort was made to minimize device specific code and make it simple to add
a new parser when a new instrument is acquired. For example the parameter set code is
generic — the only change required for a new instrument is to add the new parameter table
name, the list of columns in that table and which parameters are obligatory.

4.2. Inserting and Deleting Data 28

Table 4.2: Instruments supported by insertdata.py

Instrument Device name Description

Electronic balance balance Precipitation rate measured using an
electronic balance, data in the format
produced by the logger of WIS lab [20].

Optical lidar ceilo Vaisala Ceilometer CT25K optical lidar,
data in the format produced by the logger
of WIS lab.

Heat sensor heatsensor_yamada Yamada heat capacity sensor, data in csv
format as produced by the device.

MRR-2 radar
(processed data)

mrr Metek MRR-2 radar, processed data in
the format produced by the device.

MRR-2 radar
(raw data)

mrrraw Metek MRR-2 radar, raw data in the for-
mat produced by the device

POSS radar poss Andrew POSS bistatic radar, data in the
format produced by the logger of WIS
lab.

Radiometer WVR radiometrics_wvr Radiometrics WVR1100 radiometer,
data in the .los files produced by the
device.

Radiometer RPG rpg_brt Radiometer Physics RPG-LWP and
RPG-TEMP90 radiometers, data in the
binary format produced by the devices4.

Vaisala soundings radiosonde_vaisala Vaisala radio sounding data, in the .AED
and .APA files produced by the device.

Video based
observation system

video Video camera based observation system
data, in the text format produced by the
program used in the WIS lab.

Weatherstation
AWS

weatherstation_aws Data produced by the “AWS” automatic
weather station, data in comma separated
format (.csv files).

Weatherstation
JWA

weatherstation_jwa Data produced by the “JWA” automatic
weather station, in the format produced
by the logger of WIS lab.

4The parser for the RPG radiometer files is very slow in the current version. It will probably need to be
rewritten if large amounts of RPG data will be handled.

4.3. Data Retrieval and Search Functionality 29

4.3 Data Retrieval and Search Functionality

The SQL language provides efficient functions for retrieving and searching for data in the
database. It is simple to select the desired columns of a table and add logical and com-
parison operators to limit the selection, for example to choose a time range. The syntax
looks like English language and basic use is therefore easy to learn. Doing complicated
queries efficiently can be tricky, but in most cases simple ones are sufficient. More complex
arithmetic processing is then done outside the database using other tools.

A typical query retrieving video camera observation system data is shown below. The re-
trieval is limited to use only data from parameter set “wakasa2003”.

SELECT time_utc, flakes_diameter, diameter_distribution
FROM videodata, videodata_parameters
WHERE videodata_parameters.name = ’wakasa2003’
AND videodata_parameters.paramset_id = videodata.paramset
AND time_utc >= ’2003-01-28 09:20:00’
AND time_utc <= ’2003-01-28 09:30:00’

ORDER BY time_utc;

More detailed information on SQL search capabilities can be found in any database related
book (for example [34]) and does not belong to the scope of this thesis. However, two
important limitations are discussed in the following sections.

4.3.1 Timestamp Synchronization

In the relational model, two tables can be joined based on a column which is common to
both. For example, it is trivial to join timestamps from table mrr with height and reflec-
tivity values from table mrr_data, because they have the same observation id. Joining is
performed on demand when executing the query and the result is a combined virtual table.

In principle, timestamps can also be used to join tables between different devices. For
example, the user might want to join the poss table with the balance table to compare
POSS reflectivity with rain rate calculated using the electric balance. It is easy to plot a
specific time range from both, but synchronizing individual observations is more difficult.
If the timestamps are different even by only one second, the SQL join operation will not
place the POSS values and balance values on the same row. Different height resolutions
between devices pose similar problems.

One possibility to achieve synchronization would be to round timestamps when inserting
data, for example to the nearest full minute. Values from instruments providing several
values each minute could be averaged to form the result. The disadvantage is that time
resolution of fast devices would be reduced, while slower instruments (not providing a result
every minute) would still have either gaps or duplicated data. Also, it would be difficult to
choose the best resolution because needs vary between different types of analysis.

Another possibility would be to not do any averaging and store all values of all devices, but
still have “checkpoints” where the time stamps would be synchronized. This would allow
joining tables at these checkpoint positions. The disadvantage of this is that adding new data
becomes more complicated and errors in individual data points become more significant.

4.3. Data Retrieval and Search Functionality 30

For example, let’s consider a situation where one device records data every 10 seconds and
the “checkpoints” are every 5 minutes. If one of the 10 second values is invalid, it may still
end up representing the whole 5 minutes in the combined table.

After considering the alternatives it was decided to store timestamps as exact, leaving the
synchronization problem to be resolved later. It is probably best to write scripts which go
through all the values once doing the averaging at desired time resolution and write the
results in new, temporary tables. These tables can then be joined easily. PostgreSQL also
provides some SQL extensions to do arithmetic operations on columns, allowing timestamp
comparisons such as “within 10 seconds”. These at least partly solve the synchronization
problem but are rather slow to be used regularly, at least for large amounts of data.

4.3.2 Continuous and Discontinuous Blocks

As mentioned previously, SQL allows various criteria to be placed on any column when
selecting data. In the Wakasa database, users would often like to do queries such as “select
all snowfall events with temperature being between -2 and 0 degrees”. The temperature
limit is easy to express in is SQL, but the result of the query will be a large number of rows,
and it is not obvious which of them form continuous periods of time satisfying the criteria.
The problem is illustrated by the example below, displaying an excerpt of weather station
data (unnecessary columns omitted):

Time Temperature (degrees Celsius)

2003-01-28 12:00:00 -2.1
2003-01-28 12:01:00 -2.0
2003-01-28 12:02:00 -2.1
2003-01-28 12:03:00 -2.1
2003-01-28 12:04:00 -2.0
2003-01-28 12:05:00 -1.9
2003-01-28 12:06:00 -1.9
2003-01-28 12:07:00 -2.0
2003-01-28 12:08:00 -2.1
2003-01-28 12:09:00 -2.1

Filtering the above data with the condition (temperature >= 2.0) will produce a set of
five rows, where the first one is time-wise disconnected from the others:

Time Temperature (degrees Celsius)

2003-01-28 12:01:00 -2.0
2003-01-28 12:04:00 -2.0
2003-01-28 12:05:00 -1.9
2003-01-28 12:06:00 -1.9
2003-01-28 12:07:00 -2.0

In many cases it would be nicer to receive just lists of starting and ending times of contin-
uous periods where the given criteria is satisfied. This kind of behavior cannot be achieved

4.4. Expandability and Flexibility 31

by using only SQL commands, but a script could compare the time difference of two suc-
cessive rows. All instrument parameter tables contain a time_resolution field to make
such analysis easier.

4.4 Expandability and Flexibility

The first goal of the database system was to provide storage for the data collected at the
Wakasa experiment in Fukui, winter 2003. It will be used in the future for other mea-
surement campaigns so flexibility and expandability was kept in mind during development.
Inclusion of location information makes the system suitable for multi-site observations.
There are no fundamental limits for scalability concerning the number of sites or the length
of observation periods. However, the system has been designed for data from individual
point locations, there is no direct support for map-like information such as radar or satellite
images over a region.

Adding new measurement instruments is relatively easy. The procedure consists of creating
a new parameters table and one or more data tables, and writing a parser for the file format
of the new instrument. Alternatively data could be sent directly to the database without the
need for an intermediate results file. However, many instruments are supplied with software
which stores data in files. Unless real-time access is required, it is usually easier to write a
converter for the files than to read values from the device directly.

Another likely future need is to store intermediate analysis results consistently. As the raw
data is already in the database, it is the logical place for intermediate results as well. New
either permanent or temporary tables can be created for these results. However, what is the
best table structure in each case and which data should be stored in the first place is not
an easy question. Creating new tables without careful planning and documentation quickly
leads to outdated and unused datasets lying around and making the whole system more
complicated to use.

When the database is used as a central data repository for several research groups, data
mirroring and synchronization become important. Typical data access may involve retriev-
ing dozens of megabytes of raw measurements, which essentially requires a local database
server for each group. Solutions to automatically synchronize data between servers are
available but they were not examined in detail within this project. At least in the devel-
opment phase, the system was used only at two laboratories and data was transferred by
manually copying the full database dump onto a portable hard disk.

Chapter 5

Snowfall Event Analysis

The database system is intended to facilitate algorithm development for snowfall analysis.
The database project did not include research of any new algorithms, but a set of basic
visualization tools was developed. These tools give a quick overview of the measurements.
Plotting data from several instruments side by side and inspecting the graphs visually reveals
already many characteristics of snowfall events.

5.1 System Characteristics

As mentioned earlier, the system contains data from point locations, in the current phase
mainly from one single location: Fukui, Japan. Measurement instruments were installed
at the ground and collecting data either from ground level or from a number of height
steps up to a few thousand meters of altitude. Compared to most other observation systems
the instruments operated at a high time resolution. When weather forecasts usually have
only one or a few data samples per hour for a specific location, most instruments in the
Wakasa experiment were operating at a time resolution of one minute or better. This makes
it possible to distinguish between different phases of an individual snowfall event.

Clocks were synchronized to allow comparisons between different instruments. Data from
multiple sources is essential for development and especially validation of new algorithms.
The installation also produced several types of reference data which are usually not available
in weather forecasting, such as detailed snowflake size and velocity distributions.

5.2 Visualization Tools

Several instruments used in the Wakasa observation campaign were shipped with some
kind of visualization programs developed by the vendor. Unfortunately most of them had
limited functionality, widely different user interfaces and were all device specific, making
it difficult to do comparisons between instruments. Few were suitable for batch processing
of long time ranges of data, some even crashed frequently. In any case, inserting the data
in the database rendered the programs unusable because they were all delivered in binary
format only and therefore couldn’t be modified to use the database as their data source.

32

5.3. Analysis examples 33

A new set of visualization tools were developed to provide basic graphs of the data of each
instrument. The graphs can be used to quickly see what is going on and detect possible
errors in the data already during an observation campaign. The same time period from many
types of data and several instruments can be plotted using the same scale and compared
visually.

The visualization tools were implemented as Python language [42] scripts using Gnuplot
software [43] as the plotting backend. The scripts take a number of parameters from the
user, compose the SQL query to select necessary data from the database, write the result
to a temporary file and call Gnuplot to actually produce the graphical output. An example
output is shown in Figure 5.1. More examples can be found in Appendix C.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

H
ei

gh
t [

m
]

Time [h]

Ceilometer lowest cloud base height

Figure 5.1: Example output of visualization script plotceilo.py showing
lowest cloud base height on January 28, 2003. This plot was produced
using the following command line: ./plotceilo.py -p wakasa2003
-d lowestcb -s "2003-01-28 14:00:00+09" -e "2003-01-28
23:00:00+09" -l --timeres=60 --font="Helvetica, 18"

There is one script per instrument but most of the code is shared, minimizing programming
effort and providing a consistent interface for the user. Time resolution and smoothing using
moving average are selectable in all plots. It is also possible to redirect the Gnuplot data file
and Gnuplot commands to an external file for further processing.

Current user interface is command line based. Besides interactive use, it is suitable for batch
processing, for example automatically generating a set of plots for every day during a long
observation period.

5.3 Analysis examples

As mentioned in Section 2.5, a rainfall and snowfall observation campaign was carried out
at Fukui airport, near Wakasa Bay, Japan, from January 13 to February 6, 2003. The time

5.3. Analysis examples 34

period included many types of precipitation. Snowfall and mixed precipitation events in
late January were the most interesting for the research at the Image Information Science
laboratory. The analysis of selected precipitation events is shown to present typical use of
the database visualization tools. A similar analysis with different choice of examples has
already been published in an earlier paper [44].

Figure 5.2 shows air temperature, snowfall rate measured by the electronic balance, POSS
radar reflectivity and lidar optical backscatter on January 30, 12:00-20:00 Japanese time.
Looking at the balance data, several precipitation events can be seen in the early afternoon
between 12:30 and 15:00, and a single one in the evening after 19:00. Most of the events are
small but there’s a peak of heavy precipitation at 14:10. The precipitation is also reflected
in the radar and lidar data.

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00P
re

ci
pi

ta
tio

n
ra

te
 [m

m
/h

]

Time [h]

Precipitation rate from electronic balance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

O
pt

ic
al

 b
ac

ks
ca

tte
r

[1
/s

ra
d]Ceilometer optical backscatter

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time [h]

 0

 400

 800

 1200

 1600

 2000

H
ei

gh
t [

m
]

-5

 0

 5

 10

 15

 20

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

R
ef

le
ct

iv
ity

 [d
B

Z
]

Time [h]

POSS reflectivity

 0

 1

 2

 3

 4

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

T
em

pe
ra

tu
re

 [d
eg

re
es

 c
el

si
us

]

Time [h]

Air temperature by weather station

a)

b)

c)

d)

Figure 5.2: Measurements on January 30, 2003, 12:00-20:00 Japanese time:
a) air temperature, b) precipitation rate, c) POSS radar reflectivity, d) optical
lidar backscatter.

5.3. Analysis examples 35

Temperature for the whole period is above zero, reaching a maximum of about 3.5 degrees
Celsius in the afternoon. At the same time lidar data shows backscatter only high above
1000 meters and has gaps. It seems that during that period there was only a light cloud
base and sun was warming the air. The most interesting part for analysis is the precipitation
event with a sharp peak around 14:10. The temperature was only slightly above zero and
raising, increasing the likelihood of change in the type of precipitation and composition of
precipitation particles.

The video camera observation system data can give additional information about the type
of precipitation. Figure 5.3 shows the velocity distribution of precipitation particles during
three different 10 minute periods.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

[1
/(

m
3 *m

/s
)]

Velocity [m/s]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

[1
/(

m
3 *m

/s
)]

Velocity [m/s]

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

[1
/(

m
3 *m

/s
)]

Velocity [m/s]

a)

b)

c)

Figure 5.3: Precipitation particle velocity distribution on January 30, 2003 dur-
ing three short time periods: a) 13:20-13:30, b) 13:50-14:00, c) 14:05:14:15.

The precipitation during 13:20-13:30 consists of particles with relatively low velocities,
which signifies snowfall. During 13:50-14:00 there is a larger range of velocities; taking
account the rising temperature it seems likely that snowflakes are slowly turning into sleet.
The short period with intense precipitation during 14:05-14:15 shows both low velocities
and a second peak around 2 m/s. This signifies mixed precipitation with two different types
of particles, probably graupel and snowflakes.

5.4. Suitability for Statistical Analysis 36

Diameter and velocity distributions during a longer period are interesting statistical values.
Figure 5.4 shows the distributions calculated from the whole Wakasa observation period.
The data includes only sleet, snowfall and graupel events; the system was not operated
during rainfall.

a)

b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 2 4 6 8 10 12 14
N

um
be

r
[1

/(
m

3 *m
m

)]
Diameter [mm]

Snowflake diameter distribution during Wakasa 2003

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

[1
/(

m
3 *m

/s
)]

Velocity [m/s]

Snowflake velocity distribution during Wakasa 2003

Figure 5.4: Precipitation particle distributions during the Wakasa observation,
January-February 2003: a) diameter distribution, b) velocity distribution.

The diameter distribution looks normal, but the velocity distribution has a strange peak at
approximately 0.15 m/s. The same peak is also partly visible in the graphs of Figure 5.3. It
doesn’t correspond to any long term snowfall statistics and also deviates from earlier results
obtained using the same system [8]. Therefore it seems that the setup suffered from some
kind of noise problem during the Wakasa observation. The data is not completely useless,
but special care must be taken when using it. Lowest velocities will probably have to be
discarded or bias-corrected.

5.4 Suitability for Statistical Analysis

Many modern signal processing, pattern recognition and classification methods are based
on statistical analysis of the input data. For such analysis it is a major advantage when the
data is in a consistent format in the database instead of scattered text files. There is no need
to write a parser to extract the necessary data from the instrument file format. Multiple years
of data can easily be processed in one run.

More importantly, the need for error handling is reduced. Often the longest time when writ-
ing a parser is spent in small details, situations where the instrument produces an incomplete
or otherwise unexpected data line, for example containing some kind of error code due to
temporary malfunction. With the database, these problems have been encountered when

5.5. User Experiences 37

writing the initial parser and missing or invalid data is consistently marked with the special
value NULL.

Accessing the database directly is a good idea when the researcher is writing his or her own
analysis programs. General purpose spreadsheets and scientific computing packages cannot
usually access the database directly, they require the data in a regular file. This is not a
problem because data can be trivially exported to comma separated format (csv) files which
are supported by most programs. Also in this case, the ability to easily select the relevant
data and reduced need for error handling are clear advantages of the database.

The database gives interesting possibilities for producing generic statistics without even
knowing the exact type of data. For example, mean value and standard deviation could be
calculated daily for each measurement data column. Visual weather observations which are
currently recorded by hand into a logbook could also be better taken advantage of. Using
standard Synop “present weather” codes [45] and feeding them into the database would give
a good foundation for developing classification algorithms. There was not enough time to
implement these improvements in the scope of this project, but they may be added in the
future.

5.5 User Experiences

During the prototype phase, there were three users of the database system. Professor Mu-
ramoto and B. Sc. student Hideki Aoyama from the WIS lab [20] used the visualization
tools to prepare an analysis of snowfall events for the Wakasa workshop in May 2003, in-
cluding a set of graphs to be distributed for other participants. M. Sc. student Thomas
Pfaff from the River and Environmental Engineering Laboratory, University of Tokyo [24]
accessed the database directly with SQL queries to retrieve measurement values for his
weather model. He also participated in the design of the tables and contributed some parts
of parser code. The work of Mr. Pfaff is described in more detail in his thesis [46].

Due to the small number of users, a comprehensive summary of user experiences cannot yet
be done. Several features have received only very limited testing, in particular the support
for multiple observation sites. Still, bug reports, questions, and comments from users were
encouraging and important during the development of the system. The database is currently
being used in Kanazawa University by a few students. Hideki Aoyama’s work is described
in more detail in chapter 7.

Chapter 6

System Performance

In the Wakasa database project, high raw system performance was not one of the key ob-
jectives. The design goals were ease of use, standards compliance and simple structures
without sacrificing extendibility. During the project some performance issues surfaced and
were addressed by making a small change in the table structure as described in Section 4.1.
The performance of these two alternative implementations, standard version and array ver-
sion, is compared in this chapter.

6.1 Performance Requirements

A single Wakasa database installation is not expected to have a large number of simultane-
ous users. However, it might have a considerable amount of data, in the order of tens of
gigabytes. The data is usually inserted only once and not modified during usage, so writing
performance is not very important. When reading, both finding individual data elements at
random times and exporting large continuous datasets should be acceptably fast. All usage
patterns in future research cannot be foreseen, but already for basic visualizations there are
two distinct types of use which have different performance requirements.

If plots are generated for a long period of time in a batch processing manner, a response time
of several minutes for certain plots is accessible. A good basic criteria is that the system
should be able to process the data of one winter during one night. On the other hand, if the
system is used for interactive plotting, for example through a web interface, it should be
able to process any query in a few seconds or at least under one minute.

In any type of use, the system should be scalable to include data from several years and sev-
eral observation locations without significant loss of performance in plots and and queries of
fixed time periods. Also, exporting continuous datasets of several days out of the database
to external files should be reasonably fast, taking at the most a few minutes.

6.2 System Setup

6.2.1 Test Data

The data available at the time of development was the data collected during the Wakasa
observation campaign in Fukui, January-February 2003. For some instruments there was

38

6.2. System Setup 39

data from several previous years, but for performance testing it was better to have an equal
time range of data from all instruments. The measurements taken between January 21,
00:00:00 JST 2003 and January 30, 23:59:59 JST 2003 were chosen as the basic test set.
Table 6.1 lists the included instruments and data set sizes for the chosen 10-day period.

Table 6.1: Data set selected for performance testing: Measure-
ments recorded during January 21 – January 30, 2003.

Standard version Array version

File Database Number Database Number
Instrument1 size MB size MB of rows size MB of rows

Electronic balance 3.7 9.5 86397 9.5 86397
Heat sensor 0.2 0.2 1680 0.2 1680
Optical lidar 20.1 636.2 7393376 33.2 28768
MRR-2 radar (processed) 504.2 444.1 892676 179.0 28796
MRR-2 radar (raw)2 1007.8 463.9 1807080 130.0 54760
POSS radar 3.9 3.8 14400 3.8 14400
Radiometer WVR1100 2.1 8.6 81484 8.6 81484
Radio sounding3 0.6 1.0 6460 1.0 6460
Video observation system4 21.2 6.6 6442 6.6 6442
Weatherstation AWS 0.3 0.8 7126 0.8 7126

Total 1564.1 1574.7 10300121 372.7 319313

As can be seen from the table, the data set disk space requirements for a particular instru-
ment vary largely depending whether the data is stored in the original text or binary files or
in the database. In most cases, using a database increases the required disk space, which
can be explained by the need of search indexes and data types which take a larger amount
of space to store. However, in some cases, MRR-2 radar in particular, the original data file
format is space inefficient and the database format is more compact. In the case of video
based observation system data, only a subset of the recorded values for each timestamp were
inserted into the database.

As explained in Section 4.1, the standard and array versions of the database differ only in
the case of optical lidar and MRR-2 radar data. The space savings in the array version are
significant. In particular, it can be noted that storing height data on separate rows as in
standard version is very inefficient in the case of optical lidar. However, considering current
hard disk prices the disk space requirements are not a problem in either version, because all
the measurement data for one whole winter can be stored in less than 10 gigabytes.

1More detailed description of the instruments and the data types is in Table 4.2.
2Due to a time zone error, the MRR-2 raw data in the test data set was from a time window starting and

ending 9 hours earlier than other instruments. However, the data set size is fully comparable.
3Radio sounding data was not continuous, the data included in the test set consisted of 34 sounding launches.
4Video observation system was operated only during precipitation and therefore continuous data was not

available for the whole 10 day period. The data set included consists of approximately 116 hours (4.8 days) of
data.

6.2. System Setup 40

6.2.2 Hardware and Software Environment

All performance tests were run on a computer which was dedicated as the database server.
The hardware is summarized in Table 6.2.

Table 6.2: Database server hardware

Component Model / Amount

Processor Intel Pentium III 800 MHz
Memory 1024 MB
IDE controller VIA vt82c596b on-board UDMA66 controller
SCSI controller Adaptec 29160 Ultra160 SCSI adapter
Operating system disk 20 GB 5400 rpm IDE disk (Quantum Fireball lct10)
Database disk 40 GB 5400 rpm IDE disk (Seagate ST340810A) or

72 GB 10000 rpm SCSI disk (HitachiDK32DJ-72MW)5

DMA transfers, multiple sector I/O (16 sectors) and read-lookahead were enabled for the
IDE disks. The operating system was GNU/Linux and the software versions relevant to this
project are listed in Table 6.3.

Table 6.3: Database server software

Program name Version

Vine Linux distribution 2.6
Linux kernel 2.4.19
GNU libc 2.2.4
GNU C compiler 2.95.3
PostgreSQL database server 7.2.3
Python programming language 2.2.2
Numeric Python extension 23.0
Python PostgreSQL interface pyPgSQL 2.3
Gnuplot plotting tool 3.8j beta6

All software was either installed from rpm packages or compiled using default settings and
not specially tuned. During the performance tests, the computer was running normal sys-
tem daemons in addition to the PostgreSQL database but it was not used for other purposes.

5Initially, the machine was equipped with a 40 GB IDE disk for the database. However, later this disk was
broken and replaced by the 72 GB SCSI disk. Most performance measurements were done using the SCSI disk,
but some data insertion benchmarks were performed with both configurations.

6The Gnuplot plotting tool was compiled from source code which was downloaded directly from the project
cvs repository on July 11, 2003.

6.2. System Setup 41

Operating system, home directories and source data files were placed on the operating sys-
tem disk, database data files on the database disk. All tests were carried out locally without
using network connections for anything else than remotely logging in and starting the test.

Most of the measurements presented in this chapter were obtained by running the database
engine with default settings. Before the final set of visualization tool and data export per-
formance tests a few settings were adjusted as advised in a PostgreSQL performance tuning
guide on the web [48]. Shared_buffers value was increased from 64 to 2048 (16 MB),
effective_cache_size value from 1000 to 89600 (500 MB) and sort_mem value from
512 to 4196 (4MB / query).

6.2.3 Main Factors Affecting Performance

In database based applications, design choices and sometimes even small implementation
details may have a significant impact on performance. In the Wakasa database project, the
following key factors were considered.

1. Modeling array and matrix data. As described in Subsection 4.1.2, there are several
possibilities of storing array and matrix data in the database. Difference in perfor-
mance can be more than one order of magnitude, depending on the number of rows
in the database and the type of query.

2. Database engine. Different database engines can have significantly different perfor-
mance figures for a given application.

3. Programming language and database interface. Performance bottlenecks may not be
in the database engine itself, but rather in the database interface of a chosen program-
ming language, or some completely database unrelated part of the application.

4. SQL queries and database indexes. Certain types of SQL queries can lead to complex
and inefficient database operations. Sometimes these can be speeded up considerably
by manually giving a command to create indexes inside the database for the affected
columns.

5. Server hardware and operating system. Obviously, database server hardware and
operating system also affects performance. In most cases, memory and disk perfor-
mance are more important in database applications than processor speed.

In Wakasa project, several methods to model array and matrix data were used, and analyzed
in the results. PostgreSQL was selected as the database engine because of it was open source
and had a reputation of being a mature system. It would have been interesting to try different
engines, but there was no time for that within the scope of the project. For programming,
Python language was chosen because of convenience and speed of implementing the desired
features, although lower level languages as C were expected to give shorter execution times.
Query optimization and indexes were not studied in detail because the visualization tools
needed only relatively simple queries. However, this topic may become more important in
future research.

Comparing the performance of different hardware was not the purpose of the project, so a
standard computer which was already available at the laboratory was chosen as the database

6.3. Results 42

server. When doing performance measurements, both the raw data, database and visualiza-
tion tools were located on the server. Therefore, all invocations of the Python interpreter and
the Gnuplot plotting tool also happened locally. It would be possible to balance the load by
running Python and Gnuplot on separate computer(s) and use the network to retrieve values
from the database. This was verified to work but the performance of such setup was not
measured.

During the tests one surprising factor came up which had a very significant impact on
the performance. Directly after insertion of data PostgreSQL was using slow sequential
searches in data retrieval even when table keys were used to select the desired columns.
Queries produced correct results but the performance was poor. The behavior was corrected
by running the command vacuumdb --analyze which initialized PostgreSQL into using
indexed searches. Results both before and after vacuuming are presented for comparison in
Subsections 6.3.2 and 6.3.3. They show clearly how small details can play a groundbreaking
role in performance.

6.3 Results

6.3.1 Inserting Data

The performance of inserting data in the database was tested using the insertdata.py
script, described in Section 4.2. The database table structure was created from scratch,
data of all instruments inserted, after which the whole database was erased and the process
started all over again. Always after the insertion of data from a single instrument was
complete, the write cache was flushed to the disk and the timestamp recorded.

For the array version of the database, the insertion and deletion process was repeated 10
times. For the standard version (and also array version in the case of MRR-2 radar) it was
performed only 3 times because of the long duration of the test run. The order of instruments
in the insertion script was fixed, but the insertion process was also tested in reverse order.
No significant differences in performance were found due to the change in insertion order.

The results of data insertion performance are presented in Table 6.4. The confidence ranges
were calculated using standard deviation and assuming normal distribution; in the case of
tests which were performed only 3 times the highest deviation from average value is used.
All measured times are wall-clock time.

Insertion time becomes very long in the standard version, taking over five days to complete.
The time is highly dominated by optical lidar and MRR-2 radar data. This problem was
addressed in the array version of the database, where the whole insertion task takes less
than two hours. The results remained consistent during tests, deviations were small. The
small differences between standard and array versions for other instruments than optical
lidar or MRR-2 radar can be explained by the fact that the data ends up being stored on
different areas on the hard disk.

During the data insertion tests, the database was stored on a 5400 rpm IDE hard disk. Later
it was replaced with a 10000 rpm SCSI unit because of a disk failure. A surprising obser-
vation was that data insertion was significantly slower when using the SCSI disk. Due to
time constraints a full test run was not done with the SCSI disk, but the insertion times ap-
proximately doubled. The result is probably due to poor SCSI I/O performance in the Linux

6.3. Results 43

Table 6.4: Performance of inserting data. All execution times in
seconds.

Time minutes Time minutes
Instrument (standard version) (array version)

Electronic balance 5 � 62
�

0 � 02 5 � 58
�

0 � 03
Heat sensor 0 � 12

�
0 � 00 0 � 11

�
0 � 00

Optical lidar 5221 � 41
�

40 � 81 7 � 00
�

0 � 01
MRR-2 radar (processed) 523 � 54

�
1 � 22 29 � 26

�
0 � 07

MRR-2 radar (raw) 1872 � 69
�

4 � 52 38 � 22
�

0 � 03
POSS radar 1 � 11

�
0 � 00 1 � 09

�
0 � 01

Radiometer WVR1100 30 � 17
�

0 � 14 30 � 40
�

0 � 08
Radio sounding 0 � 48

�
0 � 00 0 � 47

�
0 � 00

Video observation system 0 � 68
�

0 � 01 0 � 64
�

0 � 00
Weatherstation AWS 0 � 48

�
0 � 00 0 � 48

�
0 � 01

Total 7656 � 30
�

46 � 72 113 � 25
�

0 � 24

kernel. Such a big variation suggests that large speed gains may be possible by adjusting
SCSI driver parameters or upgrading the kernel to 2.6 series which includes a rewritten
SCSI I/O layer.

The results presented here measure the initial insertion of data using the insertdata.py
script. Later, if the database suffers a disk failure or the data has to be transferred to another
machine, the database can be reconstructed from backups. Restoring the data from a backup
is a lot faster than the initial insertion. For the test data set, restoring data from a backup
takes about 7 minutes in the standard version and 13 minutes in the array version.

Deleting data is a very uncommon operation in the Wakasa database. Usually, the only
reason to delete data is a mistake in insertion parameters. The time range and type of
necessary deletion therefore varies largely depending on the situation. The performance of
data deletions was not measured but in any case it is faster than insertion and sufficient for
all normal use cases.

6.3.2 Visualization Tools

The performance of visualization tools was measured by selecting a set of common graphs
and producing them for different time ranges starting at random timestamps. The selected
graphs are introduced in Table 6.5. A representative subset of the results is presented in
this section. Full details including more graph types and time ranges, command lines and
equivalent SQL queries can be found in Appendix B.

Graphs balance, heat, lidar1 and poss are simple two-dimensional graphs, where the
values can be obtained from two columns (timestamp and the measured value) of a single
table in the database. Graphs lidar2, lidar3, mrr, video1 and video2 include retrieval
of array values. In graphs video1 and video2 the values are stored as text blocks, in graphs

6.3. Results 44

Table 6.5: Graph types used for visualization tool performance
measurements.

Graph name Instrument Type of visualization

balance Electronic balance Snowfall rate
heat Heat sensor Snow detection flag
lidar1 Optical lidar Lowest cloud base height
lidar2 Optical lidar Integrated backscatter 0–3000 m
lidar3 Optical lidar Backscatter map 0–3000 m, 30 m height

resolution
mrr MRR-2 radar Reflectivity map 0–3000 m, 120 m height

resolution
poss POSS radar Integrated reflectivity
video1 Video observation system Snowflake diameter distribution averaged

over time
video2 Video observation system Snowflake diameter distribution against

time (map)

lidar2, lidar3, mrr they are either splitted on several rows (standard version) or stored as
PostgreSQL arrays (array version).

Lidar data arrays consist of 256 elements of which 100 are retrieved for height range 0–
3000m, mrr arrays consist of 30 elements of which 25 are retrieved, video arrays consist
of 200 elements and are retrieved in entirety. In lidar2 and video1 the values are added
together or averaged to produce a simple line graph, whereas the output of lidar3, mrr
and video2 is a two-dimensional color map. Within pairs (lidar2, lidar3) and (video1,
video2) the queries for retrieving data from the database are actually identical, only the
type of output is different.

All graphs were plotted as encapsulated post script (eps) files using time resolution of one
minute. If the time resolution of raw data was different, the necessary transformation to
one minute was done by the visualization script. The time ranges used were 4 minutes, 15
minutes, 1 hour, 4 hours, 16 hours and 24 hours. Each of the graphs for each time range was
plotted 30 times with a starting time selected at random from the test data set. The measured
execution times include parsing the input parameters, fetching the necessary data from the
database and producing the output file. The time needed for randomizing the starting time
and constructing the command line was excluded from the measurement.

First results obtained by running the visualization scripts right after inserting data are pre-
sented in Tables 6.6 and 6.7. The confidence ranges were calculated using standard devia-
tion and assuming normal distribution. All measured times are wall-clock time.

Very long execution times for plotting even short time ranges of lidar and mrr data in the
standard version hinted that the system was not functioning properly. Tuning configuration
parameters as mentioned in Subsection 6.2.2 improved the performance about 10 percent
but not significantly. Finally the problem was identified by using the PostgreSQL command
EXPLAIN which shows how queries are being executed. It turned out that the system was
going through all table rows sequentially to retrieve the necessary data. Vacuuming the

6.3. Results 45

Table 6.6: Performance of visualization tools, standard version of
the database, system not functioning properly. All execution times
in seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 58
�

0 � 02 0 � 67
�

0 � 02 1 � 08
�

0 � 02 2 � 63
�

0 � 02
heat 0 � 25

�
0 � 04 0 � 26

�
0 � 04 0 � 28

�
0 � 04 0 � 33

�
0 � 01

lidar1 0 � 41
�

0 � 02 0 � 42
�

0 � 01 0 � 49
�

0 � 04 0 � 81
�

0 � 12
lidar2 39 � 59

�
0 � 20 43 � 51

�
0 � 21 58 � 64

�
0 � 25 119 � 63

�
0 � 32

lidar3 39 � 86
�

0 � 22 44 � 17
�

0 � 24 61 � 53
�

0 � 26 131 � 25
�

0 � 31
mrr 8 � 76

�
0 � 01 9 � 21

�
0 � 02 10 � 93

�
0 � 07 17 � 98

�
0 � 14

poss 0 � 35
�

0 � 00 0 � 37
�

0 � 00 0 � 46
�

0 � 00 0 � 81
�

0 � 00
video1 0 � 41

�
0 � 04 0 � 46

�
0 � 04 0 � 67

�
0 � 08 1 � 48

�
0 � 24

video2 0 � 61
�

0 � 08 1 � 25
�

0 � 26 3 � 55
�

1 � 29 14 � 70
�

3 � 05

Table 6.7: Performance of visualization tools, array version of the
database, system not functioning properly. All execution times in
seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 58
�

0 � 02 0 � 67
�

0 � 02 1 � 07
�

0 � 02 2 � 62
�

0 � 02
heat 0 � 25

�
0 � 04 0 � 27

�
0 � 04 0 � 26

�
0 � 04 0 � 33

�
0 � 01

lidar1 0 � 69
�

0 � 02 0 � 71
�

0 � 03 0 � 78
�

0 � 04 1 � 07
�

0 � 14
lidar2 1 � 19

�
0 � 02 2 � 71

�
0 � 05 8 � 82

�
0 � 17 33 � 19

�
0 � 41

lidar3 1 � 37
�

0 � 02 3 � 41
�

0 � 05 11 � 55
�

0 � 20 44 � 29
�

0 � 39
mrr 0 � 70

�
0 � 00 0 � 97

�
0 � 00 2 � 04

�
0 � 02 6 � 32

�
0 � 04

poss 0 � 35
�

0 � 00 0 � 37
�

0 � 00 0 � 46
�

0 � 00 0 � 81
�

0 � 00
video1 0 � 41

�
0 � 03 0 � 47

�
0 � 02 0 � 68

�
0 � 07 1 � 47

�
0 � 24

video2 0 � 56
�

0 � 12 1 � 22
�

0 � 30 3 � 37
�

1 � 15 13 � 06
�

2 � 47

database as described in Subsection 6.2.3 turned the system into using indexed searches as
expected. Results after vacuuming are presented in Tables 6.8 and 6.9. The configuration
parameter tunings were also in place when running these tests.

Simple graphs (balance, heat, lidar1, poss) are all processed in reasonably short time.
The heat sensor table is very small due to coarse time resolution of the instrument (5 min-
utes), so we can see that the minimum amount of time to produce a graph is around 0.24
seconds. This includes launching the visualization script, establishing a database connec-
tion, retrieving some data and producing a plot to an encapsulated postscript file. For devices
with higher time resolution (e.g. balance 10 seconds) this time is slightly longer, but not
significantly.

When longer time ranges are retrieved, the execution time increases approximately linearly
and the amount of data becomes the dominating factor. For example, the time to produce
a graph for balance is approximately 0.28 seconds + 0.13 seconds per hour, whereas the
time to produce a poss graph is roughly 0.28 seconds + 0.03 seconds per hour.

6.3. Results 46

Table 6.8: Performance of visualization tools, standard version of
the database, after vacuuming. All execution times in seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 31
�

0 � 00 0 � 41
�

0 � 02 0 � 82
�

0 � 01 2 � 38
�

0 � 01
heat 0 � 24

�
0 � 04 0 � 26

�
0 � 05 0 � 26

�
0 � 05 0 � 34

�
0 � 02

lidar1 0 � 31
�

0 � 02 0 � 34
�

0 � 01 0 � 40
�

0 � 05 0 � 71
�

0 � 09
lidar2 1 � 44

�
0 � 02 4 � 75

�
0 � 05 18 � 07

�
0 � 14 104 � 55

�
1 � 57

lidar3 1 � 62
�

0 � 02 5 � 44
�

0 � 04 20 � 87
�

0 � 13 116 � 10
�

0 � 91
mrr 0 � 48

�
0 � 02 0 � 93

�
0 � 04 2 � 62

�
0 � 07 9 � 49

�
0 � 16

poss 0 � 29
�

0 � 00 0 � 31
�

0 � 00 0 � 40
�

0 � 00 0 � 76
�

0 � 00
video1 0 � 33

�
0 � 04 0 � 39

�
0 � 05 0 � 62

�
0 � 06 1 � 35

�
0 � 24

video2 0 � 48
�

0 � 14 1 � 12
�

0 � 30 3 � 19
�

1 � 31 12 � 53
�

2 � 83

Table 6.9: Performance of visualization tools, array version of the
database, after vacuuming. All execution times in seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 31
�

0 � 00 0 � 41
�

0 � 00 0 � 82
�

0 � 00 2 � 38
�

0 � 01
heat 0 � 24

�
0 � 04 0 � 25

�
0 � 05 0 � 27

�
0 � 05 0 � 34

�
0 � 02

lidar1 0 � 31
�

0 � 02 0 � 33
�

0 � 02 0 � 40
�

0 � 04 0 � 74
�

0 � 11
lidar2 0 � 82

�
0 � 01 2 � 31

�
0 � 05 8 � 44

�
0 � 21 32 � 79

�
0 � 43

lidar3 0 � 99
�

0 � 01 3 � 02
�

0 � 05 11 � 20
�

0 � 19 44 � 03
�

0 � 45
mrr 0 � 41

�
0 � 00 0 � 67

�
0 � 00 1 � 75

�
0 � 02 6 � 09

�
0 � 05

poss 0 � 29
�

0 � 00 0 � 31
�

0 � 00 0 � 40
�

0 � 00 0 � 75
�

0 � 00
video1 0 � 33

�
0 � 04 0 � 39

�
0 � 05 0 � 59

�
0 � 10 1 � 43

�
0 � 21

video2 0 � 52
�

0 � 10 1 � 15
�

0 � 30 3 � 73
�

0 � 68 13 � 00
�

2 � 65

When graphs contain array values, data organization and type of output have both a signif-
icant impact on the performance. When the system was using sequential search, visualiza-
tions of even short time ranges of mrr and lidar data in the standard version took up to 40
seconds on the test machine (Table 6.6). When operating normally using indexed search the
time drops to about one second. The standard version is still slightly slower than the array
version, but the difference is small for short time ranges. For long time ranges the array
version is faster by a large margin due to the smaller number of rows to process.

Pairs (video1, video2) and (lidar2, lidar3) show the performance difference between
producing a line graph and a color map graph. In both cases, the color map takes about
11-13 seconds more time than a line graph when visualizing a time range of 16 hours. This
accounts for most of the execution time in the case of video data, whereas in the case of lidar
intermediate data processing remains the most time consuming part. Organizing data as text
blocks (video) or using PostgreSQL arrays (lidar, mrr) seem to give roughly equivalent
performance taking account the differences in time resolution and array size.

6.3. Results 47

One value which sticks out of the results is lidar visualization performance for the 16 hour
time range in the standard version of the base. Closer examination revealed that the database
reverted to sequential search for some reason when retrieving a large total number of rows
from the table, leading to longer time than four 4 hour retrievals. It might be that if such
queries are frequent and vacuumdb --analyze command is run again the system could
optimize them better, but that was not tested.

6.3.3 Exporting Data

Exporting data to comma separated value (csv) format was tested using the psql command
line tool which is included in PostgreSQL database distribution. The goal was to simu-
late the data retrieval cases of the visualization graphs as closely as possible, and to find
whether possible performance bottlenecks would be in database engine operations or in the
visualization scripts.

The data export performance measurements were done using SQL queries equivalent to data
retrieval in graphs of Table 6.5. The query of the graph lidar2 is identical to the query of
lidar3 so only results for lidar2 is presented in the results. Similarly, the query for graph
mrr2 is identical to that of mrr1 and the query for video1 is identical to that of video2. The
visualization tools do a couple of additional queries to retrieve the number of parameter set
and time zone of the instrument location, but they are insignificant for the total performance
of the system when retrieving more than a few minutes worth of measurement data at one
time.

As in visualization tool measurements, the time ranges used were 4 minutes, 15 minutes,
1 hour, 4 hours, 16 hours and 24 hours.. Each time range was exported 30 times with
a starting time selected at random from the test data set. The measured execution times
include starting the psql tool and writing the output in a text file. The time needed for
randomizing the starting time and constructing the command line was excluded from the
measurement.

The results are presented in Tables 6.10 through 6.13. Full details can be found in Ap-
pendix B. The confidence ranges were calculated using standard deviation and assuming
normal distribution. All measured times are wall-clock time.

Table 6.10: Performance of exporting data, standard version of the
database, system not functioning properly. All execution times in
seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 32
�

0 � 02 0 � 32
�

0 � 02 0 � 35
�

0 � 02 0 � 46
�

0 � 02
heat 0 � 04

�
0 � 00 0 � 04

�
0 � 00 0 � 04

�
0 � 00 0 � 05

�
0 � 00

lidar1 0 � 14
�

0 � 01 0 � 14
�

0 � 01 0 � 15
�

0 � 01 0 � 17
�

0 � 01
lidar2 40 � 18

�
0 � 27 41 � 23

�
0 � 27 44 � 67

�
0 � 30 59 � 67

�
0 � 59

mrr 10 � 72
�

0 � 06 10 � 85
�

0 � 10 11 � 14
�

0 � 08 12 � 44
�

0 � 06
poss 0 � 11

�
0 � 00 0 � 11

�
0 � 00 0 � 11

�
0 � 00 0 � 13

�
0 � 00

video1 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 15
�

0 � 03

6.3. Results 48

Table 6.11: Performance of exporting data, array version of the
database, system not functioning properly. All execution times in
seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 31
�

0 � 02 0 � 32
�

0 � 02 0 � 34
�

0 � 02 0 � 47
�

0 � 01
heat 0 � 04

�
0 � 00 0 � 04

�
0 � 00 0 � 04

�
0 � 00 0 � 05

�
0 � 00

lidar1 0 � 42
�

0 � 01 0 � 42
�

0 � 01 0 � 42
�

0 � 01 0 � 45
�

0 � 01
lidar2 0 � 43

�
0 � 01 0 � 48

�
0 � 01 0 � 66

�
0 � 01 1 � 46

�
0 � 02

mrr 0 � 33
�

0 � 00 0 � 34
�

0 � 00 0 � 36
�

0 � 00 0 � 43
�

0 � 00
poss 0 � 11

�
0 � 00 0 � 11

�
0 � 00 0 � 11

�
0 � 00 0 � 13

�
0 � 00

video1 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 15
�

0 � 00

Table 6.12: Performance of exporting data, standard version of the
database, after vacuuming. All execution times in seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 04
�

0 � 01 0 � 05
�

0 � 01 0 � 13
�

0 � 12 0 � 22
�

0 � 00
heat 0 � 03

�
0 � 00 0 � 03

�
0 � 00 0 � 04

�
0 � 00 0 � 04

�
0 � 00

lidar1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 09
�

0 � 06 0 � 14
�

0 � 01
lidar2 0 � 24

�
0 � 03 0 � 67

�
0 � 04 2 � 44

�
0 � 13 44 � 92

�
1 � 30

mrr 0 � 09
�

0 � 02 0 � 17
�

0 � 03 0 � 43
�

0 � 05 1 � 49
�

0 � 17
poss 0 � 04

�
0 � 01 0 � 04

�
0 � 00 0 � 06

�
0 � 03 0 � 10

�
0 � 00

video1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 09
�

0 � 01

Table 6.13: Performance of exporting data, array version of the
database, after vacuuming. All execution times in seconds.

Graph 15 min 1 h 4 h 16 h

balance 0 � 05
�

0 � 02 0 � 05
�

0 � 01 0 � 10
�

0 � 07 0 � 22
�

0 � 00
heat 0 � 03

�
0 � 00 0 � 03

�
0 � 00 0 � 04

�
0 � 00 0 � 04

�
0 � 00

lidar1 0 � 04
�

0 � 00 0 � 04
�

0 � 01 0 � 06
�

0 � 01 0 � 27
�

0 � 20
lidar2 0 � 05

�
0 � 00 0 � 10

�
0 � 00 0 � 28

�
0 � 01 1 � 27

�
0 � 18

mrr 0 � 04
�

0 � 01 0 � 05
�

0 � 01 0 � 07
�

0 � 01 0 � 16
�

0 � 03
poss 0 � 04

�
0 � 00 0 � 04

�
0 � 00 0 � 06

�
0 � 02 0 � 10

�
0 � 00

video1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 03 0 � 10
�

0 � 01

As expected, exporting data using psql is considerably faster than plotting it with the visu-
alization tools. Otherwise the performance characteristics are similar to visualization tool
results. The difference in performance between the initial sequential search operation (Ta-

6.4. Result Analysis and Scalability Estimates 49

bles 6.10 and 6.11) and normal indexed search operation (Tables 6.12 and 6.13) becomes
even more apparent now. Again, lidar data retrieval of long time ranges in the standard ver-
sion of the base (Table 6.12, graph lidar2, 16 h) can be noted as a similar strange exception
than in visualization tool results.

6.4 Result Analysis and Scalability Estimates

In data insertion, the performance varied between 16 and 258 row insertions per second
depending on the type of instrument, table structure and amount of data. Inserting lidar
and mrr data in the standard version was slowest: the number of rows was large and even
the time per row was longest. Within groups of instruments with similar table layout (e.g.
balance, heat sensor, poss, weather station being one group, lidar and mrr another) the
insertion time of one row stayed constant and total time grew linearly with the number of
rows, indicating complexity O(n).

Data insertion is normally done only once, so very high performance is not necessary.
Spending two hours for inserting a 10 day data set as in the array version is completely
acceptable. Even if the number of measurement locations is increased considerably, this
will not become a bottleneck. For example, inserting an equal amount of data from 100
locations would take 8.3 days, still shorter than the time period of the dataset itself. On the
other hand, insertion times in the standard version are too long for convenient use and leave
little margin for processing larger amounts of data.

Data retrieval and visualization performance is more important. Retrieving and visualizing
short time ranges is fast enough for all instruments. For longer time ranges, performance of
lidar visualizations is relatively poor in the standard version of the base. Exporting or visu-
alizing long time periods increases processing time linearly, with complexity O(n). Using
PostgreSQL arrays cuts the times to about a half but does not change the complexity. This is
not a big problem, interactive use is expected to concentrate on time periods up to one day
and longer processing over months or years will be done as batch runs. The main bottleneck
is the processing of data structures using Python. Database load is low even during longer
plots so the system would become more responsive by optimizing the visualization tools or
simply adding more processing power to the client computers. For most use, the current
performance is completely sufficient.

New research projects in future may need to execute large numbers or complex SQL queries
to retrieve data from the database. The performance of such queries has not been tested and
remains unknown. If the queries use comparison operators or sorting on unindexed columns,
manually demanding PostgreSQL to index those columns may improve the performance.
Query ordering can also make a big difference, PostgreSQL does not seem to have very
advanced automatic optimization algorithms, at least the version used in the Wakasa project.

The discovery that the system was using sequential searches before vacuuming showed how
small details can have a decisive role in performance. PostgreSQL seems also to be picky
about query syntax, for example not using quotes around values can produce correct result
but again revert from indexed search to slow sequential search. The user has to be careful
and detect incorrect behavior. With the current amount of data the system would have been
usable even with sequential searches, but it would have become a larger and larger problem
in the future as more data will be added.

6.4. Result Analysis and Scalability Estimates 50

The performance measurements were done using a relatively small data set, each table was
small enough to fit in the 1 GB memory of the database server. Performance may suffer
if the tables grow larger than the main memory size, but it should not be a problem as
long as the indexes still fit in the memory. Also, the system was only tested with one user,
stress testing with multiple concurrent users would give better picture of the performance
under heavy loads. However, the database is not foreseen to be used by more than a few
simultaneous users and most of the load in time-consuming queries was on the visualization
tools which are normally executed at the client. Therefore no major scalability problems
are expected to appear at least in the near future.

Chapter 7

Application to Analysis of
Relationship Between Radar
Reflectivity Factor and Snowfall Rate

During winter 2004, B. Sc. student Hideki Aoyama studied the relationship of POSS
radar reflectivity factor and snowfall rate using the Wakasa observation dataset stored in
the database. His work is described in more detail in this chapter.

7.1 Background

As mentioned in Section 2.3, the Z � R relation is important in estimating precipitation
rate, and its relation is often expressed by Equation 2.1 [16]. Many attempts have been
made to obtain values of B and β for snowfalls from quasi-simultaneous measurements
of radar reflectivity and ground data on snowfall rate or accumulation [16] [49] [50] [51].
However, the various empirically determined coefficients of the Z � R relationship tend to
differ largely. This can be explained by targets of radar and reference on the ground not
being the same because of large distance between sampling volume for measuring of radar
reflectivity factor and ground reference point for snowfall rate. In addition, snowflakes
have a larger variety of shapes, densities, and terminal fall velocities compared to those
of raindrops [8] [52]. Furthermore intense snowfalls do not tend to last more than a few
minutes [8].

In order to obtain the coefficients of the Z � R relationship accurately, radar reflectivity
factor and snowfall rate have to be measured simultaneously by instruments located in a
small area and do the recording using a high temporal resolution and time synchronization.

7.2 Observation Data, Database and Data Extraction

The data set for this analysis was recorded during the Wakasa observation campaign, de-
scribed in Section 2.5. A large number of values were obtained with high temporal resolu-
tion from a limited spatial range.

51

7.3. Division Into Individual Snowfall Events 52

The database visualization tools were used to choose a suitable time range of data and
divide it into individual snowfall events. To analyze the Z � R relation, snowfall rate and
reflectivity data was retrieved from the database and values automatically matched against
each other using the timestamps to give an array of pairs (Z, R) during each snowfall event.
The type of snowfall in each event was evaluated using imaging data. Cloud conditions
were examined using optical lidar data.

7.3 Division Into Individual Snowfall Events

Figures 7.1a and 7.1b show the time series of snowfall rate and radar reflectivity factor
observed during a 16 hour period starting on January 28, 2003. All pairs of Z and R data
were plotted as shown in Figure 7.2. The coefficients B and β in Equation 2.1 were obtained
from the plotted data. The coefficient B in the Z � R relationship is the radar reflectivity
factor on the regression line when the snowfall rate is 1 mm/h. The coefficient β is the slope
of the regression line. In this case, the coefficient of determination r2 between the Z and R
was 0.60.

1 2 3 4 5 6 7 8 9 10

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

01/29
08:00

R
ef

le
ct

iv
ity

 [d
B

Z
]

Time [h]

POSS reflectivity

a)

b)

Figure 7.1: Time series of a) snowfall rate and b) radar reflectivity factor from
2003-01-28 16:00:00 until 2003-01-29 08:00:00 Japanese time.

The optical lidar values represent the integrated backscatter up to the height of highest
returned signal. The profile of optical lidar values from 0 m up to 3000 m is shown in

7.3. Division Into Individual Snowfall Events 53

10

0.1 1 10

Z
 [d

B
Z

]

R [mm/h]

Figure 7.2: The relationship between snowfall rate and radar reflectivity factor
during 2003-01-28 16:00:00 – 2003-01-29 08:00:00 Japanese time.

Figure 7.3a. The integrated optical lidar backscatter of the 3 lowest cells from 0 to 90 m in
height is shown in Figure 7.3b. The lowest cloud base height is shown in Figure 7.3c.

To obtain a better coefficient of determination for the Z � R relation, the data was divided in
shorter time periods by automatically separating individual snowfall events. The algorithm
used was:

1. If the balance data indicates a snowfall rate above 3 mm/h continuously for more than
3 minutes and the integrated optical lidar backscatter up to 90 mm (3 cells) is larger
than 1500 (10000 srad)-1, there is a snowfall event.

2. The beginning and end of a snowfall event are determined as follows: a snowfall rate
below 0.8 mm/h continuously for more than 3 minutes or a rate below 0.3 mm/h for
1 minute.

3. In case the snowfall rate drops lower than 1.0 mm/h during an event, it is divided
into two events. The timestamp with the lowest snowfall rate between the events is
selected as the separation time.

The data was divided into 10 distinct snowfall events by the algorithm. The division of
these events is marked in Figure 7.1a. Table 7.1 shows the coefficients B, β and coefficient
of determination r2 for each snowfall event.

Table 7.1: B, β and r2 for individual snowfall events.

Event 1 2 3 4 5 6 7 8 9 10

Begin 18:03 18:31 18:52 20:34 20:49 22:22 23:02 00:13 00:59 04:18
End 18:22 18:42 20:30 20:45 21:32 22:31 23:16 00:56 01:12 06:13

Duration 20 12 99 12 44 10 15 44 15 116
B 10.60 9.96 10.63 10.19 9.16 8.96 9.34 8.96 7.38 8.56
β 0.12 0.10 0.12 0.13 0.18 0.18 0.14 0.16 0.25 0.14
r2 0.71 0.12 0.69 0.78 0.69 0.36 0.65 0.63 0.83 0.77

7.4. Shortening and Division of Selected Events Using Optical Lidar Data 54

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

01/29
08:00

O
pt

ic
al

 b
ac

ks
ca

tte
r

[1
/s

ra
d]

Time [h]

Ceilometer integrated optical backscatter, height 30-90 m

a)

b)

c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

O
pt

ic
al

 b
ac

ks
ca

tte
r

[1
/s

ra
d]

Ceilometer optical backscatter

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

01/29
08:00Time [h]

 0

 500

 1000

 1500

 2000

 2500

 3000

H
ei

gh
t [

m
]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

01/29
08:00

H
ei

gh
t [

m
]

Time [h]

Ceilometer lowest cloud base height

Figure 7.3: Time series of optical lidar data: a) backscatter profile from 0 m
up to 3000 m, b) integrated backscatter of the 3 lowest cells from 0 to 90 m in
height, c) lowest cloud base height.

7.4 Shortening and Division of Selected Events Using Optical
Lidar Data

The coefficient of determination r2 during events number 2 (18:31 – 18:42) and 6 (22:22 –
22:31) is very low. The durations of these two events were manually shortened using the
optical lidar data shown in Figure 7.3. This data provides information about the atmospheric
profile between ground and cloud base. The part of Z � R data during periods of atmospheric
profile different from the rest of the event was neglected. Figure 7.4 shows the shortening of
event 6 to event 6’ (22:25 - 22:31) using optical data. The coefficients B and β were again
calculated for shortened duration 6’ and regression line drawn as shown in Figure 7.5. The
coefficient of determination r2 between Z and R increased from 0.36 to 0.77.

Event number 8 (00:13 - 00:56) was divided manually into two sub-events and event 10
(04:18 – 06:13) into three sub-events. The types of precipitation particles in each event
were examined further by using diameter and velocity distribution data recorded by the im-

7.4. Shortening and Division of Selected Events Using Optical Lidar Data 55

a)

b)

6

6’

Time [h]

Time [h]

P
re

ci
pi

ta
tio

n
ra

te
 R

 [m
m

/h
]

22:00 22:15 22:30 22:45 23:00

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

22:00 22:15 22:30 22:45 23:00
H

ei
gh

t [
m

]

1600

1400

1200

1000

800

600

400

200

0

O
pt

ic
al

 b
ac

ks
ca

tte
r

[1
/s

ra
d]

0.25

0.2

0.15

0.1

0.05

0

Figure 7.4: Shortening the duration of snowfall event 6: a) snowfall rate, b)
the profile of optical lidar backscatter.

10

0.1 1 10

Z
 [d

B
Z

]

R [mm/h]

6 Z = 8.96R r = 0.360.18 2

6’ Z = 9.89R r = 0.770.16 2

Figure 7.5: Regression lines between snowfall rate and radar reflectivity factor
for events 6 (solid line) and shortened event 6’ (dashed line).

age processing based snowfall observation system. In event 8, the early part was determined
as a graupel shower which changed into snowfall at around 00:30. The coefficients of deter-
mination r2 increased slightly from 0.63 to 0.64 and 0.74. In the case of event 10, snowfall
types were almost similar in all sub-events and the average coefficient of determination r2

increased only marginally from 0.77 to 0.79.

Table 7.2 shows the coefficients B, β and coefficient of determination r2 for the manually
shortened and divided snowfall events. Figure 7.6 shows the time series of B and β. Their
respective positions on the B � β plane are shown in Figure 7.7.

7.4. Shortening and Division of Selected Events Using Optical Lidar Data 56

Table 7.2: B, β and r2 for shortened events 2’, 6’ and sub-events
8’a, 8’b, 10’a, 10’b and 10’c.

Event 2’ 6’ 8’a 8’b 10’a 10’a 10’c

Begin 18:32 22:25 00:13 00:29 04:28 05:12 05:53
End 18:38 22:31 00:28 00:56 05:11 05:52 06:13

Duration 7 7 16 28 44 41 21
B 7.70 9.89 7.67 8.97 8.83 8.90 8.73
β 0.38 0.16 0.41 0.15 0.12 0.12 0.16
r2 0.69 0.77 0.64 0.74 0.83 0.76 0.78

7

7.5

8

8.5

9

9.5

10

10.5

11

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

B

Time [h]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/28
16:00

01/28
18:00

01/28
20:00

01/28
22:00

01/29
00:00

01/29
02:00

01/29
04:00

01/29
06:00

Time [h]

β

a)

b)

Figure 7.6: Time series of Z � R relation coefficients: a) coefficient B, b) co-
efficient β.

7

7.5

8

8.5

9

9.5

10

10.5

11

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

B

β

8’a2’

9

10’c10’a

10’b

7

6’

5

8’b

4

1

3

Figure 7.7: Snowfall events on the B � β plane.

7.5. Discussion 57

7.5 Discussion

From ground surface data only, it is not clear when cloud conditions change and produce
snowfall that has different characteristics. If we use optical lidar data, however, it becomes
easier to detect the changes. From this time series data, we can obtain information of the
growth process of snow particles. To obtain the best-fit Z � R relationship, data has to be
analyzed separately for each snowfall type.

The radar reflectivity becomes large when the snow particle size increases by coalescence
because reflectivity is proportional to the sixth power of the diameter of snow particles [16].
The average of coefficient B in snowflake events was large and widely distributed compared
to graupel events. In the case of narrow diameter and velocity distribution, the coefficient
of determination r2 of Z � R relationship was high. On the other hand, in the case of wide
diameter distribution, r2 was low. It indicates that R and Z should be measured at short
intervals. Measurement of R and Z at intervals of 1 minute seemed to be adequate with
respect to the speed of change in precipitation conditions.

In this example, only a 16 hour period of data was analyzed and there was a lot of manual
involvement on dividing the snowfall into separate events. The visualization tools devel-
oped in the database project were useful for this kind of analysis. However, the real power
of the database becomes apparent when extending the analysis to longer time ranges and
developing automatic snowfall classification algorithms, which will be the next step in this
research.

Chapter 8

Future Experiments

In the future, the database will continue to be used at least by the snowfall team in Kanazawa
University [20]. New data from upcoming observation campaigns will be inserted in the
base. The range of instruments will differ from the observation campaign in Fukui 2003,
but many of them will be the same. At least data from the video camera system, electronic
balance, the optical lidar, POSS and MRR will be included.

The visualization tools will be useful for introducing new students in the laboratory to
weather phenomena. Selected plots can be used to demonstrate how rainfall and snow-
fall events look like in different instruments and then the students can try making plots
themselves. This could be made even easier by adding a graphical web interface to the
system.

Three students of the snowfall team are going to study changes of the Z � R relation against
time by using a moving time window in the instrument data and develop automatic classifi-
cation of snowfall events. Details of their approach have not been decided yet. It is also not
known whether the system will be adopted by the laboratory of River and Environmental
Engineering in Tokyo University [24] or some other group.

58

Chapter 9

Conclusion

The Wakasa database project was started out of a need to get more convenient and uniform
access to the measurement data recorded by a large number of instruments. The design
succeeded in this main goal. Accessing the data is very similar for all instruments included
in the database and users don’t have to worry about esoteric file formats any more. The
system supports multiple parameter sets and multiple simultaneous observation sites for all
the instruments.

The visualization tools proved to be useful already during the prototype phase of the project.
Although simple, in many cases they were more useful for real work than the software
provided by the manufacturers of the instruments. They saved a lot of time compared to old
methods that had been used in the laboratory to make similar kinds of plots.

Reliability of the PostgreSQL database engine was very good during the whole project, not
a single crash or loss of data was experienced with the exception of one hard disk failing
in the database server. Some performance issues were encountered and solving them took
a significant amount of time. When working with databases even tiny details can affect
the performance by orders of magnitude. Profiling commands for SQL queries can be very
useful to determine bottlenecks in the database engine.

After finding the reason for poor performance and making appropriate fixes the system is
fast enough for current use. Some of the visualization tools are still a bit slow when plotting
longer time ranges, but that is mainly due to converting database rows to Python matrices
at the client end. Load on the database server is low and no scalability issues are foreseen.
However, new experiments and statistical analysis algorithms may use a very large number
of small queries or more complex queries which have not been tested yet. In particular,
matching data elements from different instruments against each other with a selected time
resolution requires going through the values with a script and doing extra processing.

The snowfall team in Kanazawa University didn’t have many legacy tools fixed to old file
formats so moving the data to a database was not a problem. However, that is not always
the case. The database have been designed so that it would be easy to add new tables and
devices, but if there are already extensive analysis tools for a certain instrument using a
specific data format, it may be not be convenient or even possible to change them. New
instruments made at the laboratories themselves are the easiest case because they could be
configured to record all data directly to the database.

The concept of using a database as a back end storage for raw measurement data is new

59

9. Conclusion 60

for most researchers which are not doing database research themselves, but it will probably
become more popular in the future. Open source database engines already deliver good
performance for even large data sets and have moved database technology from the world of
database experts to any advanced user — to a standard tool which more and more software
is built on.

The Wakasa database project project didn’t develop new database technology or new meth-
ods for snowfall analysis. However, it provides a convenient platform for working on new
algorithms, especially statistical algorithms requiring access to large datasets and several
measurement instruments. It will be interesting to see which kind of research will be based
on the system in the future and whether it will be adapted and extended to new projects.

Chapter 10

Acknowledgements

The author would like to thank Fukui airport research and planning section for having the
possibility to use Fukui airport facilities during the Wakasa observation campaign.

The project would not have been possible without the exchange agreement between Helsinki
University of Technology and Kanazawa University. Scholarships to support living in Japan
were received from the Association of International Exchange, Japan (part of the Japan Stu-
dent Services Organization [53] since April 1, 2004) and Helsinki University of Technology.

61

Appendix A

Database Table Layout

Diagram of the table and column structure of the database are presented in this chapter.
Standard version is shown in Figures A.1 and A.2, array version is shown in Figures A.3
and A.4. The only differences are in MRR radar and optical lidar (Ceilometer) table layouts.

Each table is represented as a rectangle with a list of columns and column data types. The
primary key of each table is listed at the bottom of the rectangle. Dependencies between
tables are represented with arrows pointing to the referred column. The referring columns
are additionally marked with letters “FK” (Foreign Key).

For some columns, a default value is specified after a “=” sign. If not specified, the default
value is NULL. More detailed descriptions of the purpose and semantics of each column
can be found in the Wakasa Database User’s Guide [47]. Column data types are described
in PostgreSQL documentation [37].

62

A.1. Standard version 63

A.1 Standard version

balance
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 rain_rate: REAL
 weight: REAL
 stable_num: INTEGER
 stable_accum: REAL
 unstable_num: INTEGER
 unstable_accum: REAL
 (PRIMARY KEY (time_utc, paramset))

balance_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 box_area: REAL
 weight_resolution: REAL

ceilo
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 obs_id: BIGSERIAL
 detection_status: SMALLINT
 alarm_status: SMALLINT
 alarm_code: CHARACTER(8)
 cloudbases: SMALLINT
 cb_height_1: SMALLINT
 cb_height_2: SMALLINT
 cb_height_3: SMALLINT
 vertical_visibility: SMALLINT
 highest_signal: SMALLINT
 laser_energy: SMALLINT
 laser_temperature: SMALLINT
 receiver_sensitivity: SMALLINT
 window_contamination: SMALLINT
 tilt_angle: SMALLINT
 background_light: SMALLINT
 measurement_mode: CHARACTER(1)
 measurement_params: CHARACTER(6)
 bs_sum: REAL
 (PRIMARY KEY (time_utc, paramset))

ceilo_backscatter
 FK obs_id: BIGINT
 height: SMALLINT
 bs: REAL
 (PRIMARY KEY (obs_id, height))

ceilo_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

heatsensor
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 air_temperature: REAL
 heat_melting_snow: REAL
 heat_warming_sensor_board: REAL
 snowparticles: INTEGER
 water_detection: INTEGER
 snow_detection: INTEGER
 snow_accretion_detection: INTEGER
 freezing_detection: INTEGER
 (PRIMARY KEY (time_utc, paramset))

heatsensor_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 heat_resolution: REAL

mrr
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 obs_id: BIGSERIAL
 (PRIMARY KEY (time_utc, paramset))

mrr_data
 FK obs_id: BIGINT
 height: SMALLINT
 z: REAL
 rr: REAL
 lwc: REAL
 w: REAL
 f: TEXT
 n: TEXT
 (PRIMARY KEY (obs_id, height))

mrr_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 height_resolution: INTEGER
 height_steps: INTEGER = '30'
 calibration_spectra: BYTEA

mrr_raw
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 obs_id: BIGSERIAL
 (PRIMARY KEY (time_utc, paramset))

mrr_raw_data
 FK obs_id: BIGINT
 height: SMALLINT
 f: TEXT
 (PRIMARY KEY (obs_id, height))

Figure A.1: Wakasa table layout, standard version, page 1(2)

A.1. Standard version 64

poss
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 mean_freq: REAL
 freq_stdev: REAL
 mode_freq: REAL
 mode_power: REAL
 total_power: REAL
 temperature: REAL
 above_noise_percentage: SMALLINT
 precip_type: CHARACTER(1)
 precip_intensity_code: SMALLINT
 precip_accum: REAL
 precip_rate: REAL
 error_code: CHARACTER(4)
 fft: TEXT
 (PRIMARY KEY (time_utc, paramset))

poss_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

radiometer
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 elevation: REAL
 obs_id: BIGSERIAL
 (PRIMARY KEY (time_utc, paramset))

radiometer_metsensors
 PK FK obs_id: BIGINT
 temperature: REAL
 humidity: REAL
 air_pres: REAL
 rain_flag: SMALLINT

radiometer_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 measured_frequencies: TEXT
 integration_times: TEXT
 orientation: INTEGERradiometer_tbb

 FK obs_id: BIGINT
 frequency: NUMERIC(6,3)
 tbb: REAL
 (PRIMARY KEY (obs_id, frequency))

sounding
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 FK sonde_id: BIGINT
 height: REAL
 air_pres: REAL
 temperature: REAL
 humidity: REAL
 dewpoint: REAL
 wind_dir: REAL
 wind_speed: REAL
 flags: CHARACTER VARYING(100)
 (PRIMARY KEY (time_utc, paramset))

sounding_launches
 PK sonde_id: BIGSERIAL
 launch_time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 end_time_utc: TIMESTAMP WITHOUT TIME ZONE
 serial_number: CHARACTER VARYING(100)
 gc_correction_pressure: REAL
 gc_correction_temperature: REAL
 gc_correction_humidity: REAL
 computing_density: INTEGER
 balloon_weight: INTEGER
 lifting_force: INTEGER
 termination_mode: SMALLINT
 weather_condition: SMALLINT

sounding_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

videodata
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 frames: INTEGER
 frames_with_flakes: INTEGER
 flakes_diameter: INTEGER
 flakes_velocity: INTEGER
 diameter: REAL
 velocity: REAL
 nzero: REAL
 lambda: REAL
 kappa: REAL
 epsilon: REAL
 rain_rate: REAL
 density: REAL
 density_variance: REAL
 diameter_distribution: TEXT
 velocity_distribution: TEXT
 (PRIMARY KEY (time_utc, paramset))

videodata_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 area_width: REAL
 area_height: REAL
 area_depth: REAL
 volume_bias_correction: REAL = '0'
 diameter_distr_steps: INTEGER = '201'
 diameter_distr_resolution: REAL = '0.00025'
 velocity_distr_steps: INTEGER = '201'
 velocity_distr_resolution: REAL = '0.015'

weatherstation
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 wind_dir: REAL
 wind_speed: REAL
 temperature: REAL
 humidity: REAL
 rain_rate: REAL
 solar_rad: REAL
 air_pres: REAL
 (PRIMARY KEY (time_utc, paramset))

weatherstation_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 wind_dir_resolution: REAL
 wind_speed_resolution: REAL
 temperature_resolution: REAL
 humidity_resolution: REAL
 rain_rate_resolution: REAL
 solar_rad_resolution: REAL
 air_pres_resolution: REAL

Figure A.2: Wakasa table layout, standard version, page 2(2)

A.2. Array version 65

A.2 Array version

balance
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 rain_rate: REAL
 weight: REAL
 stable_num: INTEGER
 stable_accum: REAL
 unstable_num: INTEGER
 unstable_accum: REAL
 (PRIMARY KEY (time_utc, paramset))

balance_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 box_area: REAL
 weight_resolution: REAL

ceilo_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

heatsensor
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 air_temperature: REAL
 heat_melting_snow: REAL
 heat_warming_sensor_board: REAL
 snowparticles: INTEGER
 water_detection: INTEGER
 snow_detection: INTEGER
 snow_accretion_detection: INTEGER
 freezing_detection: INTEGER
 (PRIMARY KEY (time_utc, paramset))

heatsensor_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 heat_resolution: REAL

mrr_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 height_resolution: INTEGER
 height_steps: INTEGER = '30'
 calibration_spectra: BYTEA

mrr_raw
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 f: TEXT[]
 (PRIMARY KEY (time_utc, paramset))

mrr
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 z: REAL[]
 rr: REAL[]
 lwc: REAL[]
 w: REAL[]
 f: TEXT[]
 n: TEXT[]
 (PRIMARY KEY (time_utc, paramset))

ceilo
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 detection_status: SMALLINT
 alarm_status: SMALLINT
 alarm_code: CHARACTER(8)
 cloudbases: SMALLINT
 cb_height_1: SMALLINT
 cb_height_2: SMALLINT
 cb_height_3: SMALLINT
 vertical_visibility: SMALLINT
 highest_signal: SMALLINT
 laser_energy: SMALLINT
 laser_temperature: SMALLINT
 receiver_sensitivity: SMALLINT
 window_contamination: SMALLINT
 tilt_angle: SMALLINT
 background_light: SMALLINT
 measurement_mode: CHARACTER(1)
 measurement_params: CHARACTER(6)
 bs_sum: REAL
 bs: REAL[]
 (PRIMARY KEY (time_utc, paramset))

Figure A.3: Wakasa table layout, array version, page 1(2)

A.2. Array version 66

poss
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 mean_freq: REAL
 freq_stdev: REAL
 mode_freq: REAL
 mode_power: REAL
 total_power: REAL
 temperature: REAL
 above_noise_percentage: SMALLINT
 precip_type: CHARACTER(1)
 precip_intensity_code: SMALLINT
 precip_accum: REAL
 precip_rate: REAL
 error_code: CHARACTER(4)
 fft: TEXT
 (PRIMARY KEY (time_utc, paramset))

poss_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

radiometer
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 elevation: REAL
 obs_id: BIGSERIAL
 (PRIMARY KEY (time_utc, paramset))

radiometer_metsensors
 PK FK obs_id: BIGINT
 temperature: REAL
 humidity: REAL
 air_pres: REAL
 rain_flag: SMALLINT

radiometer_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 measured_frequencies: TEXT
 integration_times: TEXT
 orientation: INTEGERradiometer_tbb

 FK obs_id: BIGINT
 frequency: NUMERIC(6,3)
 tbb: REAL
 (PRIMARY KEY (obs_id, frequency))

sounding
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 FK sonde_id: BIGINT
 height: REAL
 air_pres: REAL
 temperature: REAL
 humidity: REAL
 dewpoint: REAL
 wind_dir: REAL
 wind_speed: REAL
 flags: CHARACTER VARYING(100)
 (PRIMARY KEY (time_utc, paramset))

sounding_launches
 PK sonde_id: BIGSERIAL
 launch_time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 end_time_utc: TIMESTAMP WITHOUT TIME ZONE
 serial_number: CHARACTER VARYING(100)
 gc_correction_pressure: REAL
 gc_correction_temperature: REAL
 gc_correction_humidity: REAL
 computing_density: INTEGER
 balloon_weight: INTEGER
 lifting_force: INTEGER
 termination_mode: SMALLINT
 weather_condition: SMALLINT

sounding_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255)
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL

videodata
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 frames: INTEGER
 frames_with_flakes: INTEGER
 flakes_diameter: INTEGER
 flakes_velocity: INTEGER
 diameter: REAL
 velocity: REAL
 nzero: REAL
 lambda: REAL
 kappa: REAL
 epsilon: REAL
 rain_rate: REAL
 density: REAL
 density_variance: REAL
 diameter_distribution: TEXT
 velocity_distribution: TEXT
 (PRIMARY KEY (time_utc, paramset))

videodata_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 area_width: REAL
 area_height: REAL
 area_depth: REAL
 volume_bias_correction: REAL = '0'
 diameter_distr_steps: INTEGER = '201'
 diameter_distr_resolution: REAL = '0.00025'
 velocity_distr_steps: INTEGER = '201'
 velocity_distr_resolution: REAL = '0.015'

weatherstation
 time_utc: TIMESTAMP WITHOUT TIME ZONE = '1970-01-01 00:00:00+00'
 FK paramset: INTEGER = '0'
 reliability: INTEGER
 wind_dir: REAL
 wind_speed: REAL
 temperature: REAL
 humidity: REAL
 rain_rate: REAL
 solar_rad: REAL
 air_pres: REAL
 (PRIMARY KEY (time_utc, paramset))

weatherstation_parameters
 PK paramset_id: SERIAL
 name: CHARACTER VARYING(255) = ''
 creation_time: TIMESTAMP WITHOUT TIME ZONE = 'now'
 location_latitude: REAL
 location_longitude: REAL
 location_elevation: REAL
 location_utc_offset: SMALLINT = '0'
 instrument_description: CHARACTER VARYING(255)
 time_resolution: REAL
 wind_dir_resolution: REAL
 wind_speed_resolution: REAL
 temperature_resolution: REAL
 humidity_resolution: REAL
 rain_rate_resolution: REAL
 solar_rad_resolution: REAL
 air_pres_resolution: REAL

Figure A.4: Wakasa table layout, array version, page 2(2)

Appendix B

Detailed Results of Performance
Measurements

The results of performance measurements concerning data visualization and export are pre-
sented in detail in this appendix. See Chapter 6 for system setup, general description of
the performance measurements and analysis of the most important results. Results of data
insertion performance are also presented there.

B.1 Graph Types, Command Lines and SQL Queries

The full set of graph types used in the visualization tool performance measurements is listed
in Table B.1.

67

B.1. Graph Types, Command Lines and SQL Queries 68

Table B.1: Graph types used for visualization tool performance
measurements.

Graph name Instrument Type of visualization

balance Electronic balance Snowfall rate
heat1 Heat sensor Snow detection flag
heat2 Heat sensor Heat needed to melt snow
lidar1 Optical lidar Lowest cloud base height
lidar2 Optical lidar Integrated backscatter 0–3000 m
lidar3 Optical lidar Backscatter map 0–3000 m, 30 m

height resolution
mrr1 MRR-2 radar Integrated reflectivity 0–3000 m
mrr2 MRR-2 radar Reflectivity map 0–3000 m, 120 m

height resolution
poss POSS radar Integrated reflectivity
wvr Radiometer WVR1100 Brightness temperature of frequency

23.8 GHz
video1 Video observation system Snowflake diameter distribution averaged

over time
video2 Video observation system Snowflake diameter distribution against

time (map)
video3 Video observation system Snowflake number concentration
weather1 Weatherstation AWS Air temperature
weather2 Weatherstation AWS Wind direction

Command lines for producing each of these graphs are shown in Table B.2. The equivalent
SQL queries for retrieving the necessary data from the database are shown in Table B.3.
These queries were used in the performance measurements of exporting data. The visual-
ization tools do a couple of additional queries to retrieve the number of parameter set and
time zone of the instrument location, but they are insignificant for the total performance
of the system when retrieving more than a few minutes worth of measurement data at one
time.

B.1. Graph Types, Command Lines and SQL Queries 69

Table B.2: Visualization tool command lines equivalent to graph
types of Table B.1. Start and end times of each plot were selected
at random by the measurement script.

Graph name Command line

balance ./plotbalance.py -p wakasa2003
heat1 ./plotheatsensor.py -p wakasa2003 -d snow_flag
heat2 ./plotheatsensor.py -p wakasa2003 -d heat_melting
lidar1 ./plotceilo.py -p wakasa2003 -d lowestcb
lidar2 ./plotceilo.py -p wakasa2003 -d bsint --height=0:3000
lidar3 ./plotceilo.py -p wakasa2003 -d bsmap --height=0:3000

--centerheights
mrr1 ./plotmrr.py -p wakasa2003_120m -d zint --height=0:3000
mrr2 ./plotmrr.py -p wakasa2003_120m -d zmap --height=0:3000

--centerheights
poss ./plotposs.py -p wakasa2003 -d reflectivity
wvr ./plotradiometer.py -p wakasa2003-wvr -d ’bt(23.8)’
video1 ./plotvideo.py -p wakasa2003 -d ddistr
video2 ./plotvideo.py -p wakasa2003 -d ddistrmap
video3 ./plotvideo.py -p wakasa2003 -d number
weather1 ./plotweather.py -p wakasa2003 -d temperature
weather2 ./plotweather.py -p wakasa2003 -d wind_dir

The following common part was added at the end of each command line:
-l --timeres=60
-c plotter.conf.noarrays
(-c plotter.conf.arrays for the array version of the base)
--gpcmdfile=/tmp/perftest-plot.cmd
--gpdatafile=/tmp/perftest-plot.data
--outputfile=/tmp/perftest-plot.eps
--starttime=’<starttime>’
--endtime=’<endtime>’
1>logs/<graphtype>.stdout
2>logs/<graphtype>.stderr

B.1. Graph Types, Command Lines and SQL Queries 70

Table B.3: SQL queries equivalent to graph types of Table B.1.
Start and end times of each query were selected at random by the
measurement script.

Graph name Query

balance SELECT time_utc, rain_rate FROM balance
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND rain_rate IS NOT NULL
ORDER by time_utc;

heat1 SELECT time_utc, snow_detection FROM heatsensor
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
ORDER by time_utc;

heat2 SELECT time_utc, heat_melting_snow FROM heatsensor
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND heat_melting_snow IS NOT NULL
ORDER by time_utc;

lidar1 SELECT time_utc, cb_height_1 FROM ceilo
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND cb_height_1 IS NOT NULL
ORDER by time_utc;

lidar2
(standard
version)

SELECT time_utc, height, bs FROM ceilo,
ceilo_backscatter

WHERE ceilo.paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND ceilo.obs_id = ceilo_backscatter.obs_id
AND ceilo_backscatter.height > ’0’
AND ceilo_backscatter.height <= ’3000’
ORDER by time_utc, height;

lidar2
(array
version)

SELECT time_utc, bs[1:100] FROM ceilo
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
ORDER by time_utc;

lidar3 Equivalent to the query of graph lidar2.

(Continued on next page)

B.1. Graph Types, Command Lines and SQL Queries 71

(Continued from previous page)

Graph name Query

mrr1
(standard
version

SELECT time_utc, height, z FROM mrr, mrr_data
WHERE mrr.paramset = ’2’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND mrr.obs_id = mrr_data.obs_id
AND mrr_data.height > ’0’
AND mrr_data.height <= ’3000’
ORDER by time_utc, height;

mrr1
(array
version)

SELECT time_utc, z[1:25] FROM mrr
WHERE paramset = ’2’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
ORDER by time_utc;

mrr2 Equivalent to the query of graph mrr1.

poss SELECT time_utc, total_power FROM poss
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
ORDER by time_utc;

wvr SELECT time_utc, tbb FROM radiometer, radiometer_tbb
WHERE radiometer.paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND radiometer.obs_id = radiometer_tbb.obs_id
AND radiometer_tbb.frequency = 23.8::numeric
AND tbb IS NOT NULL
ORDER by time_utc;

video1 SELECT time_utc, frames, diameter_distribution FROM
videodata

WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND diameter_distribution IS NOT NULL
ORDER by time_utc;

video2 Equivalent to the query of graph video1.

video3 SELECT time_utc, frames, flakes_diameter FROM videodata
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND flakes_diameter IS NOT NULL
ORDER by time_utc;

(Continued on next page)

B.1. Graph Types, Command Lines and SQL Queries 72

(Continued from previous page)

Graph name Query

weather1 SELECT time_utc, temperature FROM weatherstation
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND temperature IS NOT NULL
ORDER by time_utc;

weather2 SELECT time_utc, wind_dir FROM weatherstation
WHERE paramset = ’1’
AND time_utc >= ’<startdate>’
AND time_utc <= ’<enddate>’
AND wind_dir IS NOT NULL
ORDER by time_utc;

B.2. Visualization Tools 73

B.2 Visualization Tools

Visualization tool performance results for each of the graphs in Table B.1 are presented in
Tables B.4 through B.7.

Table B.4: Performance of visualization tools, standard version of
the database, system not functioning properly. All execution times
in seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 55
�

0 � 02 0 � 58
�

0 � 02 0 � 67
�

0 � 02 1 � 08
�

0 � 02 2 � 63
�

0 � 02 3 � 74
�

0 � 02

heat1 0 � 26
�

0 � 04 0 � 25
�

0 � 04 0 � 26
�

0 � 04 0 � 28
�

0 � 04 0 � 33
�

0 � 01 0 � 35
�

0 � 00

heat2 0 � 24
�

0 � 04 0 � 26
�

0 � 04 0 � 25
�

0 � 04 0 � 27
�

0 � 05 0 � 33
�

0 � 02 0 � 36
�

0 � 00

lidar1 0 � 39
�

0 � 03 0 � 41
�

0 � 02 0 � 42
�

0 � 01 0 � 49
�

0 � 04 0 � 81
�

0 � 12 0 � 97
�

0 � 14

lidar2 38 � 78
�

0 � 41 39 � 59
�

0 � 20 43 � 51
�

0 � 21 58 � 64
�

0 � 25 119 � 63
�

0 � 32 160 � 54
�

0 � 39

lidar3 38 � 74
�

0 � 28 39 � 86
�

0 � 22 44 � 17
�

0 � 24 61 � 53
�

0 � 26 131 � 25
�

0 � 31 177 � 90
�

0 � 50

mrr1 8 � 83
�

1 � 03 8 � 72
�

0 � 01 9 � 02
�

0 � 02 10 � 21
�

0 � 03 15 � 08
�

0 � 11 18 � 29
�

0 � 18

mrr2 8 � 66
�

0 � 02 8 � 76
�

0 � 01 9 � 21
�

0 � 02 10 � 93
�

0 � 07 17 � 98
�

0 � 14 22 � 58
�

0 � 22

poss 0 � 36
�

0 � 05 0 � 35
�

0 � 00 0 � 37
�

0 � 00 0 � 46
�

0 � 00 0 � 81
�

0 � 00 1 � 04
�

0 � 00

wvr 0 � 57
�

0 � 08 0 � 57
�

0 � 00 0 � 59
�

0 � 03 0 � 70
�

0 � 06 1 � 16
�

0 � 12 1 � 46
�

0 � 16

video1 0 � 39
�

0 � 04 0 � 41
�

0 � 04 0 � 46
�

0 � 04 0 � 67
�

0 � 08 1 � 48
�

0 � 24 1 � 97
�

0 � 26

video2 0 � 42
�

0 � 06 0 � 61
�

0 � 08 1 � 25
�

0 � 26 3 � 55
�

1 � 29 14 � 70
�

3 � 05 18 � 75
�

3 � 13

video3 0 � 39
�

0 � 08 0 � 41
�

0 � 09 0 � 41
�

0 � 03 0 � 52
�

0 � 08 1 � 00
�

0 � 18 0 � 97
�

0 � 21

weather1 0 � 30
�

0 � 06 0 � 31
�

0 � 00 0 � 32
�

0 � 01 0 � 37
�

0 � 06 0 � 56
�

0 � 23 0 � 63
�

0 � 28

weather2 0 � 32
�

0 � 05 0 � 31
�

0 � 02 0 � 32
�

0 � 02 0 � 34
�

0 � 03 0 � 51
�

0 � 18 0 � 64
�

0 � 27

Table B.5: Performance of visualization tools, array version of the
database, system not functioning properly. All execution times in
seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 56
�

0 � 07 0 � 58
�

0 � 02 0 � 67
�

0 � 02 1 � 07
�

0 � 02 2 � 62
�

0 � 02 3 � 75
�

0 � 02

heat1 0 � 25
�

0 � 04 0 � 25
�

0 � 04 0 � 27
�

0 � 04 0 � 26
�

0 � 04 0 � 33
�

0 � 01 0 � 35
�

0 � 00

heat2 0 � 25
�

0 � 04 0 � 26
�

0 � 04 0 � 25
�

0 � 04 0 � 27
�

0 � 04 0 � 34
�

0 � 02 0 � 36
�

0 � 00

lidar1 0 � 68
�

0 � 03 0 � 69
�

0 � 02 0 � 71
�

0 � 03 0 � 78
�

0 � 04 1 � 07
�

0 � 14 1 � 24
�

0 � 16

lidar2 0 � 83
�

0 � 01 1 � 19
�

0 � 02 2 � 71
�

0 � 05 8 � 82
�

0 � 17 33 � 19
�

0 � 41 49 � 33
�

0 � 40

lidar3 0 � 87
�

0 � 01 1 � 37
�

0 � 02 3 � 41
�

0 � 05 11 � 55
�

0 � 20 44 � 29
�

0 � 39 66 � 27
�

0 � 45

mrr1 0 � 62
�

0 � 00 0 � 65
�

0 � 00 0 � 79
�

0 � 00 1 � 31
�

0 � 00 3 � 44
�

0 � 01 4 � 84
�

0 � 02

mrr2 0 � 64
�

0 � 00 0 � 70
�

0 � 00 0 � 97
�

0 � 00 2 � 04
�

0 � 02 6 � 32
�

0 � 04 9 � 17
�

0 � 04

poss 0 � 34
�

0 � 00 0 � 35
�

0 � 00 0 � 37
�

0 � 00 0 � 46
�

0 � 00 0 � 81
�

0 � 00 1 � 04
�

0 � 00

wvr 0 � 55
�

0 � 02 0 � 56
�

0 � 02 0 � 60
�

0 � 00 0 � 68
�

0 � 08 1 � 17
�

0 � 08 1 � 46
�

0 � 15

video1 0 � 39
�

0 � 04 0 � 41
�

0 � 03 0 � 47
�

0 � 02 0 � 68
�

0 � 07 1 � 47
�

0 � 24 1 � 83
�

0 � 26

video2 0 � 44
�

0 � 04 0 � 56
�

0 � 12 1 � 22
�

0 � 30 3 � 37
�

1 � 15 13 � 06
�

2 � 47 19 � 14
�

2 � 86

video3 0 � 37
�

0 � 03 0 � 38
�

0 � 03 0 � 40
�

0 � 04 0 � 48
�

0 � 02 0 � 73
�

0 � 08 0 � 86
�

0 � 07

weather1 0 � 29
�

0 � 03 0 � 31
�

0 � 00 0 � 31
�

0 � 01 0 � 35
�

0 � 05 0 � 45
�

0 � 16 0 � 48
�

0 � 20

weather2 0 � 28
�

0 � 04 0 � 30
�

0 � 01 0 � 31
�

0 � 01 0 � 35
�

0 � 05 0 � 46
�

0 � 16 0 � 60
�

0 � 28

B.2. Visualization Tools 74

Table B.6: Performance of visualization tools, standard version of
the database, after vacuuming. All execution times in seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 29
�

0 � 01 0 � 31
�

0 � 00 0 � 41
�

0 � 02 0 � 82
�

0 � 01 2 � 38
�

0 � 01 3 � 42
�

0 � 01

heat1 0 � 25
�

0 � 04 0 � 24
�

0 � 04 0 � 26
�

0 � 05 0 � 26
�

0 � 05 0 � 34
�

0 � 02 0 � 36
�

0 � 00

heat2 0 � 25
�

0 � 04 0 � 25
�

0 � 04 0 � 26
�

0 � 04 0 � 28
�

0 � 05 0 � 33
�

0 � 01 0 � 35
�

0 � 00

lidar1 0 � 31
�

0 � 06 0 � 31
�

0 � 02 0 � 34
�

0 � 01 0 � 40
�

0 � 05 0 � 71
�

0 � 09 0 � 93
�

0 � 16

lidar2 0 � 65
�

0 � 01 1 � 44
�

0 � 02 4 � 75
�

0 � 05 18 � 07
�

0 � 14 104 � 55
�

1 � 57 139 � 82
�

0 � 52

lidar3 0 � 69
�

0 � 02 1 � 62
�

0 � 02 5 � 44
�

0 � 04 20 � 87
�

0 � 13 116 � 10
�

0 � 91 158 � 45
�

0 � 67

mrr1 0 � 36
�

0 � 01 0 � 44
�

0 � 02 0 � 75
�

0 � 04 1 � 92
�

0 � 09 6 � 57
�

0 � 27 11 � 95
�

4 � 65

mrr2 0 � 37
�

0 � 01 0 � 48
�

0 � 02 0 � 93
�

0 � 04 2 � 62
�

0 � 07 9 � 49
�

0 � 16 17 � 05
�

5 � 13

poss 0 � 29
�

0 � 01 0 � 29
�

0 � 00 0 � 31
�

0 � 00 0 � 40
�

0 � 00 0 � 76
�

0 � 00 0 � 98
�

0 � 00

wvr 0 � 30
�

0 � 02 0 � 30
�

0 � 03 0 � 32
�

0 � 04 0 � 43
�

0 � 06 0 � 90
�

0 � 13 1 � 15
�

0 � 21

video1 0 � 31
�

0 � 04 0 � 33
�

0 � 04 0 � 39
�

0 � 05 0 � 62
�

0 � 06 1 � 35
�

0 � 24 1 � 67
�

0 � 17

video2 0 � 33
�

0 � 07 0 � 48
�

0 � 14 1 � 12
�

0 � 30 3 � 19
�

1 � 31 12 � 53
�

2 � 83 18 � 86
�

2 � 97

video3 0 � 30
�

0 � 04 0 � 31
�

0 � 03 0 � 33
�

0 � 03 0 � 40
�

0 � 03 0 � 65
�

0 � 08 0 � 81
�

0 � 07

weather1 0 � 26
�

0 � 04 0 � 28
�

0 � 03 0 � 30
�

0 � 01 0 � 35
�

0 � 06 0 � 56
�

0 � 24 0 � 53
�

0 � 25

weather2 0 � 25
�

0 � 04 0 � 29
�

0 � 00 0 � 30
�

0 � 02 0 � 32
�

0 � 03 0 � 47
�

0 � 19 0 � 53
�

0 � 21

Table B.7: Performance of visualization tools, array version of the
database, after vacuuming. All execution times in seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 29
�

0 � 01 0 � 31
�

0 � 00 0 � 41
�

0 � 00 0 � 82
�

0 � 00 2 � 38
�

0 � 01 3 � 43
�

0 � 01

heat1 0 � 25
�

0 � 04 0 � 24
�

0 � 04 0 � 25
�

0 � 05 0 � 27
�

0 � 05 0 � 34
�

0 � 02 0 � 36
�

0 � 00

heat2 0 � 23
�

0 � 04 0 � 25
�

0 � 04 0 � 26
�

0 � 04 0 � 28
�

0 � 04 0 � 33
�

0 � 01 0 � 35
�

0 � 00

lidar1 0 � 30
�

0 � 03 0 � 31
�

0 � 02 0 � 33
�

0 � 02 0 � 40
�

0 � 04 0 � 74
�

0 � 11 0 � 91
�

0 � 16

lidar2 0 � 44
�

0 � 00 0 � 82
�

0 � 01 2 � 31
�

0 � 05 8 � 44
�

0 � 21 32 � 79
�

0 � 43 48 � 94
�

0 � 49

lidar3 0 � 49
�

0 � 01 0 � 99
�

0 � 01 3 � 02
�

0 � 05 11 � 20
�

0 � 19 44 � 03
�

0 � 45 66 � 17
�

0 � 50

mrr1 0 � 33
�

0 � 01 0 � 36
�

0 � 01 0 � 50
�

0 � 01 1 � 04
�

0 � 02 3 � 17
�

0 � 04 4 � 57
�

0 � 02

mrr2 0 � 34
�

0 � 00 0 � 41
�

0 � 00 0 � 67
�

0 � 00 1 � 75
�

0 � 02 6 � 09
�

0 � 05 8 � 94
�

0 � 07

poss 0 � 29
�

0 � 00 0 � 29
�

0 � 00 0 � 31
�

0 � 00 0 � 40
�

0 � 00 0 � 75
�

0 � 00 0 � 98
�

0 � 00

wvr 0 � 30
�

0 � 01 0 � 29
�

0 � 04 0 � 32
�

0 � 03 0 � 44
�

0 � 05 0 � 93
�

0 � 05 1 � 23
�

0 � 11

video1 0 � 31
�

0 � 04 0 � 33
�

0 � 04 0 � 39
�

0 � 05 0 � 59
�

0 � 10 1 � 43
�

0 � 21 1 � 75
�

0 � 23

video2 0 � 34
�

0 � 07 0 � 52
�

0 � 10 1 � 15
�

0 � 30 3 � 73
�

0 � 68 13 � 00
�

2 � 65 18 � 66
�

2 � 98

video3 0 � 31
�

0 � 03 0 � 30
�

0 � 04 0 � 33
�

0 � 02 0 � 40
�

0 � 03 0 � 66
�

0 � 08 0 � 79
�

0 � 08

weather1 0 � 27
�

0 � 04 0 � 29
�

0 � 00 0 � 30
�

0 � 02 0 � 34
�

0 � 07 0 � 49
�

0 � 21 0 � 50
�

0 � 22

weather2 0 � 26
�

0 � 04 0 � 29
�

0 � 00 0 � 30
�

0 � 03 0 � 34
�

0 � 05 0 � 48
�

0 � 17 0 � 53
�

0 � 26

B.3. Exporting data 75

B.3 Exporting data

Performance results of exporting the data equivalent to each of the graphs in Table B.1
into a file are presented in Tables B.8 through B.11. The SQL query for graph lidar3 is
identical to the query of graph lidar2, the query for mrr1 is identical to that of mrr2 and
the query for video1 is identical to that of video2. Therefore data export performance is
also identical in these cases and the redundant lines are not shown in the results.

Table B.8: Performance of exporting data, standard version of the
database, system not functioning properly. All execution times in
seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 31
�

0 � 02 0 � 32
�

0 � 02 0 � 32
�

0 � 02 0 � 35
�

0 � 02 0 � 46
�

0 � 02 0 � 67
�

0 � 02

heat1 0 � 05
�

0 � 01 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 05
�

0 � 00

heat2 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 05
�

0 � 00

lidar1 0 � 14
�

0 � 01 0 � 14
�

0 � 01 0 � 14
�

0 � 01 0 � 15
�

0 � 01 0 � 17
�

0 � 01 0 � 19
�

0 � 01

lidar2 40 � 07
�

0 � 64 40 � 18
�

0 � 27 41 � 23
�

0 � 27 44 � 67
�

0 � 30 59 � 67
�

0 � 59 69 � 56
�

0 � 36

mrr1 10 � 79
�

0 � 53 10 � 72
�

0 � 06 10 � 85
�

0 � 10 11 � 14
�

0 � 08 12 � 44
�

0 � 06 13 � 28
�

0 � 06

poss 0 � 11
�

0 � 01 0 � 11
�

0 � 00 0 � 11
�

0 � 00 0 � 11
�

0 � 00 0 � 13
�

0 � 00 0 � 15
�

0 � 00

wvr 0 � 32
�

0 � 05 0 � 31
�

0 � 00 0 � 32
�

0 � 00 0 � 34
�

0 � 01 0 � 41
�

0 � 01 0 � 46
�

0 � 02

video1 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 15
�

0 � 03 0 � 19
�

0 � 04

video3 0 � 12
�

0 � 03 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 14
�

0 � 00 0 � 14
�

0 � 00

weather1 0 � 07
�

0 � 01 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 07
�

0 � 00 0 � 08
�

0 � 01 0 � 08
�

0 � 02

weather2 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 07
�

0 � 00 0 � 07
�

0 � 01 0 � 08
�

0 � 02

Table B.9: Performance of exporting data, array version of the
database, system not functioning properly. All execution times in
seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 32
�

0 � 06 0 � 31
�

0 � 02 0 � 32
�

0 � 02 0 � 34
�

0 � 02 0 � 47
�

0 � 01 0 � 67
�

0 � 01

heat1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 05
�

0 � 00

heat2 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 05
�

0 � 00

lidar1 0 � 42
�

0 � 01 0 � 42
�

0 � 01 0 � 42
�

0 � 01 0 � 42
�

0 � 01 0 � 45
�

0 � 01 0 � 46
�

0 � 01

lidar2 0 � 42
�

0 � 01 0 � 43
�

0 � 01 0 � 48
�

0 � 01 0 � 66
�

0 � 01 1 � 46
�

0 � 02 1 � 96
�

0 � 03

mrr1 0 � 33
�

0 � 00 0 � 33
�

0 � 00 0 � 34
�

0 � 00 0 � 36
�

0 � 00 0 � 43
�

0 � 00 0 � 49
�

0 � 00

poss 0 � 11
�

0 � 00 0 � 11
�

0 � 00 0 � 11
�

0 � 00 0 � 11
�

0 � 00 0 � 13
�

0 � 00 0 � 15
�

0 � 00

wvr 0 � 31
�

0 � 00 0 � 31
�

0 � 00 0 � 32
�

0 � 00 0 � 34
�

0 � 00 0 � 40
�

0 � 02 0 � 45
�

0 � 03

video1 0 � 11
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 15
�

0 � 00 0 � 19
�

0 � 04

video3 0 � 11
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 12
�

0 � 00 0 � 14
�

0 � 01 0 � 15
�

0 � 01

weather1 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 07
�

0 � 00 0 � 07
�

0 � 01 0 � 09
�

0 � 02

weather2 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 06
�

0 � 00 0 � 07
�

0 � 00 0 � 07
�

0 � 01 0 � 08
�

0 � 01

B.3. Exporting data 76

Table B.10: Performance of exporting data, standard version of the
database, after vacuuming. All execution times in seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 05
�

0 � 03 0 � 04
�

0 � 01 0 � 05
�

0 � 01 0 � 13
�

0 � 12 0 � 22
�

0 � 00 0 � 31
�

0 � 00

heat1 0 � 04
�

0 � 02 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00

heat2 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00

lidar1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 09
�

0 � 06 0 � 14
�

0 � 01 0 � 16
�

0 � 01

lidar2 0 � 11
�

0 � 02 0 � 24
�

0 � 03 0 � 67
�

0 � 04 2 � 44
�

0 � 13 44 � 92
�

1 � 30 48 � 66
�

0 � 77

mrr1 0 � 07
�

0 � 01 0 � 09
�

0 � 02 0 � 17
�

0 � 03 0 � 43
�

0 � 05 1 � 49
�

0 � 17 4 � 35
�

4 � 70

poss 0 � 04
�

0 � 01 0 � 04
�

0 � 01 0 � 04
�

0 � 00 0 � 06
�

0 � 03 0 � 10
�

0 � 00 0 � 12
�

0 � 00

wvr 0 � 05
�

0 � 01 0 � 04
�

0 � 01 0 � 05
�

0 � 01 0 � 24
�

0 � 01 0 � 32
�

0 � 02 0 � 36
�

0 � 01

video1 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 09
�

0 � 01 0 � 11
�

0 � 01

video3 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 08
�

0 � 02 0 � 09
�

0 � 00

weather1 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 01 0 � 06
�

0 � 01 0 � 06
�

0 � 01

weather2 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 01 0 � 06
�

0 � 01 0 � 06
�

0 � 02

Table B.11: Performance of exporting data, array version of the
database, after vacuuming. All execution times in seconds.

Graph 4 min 15 min 1 h 4 h 16 h 24 h

balance 0 � 05
�

0 � 03 0 � 05
�

0 � 02 0 � 05
�

0 � 01 0 � 10
�

0 � 07 0 � 22
�

0 � 00 0 � 31
�

0 � 00

heat1 0 � 04
�

0 � 01 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00

heat2 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00

lidar1 0 � 04
�

0 � 01 0 � 04
�

0 � 00 0 � 04
�

0 � 01 0 � 06
�

0 � 01 0 � 27
�

0 � 20 0 � 47
�

0 � 01

lidar2 0 � 04
�

0 � 00 0 � 05
�

0 � 00 0 � 10
�

0 � 00 0 � 28
�

0 � 01 1 � 27
�

0 � 18 1 � 89
�

0 � 02

mrr1 0 � 04
�

0 � 01 0 � 04
�

0 � 01 0 � 05
�

0 � 01 0 � 07
�

0 � 01 0 � 16
�

0 � 03 0 � 22
�

0 � 05

poss 0 � 04
�

0 � 01 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 06
�

0 � 02 0 � 10
�

0 � 00 0 � 12
�

0 � 00

wvr 0 � 05
�

0 � 02 0 � 05
�

0 � 01 0 � 05
�

0 � 01 0 � 24
�

0 � 00 0 � 32
�

0 � 02 0 � 36
�

0 � 01

video1 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 05
�

0 � 03 0 � 10
�

0 � 01 0 � 11
�

0 � 01

video3 0 � 04
�

0 � 01 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 08
�

0 � 01 0 � 09
�

0 � 00

weather1 0 � 04
�

0 � 01 0 � 04
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 01 0 � 06
�

0 � 01 0 � 06
�

0 � 01

weather2 0 � 03
�

0 � 00 0 � 03
�

0 � 00 0 � 04
�

0 � 00 0 � 04
�

0 � 01 0 � 06
�

0 � 01 0 � 06
�

0 � 01

Appendix C

Visualization examples

The visualization tools are a set of command line scripts which can be used to see graph-
ically the data stored in the database. The scripts retrieve the data from the base and do
necessary preprocessing, the actual output is produced by the Gnuplot plotting tool [43].
There is one visualization script for each type of instrument and they accept various pa-
rameters to select data type, time range and type of plot. Time resolution, smoothing using
moving average and other options can also be selected by the user. This appendix presents
some examples and the effect of a few important command line options to give an overview
of the visualization tool capabilities. For a complete description, see the Wakasa Database
User’s Guide [47].

Simplest type of graph is a two dimensional line or bar graph which is suitable for plotting a
single measurement value against time. This type of graph is available for most instruments.
For electronic balance the only available graph is precipitation rate, but in most other cases
several different types of data can be plotted. For example in the case of weather station,
the user can select between temperature, humidity, wind direction, wind speed, air pressure,
solar radiation and rain rate plots. Time resolution adjustment and smoothing are useful
for eliminating constant small variations in values. Figure C.1 shows an example of pre-
cipitation rate plot using 10 second time resolution (maximum provided by the device) and
Figure C.2 shows the same time range with one minute time resolution and smoothing by 3
minute moving average. The y axis range in Figure C.2 is forced to same than in Figure C.1
to make comparison easier.

For radio soundings it is more useful to plot values against height than time. Figure C.3
shows how wind direction changes with height during one radio sounding launch. For
instruments such as the optical lidar which produce a height spectra of values, color map
plots are available. One such plot for the optical lidar data was shown in Figure 5.1 and
another one for MRR radar data is presented in Figure C.4. In this case, the user needs to
manually adjust the color range and point size to produce a smooth color map without white
space between the points. This is a limitation of the Gnuplot plotting tool. The white areas
seen in the graph are actual gaps in MRR data.

The video camera based observation system measures snowflake size and velocity distribu-
tions. The visualization tools allow to plot the distributions either as a bar graph averaged
over a certain time period or as a color map plot showing the change of one minute distri-
butions against time. Figures C.5 and C.6 show an example of diameter distribution plotted
using these two methods for the same time range.

77

C. Visualization examples 78

-10

-5

 0

 5

 10

 15

 20

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

P
re

ci
pi

ta
tio

n
ra

te
 [m

m
/h

]

Time [h]

Precipitation rate from electronic balance

Figure C.1: Example output of plotbalance.py. This plot was produced
using the following command line: ./plotbalance.py -p wakasa2003 -s
"2003-01-28 14:00:00+09" -e "2003-01-28 22:00:00+09" -l

-10

-5

 0

 5

 10

 15

 20

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

P
re

ci
pi

ta
tio

n
ra

te
 [m

m
/h

]

Time [h]

Precipitation rate from electronic balance

Figure C.2: Example output of plotbalance.py. This plot was produced
using the following command line: ./plotbalance.py -p wakasa2003
-s "2003-01-28 14:00:00+09" -e "2003-01-28 22:00:00+09" -l
--timeres=60 --avg=3 --yrange="-10:20"

C. Visualization examples 79

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

W
in

d
di

re
ct

io
n

[d
eg

re
es

]

Height [m]

Wind direction by radiosonde (2003-01-26 23:33:00 - 2003-01-27 00:07:10 UTC)

Figure C.3: Example output of plotsonde.py. This plot was produced using
the following command line: ./plotsonde.py -p wakasa2003-fukui
-d wind_dir -s "2003-01-27 08:00:00+09" -e "2003-01-27
10:00:00+09" --xrange=0:10000 --yrange=0:360

-10

-5

 0

 5

 10

 15

 20

 25

 30

R
ef

le
ct

iv
ity

 [d
B

Z
]

MRR reflectivity

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time [h]

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

H
ei

gh
t [

m
]

Figure C.4: Example output of plotmrr.py. This plot was produced using
the following command line: ./plotmrr.py -p wakasa2003_60m -d zmap
-s "2003-01-28 14:00:00+09" -e "2003-01-28 22:00:00+09" -l
--timeres=60 --centerheights --cbrange=-10:30 --pointsize=1.7

C. Visualization examples 80

 0

 50000

 100000

 150000

 200000

 250000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

[1
/(

m
3 *m

/s
)]

Velocity [m/s]

Snowflake velocity distribution during 2003-01-28 05:00:00 - 2003-01-28 13:00:00 (UTC)

Figure C.5: Example output of plotvideo.py. This plot was produced using
the following command line: ./plotvideo.py -p wakasa2003 -d vdistr
-s "2003-01-28 14:00:00+09" -e "2003-01-28 22:00:00+09" -l

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

[1
/(

m
3 *m

/s
)]

Snowflake velocity distribution

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time [h]

 0

 0.5

 1

 1.5

 2

 2.5

 3

V
el

oc
ity

 [m
/s

]

Figure C.6: Example output of plotvideo.py. This plot was pro-
duced using the following command line: ./plotvideo.py -p
wakasa2003 -d vdistrmap -s "2003-01-28 14:00:00+09" -e
"2003-01-28 22:00:00+09" -l --timeres=300 --cbrange=0:3000
--palette="negative"

Bibliography

[1] Philip Eden, Clint Twist, “Weather Facts”, ISBN 0-7513-5322-1, Doring Kindersley,
1995.

[2] R. R. Rogers, M. K. Yau, “A Short Course in Cloud Physics”, 3rd edition, ISBN 0-08-
034864-5, Pergamon Press, 1989.

[3] Kenneth G. Libbrecht, “Online guide to snowflakes, snow crystals, and other ice phe-
nomena”, web site. http://snowcrystals.com. Cited May 24, 2004.

[4] Toshio Harimaya, “A Climatological Study on the Mechanism of Graupel Formation”,
Journal of the Faculty of Science, Hokkaido University Ser. VII (Geophysics), Vol.8,
No.5, pp.437–447, 1990.

[5] Horace R. Byers, “Elements of Cloud Physics”, Second Impression, ISBN 0-226-
08697-6, The University of Chicago Press, 1973.

[6] Vitaly I. Khvorostyanov, Judith A. Curry, “Terminal Velocities of Droplets and Crys-
tals: Power Laws with Continuous Parameters Over the Size Spectrum”, Journal of
the Athmospheric Sciences, Vol.59, No.11, pp.1872–1884, 2002.

[7] Weather Underground, web site. http://www.wunderground.com/. Cited May 24,
2004.

[8] Ken-ichiro Muramoto, Kohki Matsuura, Toshio Harimaya, Tatsuo Endoh, “A com-
puter data base for falling snowflakes”, Annals of Glaciology, Vol.18, pp.11-16, 1993.

[9] NNDC Climate Data Online, Description and Walk-through. http://cdo.ncdc.
noaa.gov/cdo/article-description.pdf. Cited May 24, 2004.

[10] O. Kelley, J. Stout, M. Kafatos, "Content-based Browsing of Data from TRMM", 13th
International Conference on Scientific and Statistical Database Management, pp.270-
273, 2001.

[11] Johanneum Research 2D Video Distrometer home page. http://www.distrometer.
at/. Cited May 24, 2004.

[12] Eszter Barthazy, Raphael Schefold, “A new ground-based optical instrument to
measure snowflakes”, 30th International Conference of Radar Meteorology, AMS,
München, 2001.

[13] David Atlas (editor), “Radar in Meteorology: Battan Memorial and 40th Anniver-
sary”, ISBN 0-933876-86-6, American Meteorological Society, 1990.

81

BIBLIOGRAPHY 82

[14] Henri Sauvageot, “Radar Meteorology”, ISBN 0-89006-318-4, Artech House, 1992.

[15] S. Y. Matrosov, “Radar Reflectivity in Snowfall”, IEEE Trans. GeoSci. Remote Sens.,
vol.30, no.3 pp.454–461, 1992.

[16] J. S. Marshall, K. L. S. Gunn, “Measurement of snow parameters by radar”, Journal
of Atmospheric Sciences, Vol.9, pp.322–327, 1952.

[17] S. Y. Matrosov, “A Dual-Wavelength Radar Method to Measure Snowfall Rate”, Jour-
nal of Applied Meteorology, Vol.37, No.11, pp.1510–1521, 1998.

[18] S. M. Sekelsky, W. L. Ecklund, J. M. Firda, K. S. Gage, R. E. McIntosh, “Particle
Size Estimation in Ice-Phase Clouds Using Multifrequency Radar Reflectivity Mea-
surements at 95, 33, and 2.8 GHz”, Journal of Applied Meteorology, Vol.38, No.1,
pp.5–28, 1999.

[19] C. Kummerov et al., “The Status of the Tropical Rainfall Measuring Mission (TRMM)
after Two Years in Orbit”, Journal of Applied Meteorology, Vol.39, No.12, pp.1965–
1982, 2000.

[20] Image Information Science Laboratory, Kanazawa University, Snowfall Team home
page. http://wis.ec.t.kanazawa-u.ac.jp/research/sf/. Cited May 24, 2004.

[21] H. Servomaa, K. Muramoto, T. Shiina, “Snowfall Characteristics Observed by
Weather Radars, an Optical Lidar and a Video Camera”, IEICE Trans. Inf. & Syst.
Vol.E85-D, No.8, pp.1314-1324, 2002.

[22] Coordinated Enhanced Observing Period home page. http://www.ceop.net. Cited
May 24, 2004.

[23] AMSR/AMSR-E validation program home page. http://www.ghcc.msfc.nasa.
gov/AMSR/validation.html. Cited May 24, 2004.

[24] River and Environmental Engineering Laboratory, University of Tokyo, home page.
http://aqua.t.u-tokyo.ac.jp/. Cited May 24, 2004.

[25] Meteorological Research Institute of Japan home page. http://www.mri-jma.go.
jp. Cited May 24, 2004.

[26] Japan Aerospace Exploration Agency home page. http://www.jaxa.jp. Cited May
24, 2004.

[27] National Aeronautics and Space Administration home page. http://www.nasa.gov.
Cited May 24, 2004.

[28] NASA Joins Snow Study Over the Sea of Japan, article on the NASA web site.
http://www.gsfc.nasa.gov/topstory/2003/0122japansnow.html Cited May
24, 2004.

[29] Fukui University home page. http://www.fukui-u.ac.jp. Cited May 24, 2004.

[30] Sankosha Corporation home page. http://www.sankosha.co.jp. Cited May 24,
2004.

BIBLIOGRAPHY 83

[31] Yamada Giken Corporation home page. http://www.yamada-giken.co.jp. Cited
May 24, 2004.

[32] Japan Science and Technology Agency home page. http://www.jst.go.jp. Cited
May 24, 2004.

[33] R. Elmasri, S. Navathe, “Fundamentals of Database Systems”, 3rd edition, ISBN
0201542633, Addison Wesley, 2000.

[34] T. Connolly, C. Begg, “Database Systems: A Practical Approach to Design, Imple-
mentation, and Management”, 3rd edition, ISBN 0201708574, Addison Wesley, 2001.

[35] M. Hernandez, “Database Design for Mere Mortals: A Hands on Guide to Relational
Database Design”, 1st edition, ISBN 0201694719, Addison Wesley, 1997.

[36] MySQL database engine home page. http://www.mysql.org. Cited May 24, 2004.

[37] PostgreSQL database engine home page. http://www.postgresql.org. Cited May
24, 2004.

[38] GNU General Public License, version 2. http://www.gnu.org/licenses/gpl.
html. Cited May 24, 2004.

[39] The BSD License. http://www.opensource.org/licenses/bsd-license.php.
Cited May 24, 2004.

[40] Firebird database engine home page. http://firebird.sourceforge.net/. Cited
May 24, 2004.

[41] MaxDB database engine home page. http://www.mysql.com/products/maxdb/.
Cited May 24, 2004.

[42] Python programming language home page. http://www.python.org. Cited May 24,
2004.

[43] Gnuplot plotting tool home page. http://www.gnuplot.info. Cited October 2,
2003.

[44] A Teras, K. Muramoto, H. Aoyama, M. Tamura, T. Koike, H. Fujii, T. Pfaff, “Database
of Snowfall for Analyzing Vertical Structure of Cloud”, Proceedings of the SICE An-
nual Conference, session TAII-2-6, pp.1878-1883, 2003.

[45] SYNOP Present Weather codes. http://www.weather.org.uk/resource/
wwcode.htm. Cited May 24, 2004.

[46] Thomas Pfaff, “Remote Sensing of Snowfall and Cloud Liquid Water using Passive
Microwave Radiometry”, Master’s Thesis, Department of Civil Engineering, Univer-
sity of Tokyo, August 2003.

[47] Arto Teräs, “Wakasa Database User’s Guide”, Image Information Science Laboratory,
Kanazawa University, September 2003.

[48] Shridhar Daithankar, Josh Berkus, “Tuning PostgreSQL for performance”. http:
//www.varlena.com/varlena/GeneralBits/Tidbits/perf.html. Cited May 24,
2004.

BIBLIOGRAPHY 84

[49] R.J. Boucher, J.G. Wieler, “Radar determination of snowfall rate and accumulation”,
Journal of Applied Meteorology, Vol.24, No.1, pp.68-73, 1984.

[50] R.E. Carlson, J.S. Marshall, “Measurement of snowfall by radar”, Journal of Applied
Meteorology, Vol.11, pp. 494-500, 1972.

[51] Y. Fujiyoshi et al., "Determination of a Z-R relationship for snowfall using a radar and
high sensitivity snow gauges", Journal of Applied Meteorology, Vol.29, No.2, pp.147-
152, 1990.

[52] Gunn, K. L. S. and J. S. Marshall, 1958: The distribution with size of aggregate snow
particles, Journal of the Atmospheric Sciences, Vol.15, No.5, pp.452-461, 1958.

[53] Japan Student Services Organization home page. http://www.jasso.go.jp. Cited
May 24, 2004.

